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1. Introduction. Let φ and ψ be analytic self-maps of the open unit disk D in the
complex plane. Such maps induce linear composition operators Cφ(f ) = f ◦ φ resp.
Cψ (f ) = f ◦ ψ acting on the space H(D) of holomorphic functions on D.

Moreover, let v and w be strictly positive bounded continuous functions (weights)
on D. We are interested in differences Cφ − Cψ of composition operators acting
between the weighted Bergman space

Av,p =
{

f ∈ H(D); ‖f ‖v,p :=
(∫

D
|f (z)|pv(z) dA(z)

) 1
p

< ∞
}
, 1 ≤ p < ∞,

where dA(z) is the area measure on D normalised so that area of D is 1 and the weighted
Banach space of holomorphic functions (weighted Bergman space of infinite order),

H∞
w := {f ∈ H(D); ‖f ‖w := sup

z∈D
w(z)|f (z)| < ∞}.

Composition operators and weighted composition operators have been studied on
various spaces of holomorphic functions, see e.g. [2–4, 6]. For more general information
on composition operators we refer to the monographs [7] and [15]. Boundedness and
compactness of differences of composition operators on various spaces of analytic
functions have been investigated by several authors, see e.g. [5, 11, 13, 14]. In this paper
we want to characterise boundedness and compactness of differences of composition
operators acting between spaces of the type defined above in terms of the weights.

2. Preliminaries. First, we need some geometric data of the open unit disk. Fix
α ∈ D and consider the automorphism ϕα(z) := α−z

1−αz , z ∈ D, which interchanges 0 and
α. Then the pseudohyperbolic metric is defined by

ρ(z, α) := |ϕα(z)| =
∣∣∣∣ α − z
1 − αz

∣∣∣∣ for every z, α ∈ D.
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Moreover, we use the fact that

−ϕ′
α(z) = 1 − |α|2

(1 − αz)2
, z ∈ D.

Next, we need some information on weights and weighted spaces. We denote by B∞
w

the closed unit ball of H∞
w . We are interested in radial weights, i.e. weights w which

satisfy w(z) = w(|z|) for every z ∈ D. The formulation of results concerning weighted
spaces of holomorphic functions requires the so-called associated weights. For a weight
w, the associated weight w̃ is defined as follows:

w̃(z) := 1
sup{|f (z)|; f ∈ B∞

w } , z ∈ D.

The associated weights are also continuous and w̃ ≥ w > 0 (see [1]). Furthermore, for
each z ∈ D there is fz ∈ H∞

w , ‖fz‖w ≤ 1, such that |fz(z)| = 1
w̃(z) . A weight v is called

essential if there is a constant C > 0 with

v(z) ≤ ṽ(z) ≤ Cv(z) for every z ∈ D.

For examples of essential weights and conditions when weights are essential, see [1–3].
In this article the following condition (L1) (which is due to Lusky, see [12]) plays an
important role. We say, a radial weight v satisfies (L1) if

inf
k

v(1 − 2−k−1)
v(1 − 2−k)

> 0.

This condition is equivalent to the following condition (see e.g. [8]):

(a) There are 0 < r < 1 and 1 < C < ∞ with
v(z)
v(a)

≤ C for every a, z ∈ D with

ρ(z, a) ≤ r.

For a proof of this equivalence, we refer the reader to [8] or [11]. By [1] radial weights
satisfying (L1) are essential.

In the sequel we consider the following weights. Let ν be a holomorphic function
on D, non-vanishing, strictly positive on [0, 1] and satisfying limr→1 ν(r) = 0. Then we
define the weight v as follows: v(z) := ν(|z|2) for every z ∈ D.

Next, we give some illustrating examples of weights of this type:
(i) Consider ν(z) = (1 − z)α, α ≥ 1. Then the corresponding weight is the so-called

standard weight v(z) = (1 − |z|2)α.

(ii) Select ν(z) = e− 1
(1−z)α , α ≥ 1. Then we obtain the weight v(z) = e− 1

(1−|z|2)α .
(iii) Choose ν(z) = sin(1 − z) and the corresponding weight is given by v(z) =

sin(1 − |z|2).
Examples (i)–(iii) also satisfy condition (L1) (see [12]). Hence, the class of weights we
introduce here contains the classical examples, which have been studied before as well
as some other weights. Thus, in our studies the Bergman space, which is weighted
with the standard weight, is included as well as the Bergman space weighted with an
exponential weight.

For a fixed point a ∈ D we want to introduce a function va(z) := ν(az) for every
z ∈ D. Since ν is holomorphic on D, the function va is also holomorphic on D.
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3. Results. We first need the following auxiliary result. The following lemma is
well known for standard weights (see [9] or [10]), but to the best of our knowledge
not known for the weights described above. The following results are valid for all
1 ≤ p < ∞.

LEMMA 1. Let v be a radial weight as defined in the previous section (i.e. v(z) := ν(|z|2)
for every z ∈ D) such that supa∈D supz∈D

v(z)|va(ϕa(z))|
v(ϕa(z)) ≤ C < ∞. Then

|f (z)| ≤ C
1
p

v(0)
1
p (1 − |z|2)

2
p v(z)

1
p

‖f ‖v,p

for all z ∈ D and all f ∈ Av,p.

Proof. Let α ∈ D be an arbitrary point. Consider the map

Tα : Av,p → Av,p, Tα(f (z)) = f (ϕα(z))ϕ′
α(z)

2
p vα(ϕα(z))

1
p .

Then a change of variables yields

‖Tαf ‖p
v,p =

∫
D

v(z)|f (ϕα(z))|p|ϕ′
α(z)|2|vα(ϕα(z))| dA(z),

=
∫

D

v(z)|vα(ϕα(z))|
v(ϕα(z))

|f (ϕα(z))|p|ϕ′
α(z)|2v(ϕα(z)) dA(z)

≤ sup
z∈D

v(z)vα(ϕα(z))
v(ϕα(z))

∫
D

|f (ϕα(z))|p|ϕ′
α(z)|2v(ϕα(z)) dA(z)

≤ C
∫

D
v(t)|f (t)|p dA(t) = C‖f ‖p

v,p.

Now put g(z) := Tα(f (z)). By the mean-value property we obtain

v(0)|g(0)|p ≤
∫

D
v(z)|g(z)|p dA(z) = ‖g‖p

v,p ≤ C‖f ‖p
v,p.

Hence,

v(0)|g(0)|p = v(0)|f (α)|p(1 − |α|2)2v(α) ≤ C‖f ‖p
v,p.

Thus, |f (α)| ≤ C
1
p

‖f ‖v,p

v(0)
1
p (1−|α|2)

2
p v(α)

1
p

. Since α was arbitrary, the claim follows. �

Next, we need an estimate for the difference. In the case of weighted Banach spaces
of holomorphic functions a similar lemma was proved in [8].

LEMMA 2. Let v be a radial weight as defined in the previous section (i.e. v(z) := ν(|z|2)
for every z ∈ D) such that supa∈D supz∈D

v(z)|va(ϕa(z))|
v(ϕa(z)) ≤ C < ∞. Moreover, assume that

the weight v satisfies condition (L1). Then there exist 0 < r < 1 and a constant M > 0
such that for f ∈ Av,p

|f (z) − f (a)| ≤ 4MC
1
p

v(0)
1
p

‖f ‖v,p

r(1 − |z|2)
2
p v(z)

1
p

ρ(z, a)

for every z, a ∈ D with ρ(z, a) ≤ r
2 .
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Proof. By hypothesis v has condition (L1) and, moreover, we know that (L1) is
equivalent to condition (A). Since the weight u(z) = 1 − |z|2 also satisfies condition
(L1), we can find 0 < r < 1 and constants M1 < ∞ and M2 < ∞ such that

v(z)
v(a)

≤ M1 and
1 − |z|2
1 − |a|2 ≤ M2 for every z, a ∈ D with ρ(z, a) ≤ r.

Let a ∈ D be fixed. Since ϕa(ϕa(z)) = z and ϕa(0) = a, we get

|f (z) − f (a)| = |f (ϕa(ϕa(z)) − f (ϕa(ϕa(a))|.

For |z| = ρ(ϕa(z), a) ≤ r we obtain by using Lemma 1

|f (ϕa(z))| ≤ C
1
p

v(0)
1
p (1 − |ϕa(z)|2)

2
p v(ϕa(z))

1
p

‖f ‖v,p

= C
1
p

v(0)
1
p

‖f ‖v,p

(1 − |a|2)
2
p v(a)

1
p

v(a)
1
p (1 − |a|2)

2
p

(1 − |ϕa(z)|2)
2
p v(ϕa(z))

1
p

≤ C
1
p M

1
p

1 M
2
p

2

v(0)
1
p

‖f ‖v,p

(1 − |a|2)
2
p v(a)

1
p

.

Let us now consider ga(z) := f (ϕa(z)). Thus, for ρ(z, a) = |ϕa(z)| ≤ r
2 we can find θ ∈ D

with |θ | ≤ |ϕa(z)| ≤ r
2 such that

|f (z) − f (a)| = |ga(ϕa(z)) − ga(0)|

≤ |ϕa(z)|
∣∣∣∣
∫ 1

0

[
∂

∂t
ga

]
(tϕa(z))dt

∣∣∣∣
≤

∣∣∣∣ ∂

∂z
ga(θ )

∣∣∣∣ |ϕa(z)|

= |ϕa(z)| 1
2π

∣∣∣∣
∫

|ξ |=r

ga(ξ )
(ξ − θ )2

dξ

∣∣∣∣ .
Finally,

|f (z) − f (a)| ≤ C
1
p M

1
p

1 M
2
p

2

v(0)
1
p

|ϕa(z)|r ‖f ‖v,p

(r − |ϕa(z)|)2

1

(1 − |a|2)
2
p v(a)

1
p

≤ 4C
1
p M

1
p

1 M
2
p

2 ‖f ‖v,p

v(0)
1
p r(1 − |a|2)

2
p v(a)

1
p

ρ(z, a).

We select M := M
1
p

1 M
2
p

2 and obtain the claim. �

LEMMA 3. Let v be a weight as defined in the previous section (i.e. v(z) := ν(|z|2) for
every z ∈ D) such that supa∈D supz∈D

v(z)|va(ϕa(z))|
v(ϕa(z)) ≤ C < ∞ and v satisfies condition (L1).
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Then for every f ∈ Av,p there is Cv > 0 such that

|f (z) − f (a)| ≤ Cv‖f ‖v,p max

{
1

(1 − |z|2)
2
p v(z)

1
p

,
1

(1 − |a|2)
2
p v(a)

1
p

}
ρ(z, a)

for every z, a ∈ D.

Proof. By Lemma 2. we can find 0 < s < 1 and a constant M < ∞ such that

|f (z) − f (a)| ≤ 4MC
1
p

v(0)
1
p

‖f ‖v,p

s(1 − |z|2)
2
p v(z)

1
p

ρ(z, a)

for every z, a ∈ D with ρ(z, a) ≤ s
2 . Next, if ρ(z, a) > s

2 , then

|f (z) − f (a)| ≤ 2
C

1
p

v(0)
1
p

‖f ‖v,p max

{
1

(1 − |z|2)
2
p v(z)

1
p

,
1

(1 − |a|2)
2
p v(a)

1
p

}

≤ 4
s

C
1
p

v(0)
1
p

‖f ‖v,p max

{
1

(1 − |z|2)
2
p v(z)

1
p

,
1

(1 − |a|2)
2
p v(a)

1
p

}
ρ(z, a).

Hence with Cv := max
{

4MC
1
p

v(0)
1
p

‖f ‖v,p

s , 4
s

C
1
p

v(0)
1
p
‖f ‖v,p

}
we conclude

|f (z) − f (a)| ≤ Cv max

{
1

(1 − |z|2)
2
p v(z)

1
p

,
1

(1 − |a|2)
2
p v(a)

1
p

}
ρ(z, a)

for every z, a ∈ D and the claim follows. �

THEOREM 4. Let w be an arbitrary weight and v be a weight as defined in the previous
section (i.e. v(z) := ν(|z|2) for every z ∈ D) such that supa∈D supz∈D

v(z)|va(ϕa(z))|
v(ϕa(z)) ≤

C < ∞ and such that v has condition (L1). Moreover, let φ and ψ be analytic self-
maps of D. Then the difference Cφ − Cψ : Av,p → H∞

w is bounded if and only if

sup
z∈D

w(z) max

{
1

v(φ(z))
1
p (1 − |φ(z)|2)

2
p

,
1

v(ψ(z))
1
p (1 − |ψ(z)|2)

2
p

}
ρ(φ(z), ψ(z)) < ∞.

Proof. By [1] we know that under the given assumptions v and ṽ are equivalent, i.e.
we can find a constant k > 0 such that v(z) ≤ ṽ(z) ≤ kv(z) for every z ∈ D. First, we
suppose that the difference is bounded and want to show that supz∈D

w(z)

v(φ(z))
1
p (1−|φ(z)|2)

2
p

<

∞ indirectly. We can assume that there is a sequence (zn)n ⊂ D such that |φ(zn)| → 1
and

w(zn)

v(φ(zn))
1
p (1 − |φ(zn)|2)

2
p

≥ n
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for every n ∈ �. Fix n ∈ � and choose f p
n ∈ B∞

v such that |fn(φ(zn))|p = 1
ṽ(φ(zn)) . Now

put gn(z) := fn(z)ϕ′
φ(zn)(z)

2
p ϕψ(zn)(z) for every z ∈ D. Then a change of variables yields

‖gn‖p
v,p =

∫
D

|gn(z)|pv(z) dA(z) =
∫

D
|fn(z)|p|ϕ′

φ(zn)(z)|2|ϕψ(zn)(z)|pv(z) dA(z)

≤ sup
z∈D

v(z)|fn(z)|p sup
z∈D

|ϕψ(zn)(z)|p
∫

D
|ϕ′

φ(zn)(z)|2 dA(z) =
∫

D
dA(t) = 1.

Obviously, (gn)n belongs to the closed unit ball of Av,p and by boundedness of the
difference we can find a constant c > 0 such that

c ≥ w(zn)|gn(φ(zn)) − gn(ψ(zn))| = w(zn)
ρ(φ(zn), ψ(zn))

ṽ(φ(zn))
1
p (1 − |φ(zn)|2)

2
p

≥ n

for every n ∈ �, which is a contradiction. We get supz∈D
w(z)

v(ψ(z))
1
p (1−|ψ(z)|2)

2
p

< ∞
analogously.

For the converse, we apply Lemma 3. and can conclude that there exists a constant
Cv > 0 such that

‖Cφ − Cψ‖ = sup
z∈D

w(z) sup{|f (φ(z)) − f (ψ(z))|; f ∈ Av,p, ‖f ‖v,p ≤ 1}

≤ sup
z∈D

Cv max

{
w(z)

v(φ(z))
1
p (1 − |φ(z)|2)

2
p

,
w(z)

v(ψ(z))
1
p (1 − |ψ(z)|2)

2
p

}
ρ(φ(z), ψ(z)) < ∞.

Hence the difference is bounded. �

THEOREM 5. Let w be an arbitrary weight and v be a weight as defined in the previous
section (i.e. v(z) := ν(|z|2) for every z ∈ D) such that supa∈D supz∈D

v(z)|va(ϕa(z))|
v(ϕa(z)) ≤ C <

∞ and v satisfies condition (L1). Moreover, let φ and ψ be analytic self-maps of D with
max{‖φ‖∞, ‖ψ‖∞} = 1. Then the difference Cφ − Cψ : Av,p → H∞

w is compact if and
only if the following conditions are satisfied:
(i) lim sup|φ(z)|→1

w(z)

(1−|φ(z)|2)
2
p v(φ(z))

1
p
ρ(φ(z), ψ(z)) = 0,

(ii) lim sup|ψ(z)|→1
w(z)

(1−|ψ(z)|2)
2
p v(ψ(z))

1
p
ρ(φ(z), ψ(z)) = 0.

Proof. Note that under the given assumptions v and ṽ are equivalent. First, we
assume that (i) and (ii) hold. Let (fn)n be a bounded sequence in Av,p that converges
to zero uniformly on compact subsets of D. Let M = supn ‖fn‖v,p < ∞. Given ε > 0,
there is r > 0 such that if |φ(z)| ≥ r, then

w(z)

(1 − |φ(z)|2)
2
p v(φ(z))

1
p

ρ(φ(z), ψ(z)) <
ε

3MCv

and if |ψ(z)| ≥ r, then

w(z)

(1 − |ψ(z)|2)
2
p v(ψ(z))

1
p

ρ(φ(z), ψ(z)) <
ε

3MCv

.
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On the other hand, since fn → 0 uniformly on {u; |u| ≤ r} there is an n0 ∈ � such
that, if |φ(z)| ≤ r and n ≥ n0, then |fn(φ(z))| < ε

3N and if |ψ(z)| ≤ r and n ≥ n0, then
|fn(ψ(z))| < ε

3N , where N = supz∈D w(z).
Hence, applying Lemma 3. we obtain by setting X := {z ∈ D; |φ(z)| ≤ r} and Y :=

{z ∈ D; |ψ(z)| ≤ r}
sup
z∈D

w(z)|Cφfn(z) − Cψ fn(z)|
= sup

z∈D
w(z)|fn(φ(z)) − fn(ψ(z))|

≤ sup
z∈X∩Y

w(z)|fn(φ(z)) − fn(ψ(z))| + sup
z∈D\(X∩Y )

w(z)|fn(φ(z)) − fn(ψ(z))|

≤ sup
z∈D\X∩Y

w(z)|fn(φ(z)) − fn(ψ(z))| + sup
z∈X

w(z)|fn(φ(z))| + sup
z∈Y

w(z)|fn(ψ(z))|

≤ sup
z∈D\X∩Y

max

{
Cv‖fn‖v,pw(z)

(1 − |φ(z)|2)
2
p v(φ(z))

1
p

,
Cv‖fn‖v,pw(z)

(1 − |ψ(z)|2)
2
p v(ψ(z))

1
p

}
ρ(φ(z), ψ(z))

+ ε

3
+ ε

3
≤ ε

for every n ≥ n0. Conversely, suppose Cφ − Cψ : Av,p → H∞
w is compact and (i) does

not hold, then there are δ > 0 and (zn)n ⊂ D with |φ(zn)| → 1 such that

w(zn)

(1 − |φ(zn)|2)
2
p ṽ(φ(zn))

1
p

ρ(φ(zn), ψ(zn)) ≥ δ

for all n. Since |φ(zn)| → 1, there exist natural numbers α(n) with limn→∞ α(n) = ∞
and such that |φ(zn)|α(n) ≥ 1

2 for all n. Next, for every n ∈ � we consider the function
gn

gn(z) := fn(z)ϕ′
φ(zn)(z)

2
p zα(n),

where fn is chosen as in the proof of Theorem 4., i.e. we select f p
n ∈ B∞

v such that
|fn(φ(zn))|p = 1

ṽ(φ(zn)) . Then (gn)n is norm bounded and gn → 0 pointwise because of

the factor zα(n). Thus, it follows that a subsequence of ((Cφ − Cψ )gn)n tends to 0 in H∞
w .

On the other hand

‖(Cφ − Cψ )gn‖w ≥ w(zn)|(Cφ − Cψ )gn(zn)| = w(zn)|gn(φ(zn)) − gn(ψ(zn))|

= w(zn)|φ(zn)|α(n)

(1 − |φ(zn)|2)
2
p v(φ(zn))

1
p

ρ(φ(zn), ψ(zn)) ≥ 1
2
δ,

which is a contradiction.
We can prove condition (ii) analogously. �
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