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ABSTRACT. Flow stripes along the surface of rapidly moving ice streams are shown 
to be an expected reaction of a viscous medium flowing over an irregular bed, whenever 
the velocity at the bed is large compared to shearing through the thickness. The principal 
features of the process are as follows. At high basal speeds the ice acts as a strongly selec­
tive band-pass filter transmitting basal undulations on spatial scales of a few ice thick­
nesses very effectively to the surface. The decay of the short-scale features by diffusion is 
strongly retarded by horizontal stress gradients. Consequently, localized disturbances at 
the bed produce topographic effects on the surface that are advected long distances down­
stream before decaying away. This mechanism may explain many of the flow stripes on 
active ice streams moving by rapid basal motion. 

1. INTRODUCTION 

Flow stripes are visible in satellite images of most active and 
some inactive ice streams of the West Antarctic ice sheet. 
They usually have widths within the range 0.1 - 10 ice thick­
nesses, and amplitudes of a few meters, and often extend for 
hundreds of kilometers (Swithinbank and Lucchitta, 1986; 
Bindschadler, 1993; Casassa and Whillans, 1994). On the 
basis of previously established theories of glacier flow it is 
unclear how surface features of this scale can be generated 
from the bed. In fact, the generation offeatures on this scale 
can be analyzed only with a theory which takes into account 
the effects of short-scale (on the order of one to ten ice thick­
nesses) stress gradients on the flow, which is not done in 
most work on glacier flow. Furthermore, according to tradi­
tional kinematic-wave theory founded on prediction of 
motion from local thickness and slope (Nye, 1960), stripes 
should decay by diffusion over a period of a few days to 
weeks unless they are dynamically supported. Hence, 
neither the generation of the stripes nor their preservation 
over time can be explained with traditional theory of glacier 
flow. 

Various hypotheses for the genesis of flow stripes have 
been suggested. Merry and Whillans (1993) have summar­
ized these attempts, and suggested that flow stripes are old 
shear margins. This is a possible explanation for the genesis 
of some of the observed flow stripes. On the other hand, a 
number of examples of the generation of flow stripes directly 
within active ice streams are known, one of which is shown 
in Figure I. 

Despite the lack of a satisfactory explanation for their 
origin and preservation over time, these stripes have been 
used to identify present and former ice streams and to infer 
changes in their flow dynamics and configuration 
(MacAyeal and others, 1988; Hodge and Doppelhammer, 
1996). Our objective in this paper is to provide an explana-

Fig. 1. A n example cif the generation cif a flow stripe within Ice 
Stream E, West Antarctica,from a Landsat Thematic Map­
per scene. The meanflow direction isfrom the upper lift to the 
lower right. 

tion for both the origin and the longevity of flow stripes. We 
do this by applying an analytical theory of time-dependent 
linear flow in three dimensions, which has recently been 
developed. The details of the theoretical work, which does 
not relate specifically to flow stripes, will be given in a sepa­
rate paper by G. H. Gudmundsson. 

2. THEORETICAL FRAMEWORK 

We consider the problem of a ewtonian fluid that flows 
under the action of gravity, and we investigate the flow per­
turbations that result from two different types of boundary 
conditions along the lower boundary: (I) bedrock undula­
tions, and (2) spatial variations in resistance to basal sliding. 
Our purpose is to analyze the time-dependent evolution of 
the surface topography following the onset of the basal per­
turbations. We will limit the discussion mainly to conditions 
which resemble those of most active ice streams, where sur­
face slopes are very small (about 0.1°) and the ratio of basal 
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sliding to the internal deformational velocity is very large 
(> 1000). 

The mathematical analysis is based on perturbation 
methods. This sets a limit on the amplitudes of the basal per­
turbations. Hence, the thickness variations must be small 
compared to the mean ice thickness, and the variations in 
resistance to basal sliding must be small compared to the 
mean resistance. Apart from these restrictions, which pre­
sumably are met on most ice streams, the analytical solu­
tions are quite general. They describe three-dimensional 
flow with evolving surface geometry, and although they 
are valid only for a linear medium, the viscosity may vary 
exponentially with depth. In particular, the solutions 
account rigorously for flow variations over short scales and 
the effects of both longitudinal and transverse stress gradi­
ents on the flow. 

2.l. Previous work 

Considerable theoretical work has been done on the analysis 
of short-scale flow perturbations. Two-dimensional short­
scale flow perturbations resulting from a weakly undulated 
bed for steady-state conditions using a Weertman-type slid­
ing law and Glen's flow law have been derived (Hutter and 

others, 1981; Hutter, 1983). The transfer of basal velocity 
anomalies to the surface of a Newtonian medium was investi­
gated by Balise and Raymond (1985). Reeh (1987) studied the 
linear three-dimensional steady-state problem for transver­
sely symmetric bedrock undulations in the absence of basal 
sliding. The effects of undulating bed and spatial sliding var­
iations on the flow regime were investigated in two dimen­
sions by Whillans and Johnsen (1983). J6hannesson (1992) 
extended and corrected previous work. He determined the 
two- and three-dimensional steady-state transfer functions 
for linear and non-linear media, and solved the time-depen­
dent problem in two dimensions. He used his theory to pre­
dict the surface profiles from measured bedrock profiles of 
Hoffsjokull, Iceland, and found an excellent agreement 
between calculated and measured surface profiles. 

2.2. GeOInetry, field and boundary equations 

A detailed description of the solution procedure will be 
given in the forthcoming paper by G. H. Gudmundsson. A 
short overview of the main steps leading to the analytical 
solutions is given here, with the aim of both clarifying the 
set of underlying assumptions and facilitating the under­
standing of the figures which follow. 

A Cartesian coordinate system is used with the Z axis 
normal to both the mean upper and lower boundaries. The 
slab has a mean inclination et, and the x and y axes are par­
allel and perpendicular to the mean slope, respectively. The 
Z coordinates of the upper and the lower boundaries are 
given by the functions zs(x, y) and Zb(X, y). 

The field equations for incompressible, creep flow are 

V'p=2V' ·('Y/D)+f (1) 

and 

V' . v = 0 and (J = ? (2) 

In the above equations, D is the rate-of-deformation tensor, 
v is the velocity vector, 'Y/ is the viscosity, p is the pressure, f is 
the body force, and (J is the stress tensor. The rate-of-defor­
mation tensor is defined as D = ~ (V'v + V'vT). Its compo­
nents are the strain rates Eij. 
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The viscosity can vary with depth according to 

'Y/( z) = 'Y/seE.( z-zs) , (3) 

where 'Y/s is the viscosity at the surface, and ~ is a parameter 
which determines the rate of the vertical viscosity variation. 
For a positive ~ the viscosity at the surface is higher than at 
the base. An exponential viscosity profile accounts for an 
expected decrease of viscosity with depth in an approximate 
but reasonably realistic way. The temperatures in ice 
streams are expected to vary roughly linearly with depth 
(although the gradient may be stronger near the bed than 
near the surface). Assuming that the temperature effects on 
the viscosity of ice can be represented by 'T/(T) = 'T/se,(Ts-Tl, 
where T is the temperature, I is a constant, and Ts is the 
surface temperature, a roughly linear temperature variation 
with depth leads to an approximately exponential viscosity 
variation. 

The surface is not subjected to any stress, so that 

(Jijmj = 0, fori = 1,2,3 and Z = zs(x, y), where mis a unit 
vector normal to the surface. The time-dependent evolution 
of the surface is governed by the kinematic boundary condi­
tion 

OZs(X, y) oZs(x, y) oZs(x, y) 
ot + Vx ox + Vy oy = Vz , 

for Z = zs(x, y) (4) 

where accumulation and ablation have been ignored. 
Along the lower boundary neither the basal shear stress 

nor the basal sliding velocity is prescribed independently. 
Rather, the relation between them is specified through a 
sliding law 

(5) 

where Ub(X, y) is the basal sliding velocity. The function 
e(x, y) describes the spatial variation in resistance to basal 
sliding, and Tb(X, y) is the basal shear stress. The basal 
velocities are taken to be tangential to the lower boundary 
given by Zb(X, V). 

2.3. Solution procedure 

The effects of bedrock undulations and spatial variations in 
resistance to basal sliding on the flow field are investigated 
using the methods of perturbation theory. A bedrock per­
turbation is the variation in Zb(X, y) around its mean value, 
and will be referred to as a Z-perturbation. A spatial varia­
tion in resistance to basal sliding is described through the 
variation of the function e(x, y) around its mean value, and 
will be referred to as a C-perturbation. 

The zero-order solution is the plane-slab solution, and 
its properties are denoted by the superscript" (0)". All prop­
erties of the zero-order solution are independent of both the 
x and y directions. 

The main steps leading to the analytical solutions can be 
summarized as follows: 

I. Non-dimensional variables are introduced by appropri­
ate scalings (described below). 

2. The boundary conditions, which must be applied along 
the actual physical boundaries, are transformed to the 

boundaries of the zero-order solution using Taylor series. 

3. The two perturbations in Zb and e are introduced 
through Zb(X, y) = z~O) + E!b(X, y) and e(x, y) = 

e(O) + 8g(x, V) , where the functions !b(X, y) and g(x, y) 
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are 0(1) and € and 8 are small compared to unity. With 
all the field variables written in the form X = 
X (O) + cX (E) + OX(8) + 0(c2 , 02 , cO) , terms of the same 
order in € and 8 in the boundary conditions and the field 
equations are collected. 

4. The two resulting first-order perturbation problems are 
solved with standard Fourier and Laplace transforma­
tion methods. 

2.4. Scalings 

All variables having the dimension oflength are scaled with 
the mean ice thickness h (O) . The stresses a re scaled with the 
mean shear stress T~O), the velocities with the mean deform a­
tional velocity u~O), and the time with the ratio of the mean 
ice thickness to the mean internal deformational velocity 
hiD) /u~O). The kinematic boundary condition is invariant 

under this set of scalings, so that the evolution with time is 
the same in scaled as in dimensional variables. 

Non-dimensional (or scaled ) variables are denoted by 
upper-case letters. In non-dimensional form the mean ice 
thickness is equal to unity, the mean basal sliding velocity 
is C(O), the mean surface is Zs = 0, the mean bed is 

Zb = -1, and the mean surface velocity is given by 

VJO)(Z = 0) = C(O) + ~2 (e- :=: + :=: - 1) (6) 

where:=: = ~h(O). The ratio of the mean sliding velocity to 
the mean deformational velocity, i.e. the slip ratio, is 

denoted by n. Note that as the rate of the vertical viscosity 
variation changes, the sliding velocity remains constant, 
while the internal deformational velocity varies. Also note 
that the ratio of the surface viscosity to the basal viscosity 
is given by e:=:. 

In non-dimensional variables the sliding law has the 
form Ub(X, Y) = Cia) [1 + .6C(X, Y )], where Ub is the 
sliding velocity, and .6C(X, Y) is the C-perturbation, 
which must be small compared to unity. The bedrock per­
turbation is .6.Z(X, Y) and it must also be small compared 
to unity (i. e. the mean ice thickness). All field deviations 
from their mean values (i.e. anomalous fi elds) depend line­

arly on .6C(X, Y) and .6Z(X, Y). 

2.5. Analytical solutions 

As examples of the analytical solutions we give the Fourier 
transforms of the time-dependent transfer functions for the 

Z- and C-perturbations. These analytical solutions are valid 
for a constant viscosity profile with depth, i.e. :=: = 0. The 
transfer functions describe the effect of the basal perturba­
tions on the surface topography. Multiplication of the transfer 
functions with the Fourier transform of the basal perturba­
tions gives the corresponding surface perturbations. 

The transfer function describing the effect of a Z-pertur­
bation on the surface topography is given by 

T zz(t; kx, ky) = ~ (1 - eLt/tre- t/td) , (7) 
d+ Lb 

and the transfer of a C -perturbation to the surface is given 

by 

T zc(t; kx, ky) = ~ (1 - eLt/tpe-t /td) , (8) 
d + Lb 

where L is the imaginary uni t, and the following abbrevia­
tions have been used: 
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a = [( C (O) + 1) 1 + ( C (O) + 1 + k2C (O)2) cosh k] kkxl (9) 

6 = (J sinhk - k) cota, (10) 

C = [k2
(C(O) + 1) + l]k coshk, (11) 

d = kkx (C(O) + 1) [1 cosh k + 1 + k2 
( C(O) + 1)] , (12) 

e = - kxk C(O) cosh k, 

and 

1 = cosh k + kC(O) sinh k . 

(13) 

(14) 

The two time-scales td and tp, referred to as the diffusion 
time-scale and the propagation time-scale, resp ectively, are 
given by 

and (15) 

In the above equations, kx and ky a re the longitudinal and 
transverse wavenumbers, respectively, and k is defined as 
(kx 

2 + k/)1 /2 These wave numbers are dimensionless, 
although written in lower case. A value of kx = 1 corre­
sponds to a longitudinal undulation having a waveleng th of 
27r times the mean ice thickness. The expressions for the 

time-scales tp and td are a lso without dimensions. Dimen­
sional times are obtained by multipl ying td and tp with the 
ratio h (O) /u~O) 

3. EXAMPLES FOR FLOW OVER BASAL PERTUR­
BATIONS AT HIGH SLIDING VELOCITIES 

Figure 2 shows the response of the surface to flow over both 
a Z- and a C-perturbation at the base. Both basal perturba­
tions a re ofGaussian shape given by the function f(x , y) = 
e -(x

2
/ a/+y2/ay2) . For convenience the amplitudes of both 

basal perturbations were set to unity. Hence, for a basal bed­
rock undulation with the same shape but a different ampli­
tude of, [or example, 10% of the mean ice thickness, the 
surface undulations will be 10 % of what is shown in Figure 
2a. The Z -perturbation corresponds to a bedrock bump 
protruding into the base of the ice stream, and the C -pertur­
bation to an area with enhanced resistance to basal sliding 
(negative .6C ) with respect to the surrounding a rea. C-per­
turbations are important for the dynamics and the ex istence 
of ice streams. The ice-stream margins correspond to sha rp 
transverse variations in slip resistance (Bentl ey, 1987; 
R aymond, 1996), and variations in slip resistance within ice 

streams may be the cause of areas of rougher surface reli ef 
(MacAyeal, 1992; Bindschadl er and others, 1996). 

The basal perturbations are turned on at time t = 0, 
and the situation at t = 2 is shown. Typical sur [ace velocities 
for active Siple Coast ice streams are some 500 m a- I, and 

ice thicknesses a re around 1000 m . Then, accounting for 
the time-scaling used in this figure, which is hiD) /u~O) (and 
not hiD) /u~O) as above), a time interval of 2 corresponds to 
about 4 years. The values o[ the other input pa rameters are 
given in the figure caption. 

The slip ratio n was estimated by calculating the de[or­
mational velocity for a linear temperature profile with sur­
face temperatures at - 25°C and basal temperatures at the 
melting point, [or an ice thickness o[ about 1000 m and sur­
face slope 0[0.1 ° using the Smith- Morland relat ion between 
the rate factor and temperature (Smith and M orl and, 1981). 
Depending on the exact numerical values used, a value [or 
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Fig. 2. Map plane view ifsurJace undulations caused by Gaussian-shaped Z -perturbations ( a) and C -perturbations (b) at the 
base (white contour lines). The unit if the X and Y axes is one mean ice thickness. The shape if the basal perturbation is shown 
with black-colored and dash-dotted contour lines. The mean surface elevation is zero and the mean ice thickness is equal to unity. 
Higher-than-average surface elevations are plotted with solid contour lines, and lower-than-average surface elevations with 
dashed lines. The meanflow direction isfrom lift to right. The basalflow perturbations are turned on at time t = 0, and the 
surJace response at time t = 2 is shown. This dimensionless time interval can be interpreted as dimensional time by multiplication 
with the ratio if mean ice thickness to mean surface velocity (h (0) / u~O) ). In one time unit the ice travels a distance if one mean ice 
thickness. Other relevant parameters are: a x = ay = 2 (the longitudinal and transverse widths if the basal perturbations), 
Cl! = 0.10 (mean surface slope), n = 10000 (slip ratio), and:::: = 0 ( viscosity variation with depth). The amplitudes if the 
Z - and C -perturbations are equal to + 1 and -1, respectively. 

n in the range from a few thousand to a few tens of thou­
sands results. A standard value ofn = 10 000 has been used 
for the figures shown. 

Figure 2 shows how the ice is piled up at the upstream 
sides, and a surface depression is formed on the downstream 
sides, of both the Z- and C-perturbations as the ice stream 
flows over and around them. The spatial scale of the result­
ing surface undulations is very different. The C-perturba­
tion has a much broader effect on the surface than the Z­
perturbation. The C-perturbation response is not localized, 
in the sense that it is not limited to the width of the applied 
basal perturbation. This C-perturbation response was found 
by Raymond (1996) in connection with the effect of trans­
verse variations in basal slip-resistance. Note that only the 
size, not the shape, of the surface perturbation depends on 
the ampli tude of the applied basal perturbations. 

The situations at t = 80 and t = +00 are depicted in 
Figure 3. The originally formed depressions seen in Figure 
2 have been advected downstream, and at the same time 
their amplitudes have become smaller. Interestingly, the 
depressions have traced out "tracks" in the surface of the 
ice. The surface rise is still at essentially the same spot as it 
was at t = 2, or just slightly upstream of the bedrock pertur­
bation. As time advances further, the amplitudes of the 
originally-formed surface depressions (Fig. 2) continue to 
decrease, and in the steady-state li mit these depressions 
have completely disappeared (Fig. 3c and d ). What remains 
is the surface rise and a flow feature which strongly resem­
bles the flow stripes seen on active ice streams (cr. Figs I and 
3c). The steady-state surface rise could be referred to as the 
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"head" of the flow stripe, and this type of flow-stripe genesis 
as a "base-generated" flow stripe. A (steady-state) base-gen­
erated flow stripe always has a head, and the sign of the sur­
face amplitude of the head is different from that of the flow 
stripe. 

It is important to realize that because the amplitudes of 
the surface undulations depend linearly on the amplitudes 
of the basal perturbations, a bedrock depression and a "slip­
pery spot" will give rise to a flow stripe which rises above the 
surrounding ice. Also note that a I % surface amplitude, for 
example, can be generated by only 0.75% C-perturbation 
(Fig. 3d). 

Reducing the transverse width of the basal perturba­
tions gives narrower flow stripes which decay over longer 
distances. Flow stripes having widths considerably smaller 
than the ones shown in Figure 3 (less than h(Ol ) can also be 
generated from the bed. 

The flow stripe is continuously regenerated through ad­
vection of ice. Hence, as the steady- tate solution demon­
strates (Fig. 3c and d ), the flow stripe does not decay with 
time. Flow stripes generated in the way depicted in Figure 
3 never decay as long as the basal perturbation persists and 
the ice stream continues to flow. There is, therefore, no 
upper limit to the lifetime of flow stripes, only to their 
length. This picture differs from the conception of flow 
stripes as being old, inactive shear margins, in which case 
flow stripes must have a finite lifetime. 

The genesis of the flow stripes follows from the fact that 
basal perturbations can, if they have the right spatial di­
mensions, be transferred rather easily to the surface. The 
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Fig. 3. Surface undulations caused by Gaussian-shaped basal Z-jlerturbations (a and c) and C -perturbations (b and d) for 
t = 80 and t = +00. All other parameters are the same as in Figure 2. Note that the contour interval is not constant. (For the 
surface rise in (a) and (c) the contour interval is 0.2 in units if mean ice thicknesses.) ( e) gives the sUljace amplitudes seen in 
(a) - ( d) along the line Y = 0 as afunction if x. 

longevity is related to the long diffusion time at short spatial 
scales. Both the spatial and the temporal transfer character­
istics predicted by the first-order three-dimensional short­
scale theory differ strongly from predictions based on the 
assumption that the direction and the magnitude of ice flow 
is at every location dependent only on the local ice thickness 
and the local surface slope. Technically, this difference fol­
lows from the different treatment of the terms in the 
momentum equations ((Jij,j + fi = 0) describing horizontal 
stress gradients. Ignoring horizontal stress gradients leads 
to flow fields which depend only on the local thickness and 
slope. Including horizontal stress gradients, on the other 
hand, means that stress disturbances can be transmitted 
over some distance I, referred to as the coupling length. As 
a result, the ice flow at every location does not depend only 

on the local slope and thickness, but becomes affected by the 
whole stress regime within the distance l. The flow of fea­
tures having horizontal spatial scales smaller than coupling 
length I can be described correctly, therefore, only if stress 
gradients are rigorously accounted for. As shown below, 
the coupling length l on ice streams is mllch larger than the 
typical horizontal spatial dimensions of flow stripes. Hence, 
the inclusion of stress gradients is crllcial for a correct 
theoretical description of their Oow characteristics. 

4. TRANSFER CHARACTERISTICS 

The transfer functions Tzz(t; kx, ky) and Tzc(t; kx) ky) 
(Equations (7) and (8)) give the relation between the 
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Fig. 4. The steady-state transfer function T zz describing the 
transfer of bedrock undulations to the glacier surface as a Junc­
tion of the sliding-law parameter C (O) and the wavenumber 
kxJor ky = 1, et = 0.10, and:::: = 5. The transfer function 
gives the ratio if the amplitude if a sinusoidal sUljace undula­
tion to the amplitude if a sinusoidal bedrock undulation hav­
ing the same wavelength. With increasing C (O) the slip ratio 
( ratio of mean basal sliding velocity to mean ice-deJorma­
tional velocity) increases (Equation (6)). In ice streams, 
C (O) may well be somewhere within the range 5000-10000, 
whereas Jor most glaciers C (O) is less than 10. From the shape 
if the transfer fimction, itJollows that in ice streams longitu­
dinal bedrock undulations having wavelengths if 5- 10 mean 
ice thicknesses are transferred to the surface with onl) a modest 
amplitude attenuation. 

applied Z- and C-perturbations and the resulting surface 
topography. Figure 4 shows the magnitude of the steady­

state (t = (Xl) transfer function T zz as a function of the 

longitudinal wavenumber kx and the sliding-law parameter 
C (O), for ky = 1 and:::: = 5. A value close to unity represents 
an almost perfect transmission of basal bedrock undulations 
to the surface, and a value of zero no transmission. A con­
spicuous aspect of the figure is the selective transmission of 

basal undulations to the surface at high basal sliding 
velocities. The ice acts as a relatively narrow band-pass fil­
ter. Only a selected range of longitudinal wavelengths is 
transmitted to the surface without substantial attenuation. 
As an example: for C (O) = 5000, which corresponds to 

n ~ 15000 (see Equation (6)), about 70% of the amplitude 

of a sinusoidal bedrock undulation with Ax = 6 is trans­
mitted to the surface. The narrowness of this band-pass filter 
increases with increasing C (O), and at the same time an ever 
larger fraction of the basal amplitudes is transmitted. 
H ence, bedrock undulations having wavelengths 6- 10 times 
the mean ice thickness are very effectively transmitted to the 

surface of ice streams. For ice sheets, ice caps and glaciers, 
where the slip ratio n typically ranges from 0 to about lOO 
at the most, this band-pass effect is of comparatively little 
importance. 

The band-pass effect can be understood in rather simple 
terms. The amplitude of the (non-dimensional ) anomalous 

flow is proportional to the slope a/ A of the bedrock undula­
tions, that is, to the rate of the thickness variations and not 
to the thickness changes themselves. Hence, for a given a the 
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maximum amplitude of the anomalous flow decreases as A 
increases. On the other hand, the vertical extent of the 
anomalous flow scales with A. Thus, for small wavelengths 
(A « 1) the induced flow disturbances are large, but lim­
ited to the lowermost layers and therefore without appreci­
able effect on the surface geometry. With increasing A, 
however, the anomalous flow has progressively more effect 
on the surface geometry, but at the same time the overall 
amplitudes of the anomalous flow decrease. Since for 
A ---+ +00 the amplitudes of the induced flow disturbances 
go to zero, it follows that there will be some intermediate 
wavelength for which the transfer reaches a maximum. 

In Figure 5, the Tzc transfer function is shown for the 
same set of values as used in Figure 4. Note that because 

the cause, i.e. the C -perturbation, and the effect, i.e. the sur­
face undulation, are different physical quantities, no simple 
meaning can be given to the magnitude of the fi lter, except 
that higher values mean larger resulting surface undula­
tions. The figure shows very much the same filter character­

istics as seen in Figure 4. In particular, the band-pass effect 
is equally important for the C- as for the Z-perturbations. A 
close inspection of both figures, however, shows that the 
maximum of the transfer function T zc is, fo r each fixed 
value of C (O), displaced towards somewhat longer wave­
lengths as compared to Tzz. 

5. TIME-SCALES 

The time-dependent internal deformation of glaciers is gov­
erned by the two time-scales td and tp having to do with dif­
fusion and propagation of disturbances. The dependency of 
the diffusion and the propagation time-scales on the ratio of 
the longitudinal wavelength to mean ice thickness was first 
investigated by Landon and Raymond (1978) in a numerical 
model, and later analytically by J6hannesson (1992). In the 
long-wavelength limit, where longitudinal stress gradients 
are not important, the traditional kinematic-wave theory 

can be used to calculate these time-scales, and it predicts de­
cay times of a few days to weeks and a phase velocity of a few 
times the surface velocity. The time-scales calcu lated from 
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Fig. 5. The steady-state transfer Junction T zc describing the 
iffect ifspatial variations in resistance to basal sliding on the 
surface geometry Jor ky = 1, et = 0.10 and :::: = 5. 
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Fig. 6. The diffusion/ build-up time-scale td as afunction of 
the longitudinal wavelength Ax. The thin dash-dotted lines 
give the long-wavelength limit, which is td = (e(O) + 1) 
[k/(C(O) + 2/3) cot ar1 (in units of h (O ) /Ud). The 
solid and the dotted lines were calculated for Ay = 00 and 
Ay = 50, respectively. The dotted lines exemplijj how the 
finite transverse extent of the perturbations can affect their 
diffusion time, so that the long-wavelength limit is not even 
reached as Ax ~ +00. The surface slope is a = 0.10 and 
there is no temperature variation with depth ( :::' = 0). 

the short-scale flow theory (see Equation (15)) give the 
known long-wavelength limits, which originally were 
derived using entirely different methods (Nye, 1960), for 
kx ~ 0 and ky = O. On short spatial scales, however, the 
di ff usion time td is much longer than predicted from a linear 
extrapolation of the long-wavelength limit to short spatial 
scales. On short scales the phase velocity equals the mean 
surface velocity as expected, whereas the traditional theory 
predicts a phase velocity of twice the surface velocity (for a 
Newtonian medium ). 

The diffusion time td is plotted in Figure 6 as a function 
of the wavelength A where A = (Ax 2 + A/)1/2. Note that 
the longitudinal and transverse wavenumbers kx and ky 
affect td only through k. The alignment of a surface undula­
tion with respect to the flow direction has therefore no effect 
on the diffusion rate, which is a physically reasonable result. 
Three different spatial scales (short, intermediate, long) can 
be identified in Figure 6. On short scales (A « 1) td ex A-I. 
This short-wavelength limit corresponds to a viscous relaxa­
tion over a half-space. In the long-wavelength limit 
(A ~ +(0) td ex A2, which is a result originally obtained 
by Nye (1960). In the intermediate range td does not depend 
on A; an expected result for a viscous relaxation over a layer. 
The wavelengths in the intermediate range are long enough 
for the finite ice th ickness to have a noticeable effect on the 
transient evolution, and at the same time these wavelengths 
are shorter than the coupling length over which stress gra­
dients are transmitted. The transition from the intermediate 
spatial scale to the long-wavelength limit marks the bound­
ary between the regions of "stress-gradient-affected" flow 
and "stress-gradient-independent" flow. For C(O) = 10000 
this transition takes place at the staggering value of a few 
hundred mean ice thicknesses, which effectively means that 
ice streams are significantly affected by stress gradients at 
all relevant spatial scales. Figure 6 gives a diffusion time of 
several hundred years for C(O) = 10000, and an ice-thick-
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ness-to-surface-velocity ratio of 2 years (a typical ratio for 
the Siple Coast ice streams). Diffusion times on this order 
are compatible with the observation that surface features on 
ice streams can persist for prolonged time periods. 

Not only basal perturbations may give rise to flow 
stripes. Flow stripes can, for example, often be traced back 
to the confluence of two ice streams (Swithinbank and Luc­
chitta, 1986; Casassa and others, 1991), and a possible 
explanation for the genesis of these flow stripes has been of­
fered (Vornberger and Whillans, (986). From the long diffu­
sion times (several hundred years ) on short spatial scales 
and the high surface velocities of ice streams, it follows that 
every sufficiently localized surface undulation - generated 
in one way or another by the mechanics of glacier flow - is 
stretched out in the downstream direction over considerable 
distances, leading to the formation of a flow stripe. That sur­
face features on ice streams could possibly be elongated in 
this fashion in the downstream direction was anticipated 
by Hodge and Doppelhammer (1996). 

6. CONCLUSION 

A flow stripe is formed whenever ice flows over a basal 
perturbation having a spatial extent comparable to the 
ice thickness at high basal sliding velocities. No special 
rheological properties of the ice are needed for this purpose. 
Non-linearities in the flow law must be expected to affect 
somewhat the quantitative results, but not to change the 
overall picture. Neither the genesis nor the longevity ofOow 
stripes poses fundamental problems, and both can be under­
stood to be straightforward consequences of the properties 
of viscous creep flow. 

Previous theoretical work on glacier flow has not 
accounted for the effects of longitudinal coupling over short 
spatial scales and for the three-dimensionality of glacier 
flow to the extent done here. At short spatial scales stress 
gradients affect drastically both the transform characteris­
tics of basal perturbations through the ice towards the 
surface, and the magnitudes of both the diffusion and 
propagation time-scales. A rapidly slid ing ice stream is 
exceedingly "transparent" to bedrock undulations having 
wavelengths which are a few times the mean ice thickness, 
and bedrock undulations on this spatial scale are easi ly 
transferred to the surface. The diffusion time-scale is also 
very long at these wavelengths, or on the order of 100 years 
for a linear medium. 
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