VOL. 3 (1970), 277-285.

On probabilities of large deviations

Vijay K. Rohatgi

Let $\left\{X_{n}\right\}$ be a sequence of independent identically distributed random variables and let $S_{n}=\sum_{k=1}^{n} X_{k}$. The rate of convergence of probabilities $P\left\{\left|S_{n}\right|>(n \log n)^{1 / r}\right\}$, where $2>r>1$, is studied.

1. Introduction

Let $\left\{X_{n}: n \geq 1\right\}$ denote a sequence of independent identically distributed random variables with common distribution function F. Write $S_{n}=\sum_{k=1}^{n} X_{k}$. If F belongs to the domain of normal attraction of a stable law $V(x)$ with characteristic exponent $\alpha(1<\alpha<2)$ then for some $a>0$ and some A_{n}

$$
\lim _{n \rightarrow \infty} P\left\{a^{-1} n^{-1 / \alpha_{S}}{ }_{n}-A_{n} \leq x\right\}=V(x)
$$

(See, for example [3, p. 181].) If, moreover, $E X_{1}=0$ then the constants A_{n} may be taken to be zero and it follows that $a^{-l} n^{-1 / \alpha}(\log n)^{-1 / \alpha_{S}} n_{n} 0$ in probability. Clearly

$$
P\left\{\left|S_{n}\right|>\varepsilon(n \log n)^{1 / \alpha}\right\} \geq P\left\{\left|S_{n}\right|>\varepsilon(n \log n)^{1 / r}\right\}
$$

for $0<r<\alpha$ and it follows that $(n \log n)^{-1 / r} S_{n} \rightarrow 0$ in probability.
Received 4 July 1970. Research supported by the National Science Foundation, Contract No. NSF-GP-9396.

The probability $p\left\{\left|S_{n}\right|>\varepsilon(n \log n)^{1 / r}\right\}$ or either of its one sided components is called a probability of large deviation [7]. If X has a finite variance the probability $P\left\{\left|S_{n}\right|>\varepsilon(n \log n)^{l / 2}\right\}$ is called a probability of moderate deviation (see [1], [5], [6]). We remark that we do not assume that $E X_{2}^{1}<\infty$ but only that $E\left|X_{1}\right|^{r}<\infty$ for $l<r<2$.

In what follows we will assume that $\left\{X_{n}\right\}$ is a sequence of independent identically distributed random variables with common distribution function F. A median for the random variable X is denoted by $\operatorname{med}(X)$ and $\lg x$ is the function defined by $\lg x=\log _{e} x$ for $x>1$, $=0$ otherwise. c denotes a generic (positive) constant and $1<r<2$.

2. Results

Lemmas 1 and 2 are stated here for completness. For proofs we refer to [1].

LEMMA 1. For $r \geq 1, E|X|^{r}<\infty$ if and only

$$
\sum n^{r-1}(\log n)^{r} P\{|X|>n \log n\}<\infty .
$$

LEMMA 2. Let $\left\{A_{n}\right\}$ be a sequence of independent events. If $\sum P A_{n}<\infty$ then

$$
P\left\{U_{n} A_{n}\right\} \geq \sum_{n} P A_{n}-\sum_{n} P A_{n} \sum_{j=n+1}^{\infty} P A_{j} .
$$

THEOREM. For $1<r<2$ the following statements ore equivalent:
(a) $E X_{1}=0, E\left|X_{1}\right|^{r}<\infty$;
(b) $\sum n^{-1} \log n P\left\{\left|S_{n}\right|>\varepsilon(n \log n)^{1 / r}\right\}<\infty$ for all $\varepsilon>0$;
(c) $\left\{n^{-1} \log n P\left\{\max _{l \leq k \leq n}\left|S_{k}\right|>\varepsilon(n \lg n)^{1 / r}\right\}<\infty\right.$ for all $\varepsilon>0$;
(d) $\sum n^{-1} P\left\{\sup _{k \geq n}\left|S_{k} /(k l g k)^{1 / r}\right|>\varepsilon\right\}<\infty$ for all $\varepsilon>0$.

Proof. The methods of proof parallel those used in [1] and are fairly standard.

Equivalence of (a) and (b)
It is convenient to make the proofs for symmetrized random variables $X_{n}^{s}, n=1,2, \ldots$ and then use the weak symmetrization inequalities [4, p. 245] to transfer to the required results.

Suppose that (a) holds and write $S_{n}^{s}=\sum_{1}^{n} X_{k}^{s}$. Note that $E\left|X_{1}^{s}\right|^{2}<\infty$. (See [4, p. 246].) Define

$$
X_{k n}^{s}=\left\{\begin{array}{ll}
X_{k}^{s} & \text { if }\left|X_{k}^{s}\right|<\varepsilon(n \lg n)^{1 / r} \\
0 & \text { otherwise },
\end{array} \quad l \leq k \leq n\right.
$$

and let $S_{n n}^{s}=\sum_{1}^{n} X_{k n}^{s}$. Since

$$
P\left\{\left|s_{n}^{s}\right|>\varepsilon\left(n \lg _{\mathrm{g}}\right)^{1 / r}\right\} \leq n P\left\{\left|X_{1}^{s}\right|>\varepsilon\left(n \lg _{\mathrm{g} n}\right)^{1 / r}\right\}+P\left\{\left|S_{n n}^{s}\right|>\varepsilon\left(n \lg _{\mathrm{g}} n\right)^{1 / r}\right\}
$$

and from Lemma $1, E\left|X_{I}^{s}\right|^{r}<\infty$ implies $\sum \operatorname{lgnP}\left\{\left|X_{1}^{s}\right|>E(n \lg n)^{1 / r}\right\}<\infty$, it just remains to show that $\sum \frac{\operatorname{lgn}}{n} P\left\{\left|S_{n n}^{s}\right|>\varepsilon(n \lg n)^{1 / r}\right\}<\infty$.

From Markov's inequality [4, p. 148] we have

$$
\begin{aligned}
& \sum \frac{\lg n}{n} P\left\{\left|S_{n n}^{s}\right|>\varepsilon(n \lg n)^{1 / r}\right\} \\
& \leq c\left[(n \lg n)^{-2 / r} \lg n E\left(X_{l n}^{s}\right)^{2}\right. \\
& \leq c \sum_{n^{-2 / r}(\lg n)^{1-2 / r} \sum_{k}(k \lg k)^{2 / r} P\left\{(k-1) \lg (k-1) \leq\left|X^{s}\right|^{r}<k \lg k\right\}} \\
& \quad=c \sum_{k}(k \lg k)^{2 / r_{P}\left\{(k-1) \lg (k-1) \leq\left|X^{s}\right|^{r}<k \lg k\right\} \sum_{n=k}^{\infty} n^{-2 / r}(\lg n)^{1-2 / r}} \\
& \quad \leq c \sum_{k}(k \lg k) P\left\{(k-1) \lg (k-1) \leq\left|X^{s}\right|^{r}<k \lg k\right\} \\
&<\infty .
\end{aligned}
$$

The last series converges because $E\left|X_{1}^{s}\right|^{r}<\infty$.
Now note that $E\left|X_{1}\right|^{2}<\infty$,

$$
E X_{1}=0 \Rightarrow n^{-1 / r} S_{n} \xrightarrow{P} 0 \Rightarrow(n \lg n)^{-1 / r} S_{n} \xrightarrow{P} 0 \Rightarrow \operatorname{med}\left(\frac{S_{n}}{(n \log n)^{1 / r}}\right) \rightarrow 0 .
$$

It is now easy to complete the proof of $(a) \Rightarrow(b)$ by a simple use of weak symmetrization inequalities.

Next suppose that (b) holds. By the symmetrization inequalities $\sum n^{-1} \lg n P\left\{S_{n}^{s}>\varepsilon(n \lg n)^{1 / r}\right\}<\infty$ where S_{n}^{s}, as before, is the sum of the symmetrized random variables. We first show that $(n \lg n)^{-1 / r_{S}^{s}} \xrightarrow{P} 0$. If not, there exists an $\varepsilon_{0}>0$ such that either $P\left\{S_{n_{k}}^{s}>\varepsilon_{0}\left(n_{k} \lg n_{k}\right)^{1 / r}\right\}>\varepsilon_{0}$ or $P\left\{S_{n_{k}}^{s}<-\varepsilon_{0}\left(n_{k} \lg n_{k}\right)^{1 / r}\right\}>\varepsilon_{0}$ for infinitely many k. For the sake of argument assume $P\left\{S_{n_{k}}^{s}>\varepsilon_{0}\left(n_{k} \lg n_{k}\right)^{l / r}\right\}>\varepsilon_{0}$ for infinitely many k and choose $n_{k+1}>2 n_{k}$. Then for each $j, n_{k} \leq j<2 n_{k}$, we have

$$
(j \lg j)^{1 / r}<\left(2 n_{k} \lg \left(2 n_{k}\right)\right)^{1 / r} \leq 2^{2 / r}\left(n_{k} \lg n_{k}\right)^{1 / r}
$$

and

$$
\begin{aligned}
P\left\{S_{j}^{s}>\varepsilon_{0} \frac{(j l \mathrm{~g} j)^{1 / r}}{2^{2 / r}}\right\} & \geq P\left\{S_{j}^{s}>\varepsilon_{0}\left(n_{k} \lg n_{k}\right)^{1 / r}\right\} \\
& \geq \frac{1}{2} P\left\{S_{n_{k}}^{s}>\varepsilon_{0}\left(n_{k} \lg n_{k}\right)^{1 / r}\right\} \\
& \geq \frac{\varepsilon_{0}}{2}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum \frac{\lg n}{n} P\left\{S_{n}^{s}>\frac{\varepsilon_{0}}{2^{2 / r}}(n \lg n)^{1 / r}\right\} & \geq \sum_{k} \sum_{i=n_{k}}^{2 n_{k}} \frac{\lg i}{i} P\left\{S_{i}^{s}>\frac{\varepsilon_{0}}{2^{2 / r}}(i \lg i)^{1 / r}\right\} \\
& \geq \frac{\varepsilon_{0}}{2} \sum_{k} \sum_{i=n_{k}}^{2 n_{k}} \frac{\lg i}{i}=\infty
\end{aligned}
$$

This contradiction shows that $(n \lg n)^{-1 / r_{S}} S_{n}^{s} \rightarrow 0$ in probability. By the degenerate convergence criterion [4, p. 317] we get $n P\left\{X_{n}^{s}>\varepsilon(n \lg n)^{l / r}\right\} \rightarrow 0$. Following Erdös [2] we write $A_{k}=\left\{X_{k}^{s}>\varepsilon(n \lg n)^{1 / r}\right\}$ and $B_{k}=\left\{\sum_{j \neq k}^{n} X_{j}^{s} \geq 0\right\}$ and see that

$$
\begin{aligned}
P\left\{S_{n}^{s}>\varepsilon(n \lg n)^{1 / r}\right\} & \geq P\left\{\begin{array}{c}
n \\
U
\end{array}\left(A_{k} \cap B_{k}\right\}\right\} \\
& \geq \sum^{n} P A_{i}\left[P B_{i}-n P A_{i}\right] \\
& \geq n P A_{i}\left|\frac{1}{2}-n P A_{i}\right|
\end{aligned}
$$

Thus for $\delta>0$ and large n we have

$$
P\left\{S_{n}^{s}>\varepsilon(n \lg n)^{1 / 2}\right\} \geq\left(\frac{1}{2}-\delta\right) n P A_{i}
$$

It follows that

$$
\infty>\sum n^{-1} \lg n P\left\{S_{n}^{s}>\varepsilon(n \lg n)^{1 / r}\right\} \geq c \sum \operatorname{lgnP}\left\{X_{1}^{s}>\varepsilon(n \lg n)^{1 / r}\right\} .
$$

By Lemma 1, we obtain $E\left|X_{1}^{S}\right|^{r}<\infty$ and thus $E\left|X_{1}\right|^{r}<\infty$ by Corollary 2 [4,
p. 246].

To show that $E X_{1}=0$ we only have to note that

$$
E\left|X_{1}\right|^{r}<\infty \Rightarrow n^{-1} S_{n} \xrightarrow{\text { a.s. }} E X_{1} \quad \text { and } \quad(n \lg n)^{-1 / r_{S}} \xrightarrow{P} 0 .
$$

Equivalence of (b) and (c)
The $(c) \Rightarrow(b)$ part is trivial and the $(b) \Rightarrow(c)$ part follows from Lévy's inequality $[4, \mathrm{p} .247]$ and the fact that $(b) \Rightarrow(n \lg n)^{-1 / x_{S_{n}}} \xrightarrow{P} 0$. Equivalence of (d) and (a)

We first show that (a) and $(b) \Rightarrow$ (d). Choose i such that $2^{i} \leq n<2^{i+1}$ and again consider the symmetrized random variables X_{k}^{s} and S_{n}^{S}. We have

$$
\begin{aligned}
P\left\{S_{n}^{s}>\varepsilon(n \lg n)^{1 / r}\right\} & \geq P\left\{S_{n}^{s}>\varepsilon\left(2^{i+1} \lg 2^{i+1}\right)^{1 / r}\right\} \\
& \geq \frac{1}{2} p\left\{S_{2^{i}}^{s}>\varepsilon\left(2^{i+1} 1 g 2^{i+1}\right)^{1 / r}\right\} \\
& \geq \frac{1}{2} P\left\{S_{2^{s}}^{s}>\varepsilon 2^{2 / r}\left(2^{i} 1 g 2^{i}\right)^{1 / r}\right\}
\end{aligned}
$$

Using once again the symmetrization inequalities, we have

$$
\begin{aligned}
\infty>\sum n^{-1} \lg n P\left\{S_{n}^{s}>\varepsilon(n \lg n)^{1 / r}\right\} & =\sum_{i}^{2^{i+1}-1} \sum_{n=2^{i}}^{\lg n} P\left\{S_{n}^{s}>\varepsilon(n \lg n)^{1 / r}\right\} \\
& \geq \frac{1}{4} \sum_{i} \lg 2^{i} P\left\{S_{2^{i}}^{s}>2^{2 / r} \varepsilon\left(2^{i} \lg 2^{i}\right)^{1 / r}\right\},
\end{aligned}
$$

so that

$$
\begin{aligned}
& \sum_{n} n^{-1} P\left\{\sup _{k \geq n} \frac{s_{k}^{s}}{(k \lg k)^{1 / r}}>\varepsilon\right\} \\
& \leq c \sum_{i} P\left\{\sup _{k \geq 2} \frac{S_{k}^{s}}{(k \lg k)^{1 / r}}>\varepsilon\right\} \\
& \leq c \sum_{i} \sum_{j=i}^{\infty} P\left\{\begin{array}{l}
\max \\
2^{i} \geq k<2^{j+1}
\end{array} \frac{s_{k}^{s}}{(k \lg k)^{1 / r}}>\varepsilon\right\} \\
& \leq c \sum_{i} \sum_{j=i}^{\infty} P\left\{S_{2^{j+1}}^{s}>\varepsilon\left(2^{j} \lg 2^{j}\right)^{1 / r}\right\} \text { (Lévy's inequality) } \\
& =c \sum_{j=1}^{\infty} j P\left\{S_{2^{s+1}}>\varepsilon\left(2^{j} \lg 2^{j}\right)^{1 / r}\right\} \\
& \leq c \sum_{j} \lg 2^{j+1} P\left\{S_{2^{s}}{ }^{j+1}>\varepsilon 2^{-2 / r}\left(2^{j+1} \lg 2^{j+1}\right)^{1 / r}\right\} \\
& \leq c \sum_{n} n^{-1} \lg n P\left\{S_{n}^{s}>\varepsilon \cdot 2^{-4 / r}(n \lg n)^{1 / r}\right\} \\
& <\infty \text {. }
\end{aligned}
$$

It just remains to use the weak symmetrization inequalities and the fact that $(n \lg n)^{-1 / r_{S}} S_{n} \xrightarrow{P} 0$ to see that (a) and $(b) \Rightarrow$ (d).

Next we show that $(d) \Rightarrow(a)$.
Let $A_{k}=\left\{\left|X_{k}\right|>\varepsilon(k \lg k)^{1 / r}\right\}$. Then the events A_{k} are independent and satisfy
so that

$$
\begin{aligned}
P\left\{\begin{array}{cc}
\infty \\
U & \left.A_{k}\right\}
\end{array}\right. & \leq P\left\{{ \underset { k = m } { \infty } \{ | S _ { k } | > \frac { \varepsilon } { 2 } (k \operatorname { l g } k) ^ { 1 / r } \} \} } ^ { \infty } \left\{\begin{array}{l}
\left.\sup _{k>m}\left|\frac{S_{k}}{(k l g k)^{1 / r}}\right|>\frac{\varepsilon}{2}\right\}
\end{array} .\right.\right.
\end{aligned}
$$

which $\rightarrow 0$ as $m \rightarrow \infty$ because of the fact that the sequence $P\left\{\sup _{k \geq m}\left|\frac{S_{k}}{(k l g k)^{l / r}}\right|>\frac{\varepsilon}{2}\right\}$ is non-increasing in m and (d) holds. An application of the Borel zero-one criterion [4, p. 228] now shows that

$$
\sum_{k=1}^{\infty} P\left\{\left|X_{1}\right|>\varepsilon(k \lg k)^{1 / r}\right\}=\sum_{k=1}^{\infty} P A_{k}<\infty
$$

By Lemma 2 therefore

$$
\begin{aligned}
\infty & >\sum_{n=2}^{\infty} n^{-1} P\left\{\sup _{k \geq n}\left|\frac{S_{k}}{(k l g k)^{1 / r}}\right|>\frac{\varepsilon}{2}\right\} \\
& \geq \sum_{n=2}^{\infty} n^{-1} P\left\{\sum_{k=0}^{\infty}\left\{\left|X_{n+k}\right|>\varepsilon((n+k) \lg (n+k))^{1 / r}\right\}\right\} \\
& \geq c \sum_{n} n^{-1} \sum_{k=0}^{\infty} P\left\{\left|X_{n+k}\right|>\varepsilon((n+k) \lg (n+k))^{1 / r}\right\}(1-n) \\
& \geq c \sum_{k=2}^{\infty} P\left\{\left|X_{1}\right|>\varepsilon(k l g k)^{1 / r}\right\} \sum_{n=2}^{k} \frac{1}{n} \\
& \geq c \sum_{k} l g k P\left\{\left|X_{1}\right|>\varepsilon(k l g k)^{1 / r}\right\} .
\end{aligned}
$$

It follows by Lemma 1 that $E\left|X_{1}\right|^{r}<\infty$. From (d) we see that $n^{-1} S_{n} \xrightarrow{a . s} 0$ so that we must have $E X_{1}=0$. Thus $(d) \Rightarrow(a)$.

This completes the proof of the theorem.

References

[1] James Avery Davis, "Convergence rates for probabilities of moderate deviations", Ann. Math. Statist. 39 (1968), 2016-2028.
[2] P. Erdös, "On a theorem of Hsu and Robbins", Ann. Math. Statist. 20 (1949), 286-291.
[3] B.V. Gnedenko and A.N. Kolmogorov, Limit distributions for sums of independent random variables (Translated and annotated by K.L. Chung with an appendix by J.L. Doob. Addison-Wesley, Cambridge, Massachussetts; 1954).
[4] Michel Loève, Probability theory, 3rd ed. (Van Nostrand, Princeton, New Jersey; Toronto, Ontario; London; 1963).
[5] V.K. Rohatgi, "On the rate of convergence of probabilities of moderate deviations", J. Austral. Math. Soc. 11 (1970), 91-94.
[6] Herman Rubin and J. Sethuraman, "Probabilities of moderate deviations", Sankhȳ̄a Ser. A 27 (1965), 325-346.
[7] J. Sethuraman, Probabilities of deviations (Indian Statistical Institute Report no. 5, 1966).

The Catholic University of America, Washington, DC,
USA.

