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ABSTRACT. We present highly resolved, annually dated, calibrated proxies for atmospheric circulation
from several Antarctic ice cores (ITASE (International Trans-Antarctic Scientific Expedition), Siple
Dome, Law Dome) that reveal decadal-scale associations with a South Pole ice-core '°Be proxy for
solar variability over the last 600years and annual-scale associations with solar variability since
AD 1720. We show that increased (decreased) solar irradiance is associated with increased (decreased)
zonal wind strength near the edge of the Antarctic polar vortex. The association is particularly strong
in the Indian and Pacific Oceans and as such may contribute to understanding climate forcing that
controls drought in Australia and other Southern Hemisphere climate events. We also include evidence
suggestive of solar forcing of atmospheric circulation near the edge of the Arctic polar vortex based
on ice-core records from Mount Logan, Yukon Territory, Canada, and both central and south Green-
land as enticement for future investigations. Our identification of solar forcing of the polar atmosphere
and its impact on lower latitudes offers a mechanism for better understanding modern climate
variability and potentially the initiation of abrupt climate-change events that operate on decadal and

faster scales.

INTRODUCTION

Although the sun is the driver of Earth’s climate, demonstrat-
ing a direct connection between solar variability and climate
change has proved difficult. One of the problems is that
while solar particle emissions and shortwave radiation
change by large amounts in a solar cycle, total irradiance
only varies by ~0.1% (Wilson and Hudson, 1988) and
accurate measurements have only been available in the
satellite era. Some associations, however, have been
observed between historical records of solar activity and
climate change (Lean and others, 1995; Hansen and others,
1998) and also between variability in cosmogenic proxies
for solar variability (Stuiver and Braziunas, 1989; Beer,
2000) and millennial-scale variability in paleoclimate
records from moraine sequences, Greenland ice cores and
North Atlantic marine sediments (Denton and Karlén, 1973;
O’Brien and others, 1995; Mayewski and others, 1997;
Bond and others, 2001). In addition, a major feature of
atmospheric circulation, the polar vortex, has been linked to
interactions between Northern Hemisphere tropospheric
temperature and wind, North Atlantic storm tracks and solar
sunspot cycles (Brown and John, 1979; Nastrom and
Belmont, 1980; Tinsley, 1988; Van Loon and Labitzke,
1988; Labitzke and Van Loon, 1989; Venne and Dartt, 1990;
Burnett, 1993).

In our examination of the potential link between climate
and solar variability, we utilize high-resolution, annually
dated, glaciochemical series from ice cores at several sites
across West Antarctica (ITASE (International Trans-Antarctic
Scientific Expedition) 00-1 and 01-2; Siple Dome (Kreutz
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and others, 1997)) and East Antarctica (Law Dome (Palmer
and others, 2001a; Souney and others, 2002)) (Fig. 1) and
examples from several older Northern Hemisphere ice cores
introduced later in this study.

The Antarctic ice-core series are converted to proxies for
atmospheric circulation using calibration techniques and
correlations previously described (e.g. Kreutz and others,
2000; Meeker and Mayewski, 2002; Souney and others,
2002) that invoke climate data available from the US
National Centers for Environmental Prediction/US National
Center for Atmospheric Research (NCEP/NCAR) re-analysis
(Kalnay and others, 1996) and other climate indices.
Correlations are robust over the full interval of NCEP/NCAR
re-analysis data. We focus our study on the period since
AD 1400 to avoid proxy calibration complications related to
changes in climate boundary conditions that may have
occurred prior to the AD1350-1400 transition from the
Medieval Warm Period to the Little Ice Age.

Dust from Australia, Africa and South America and sea
salt from the Southern Ocean are the primary sources for
Ca”* in West Antarctic ice cores. Changes in Ca?* in the
Siple Dome and ITASE 00-1 ice cores (Fig. 1) are correlated
with changes in the September—November (SON) surface
mean zonal wind surrounding Antarctica, most notably the
region close to 40-50°S in the Indian and Pacific Oceans
(Fig. 1). SON timing is consistent with the seasonal
maximum in Ca®* in Antarctic ice cores (Whitlow and
others, 1992; Yan and others, 2005). Siple Dome and ITASE
00-1 Ca** annually averaged series are positively correlated
(r=0.38, P<0.01 and r=0.44, P<0.01, respectively;
3year smoothed series: r= 0.56, P<0.01 and r= 0.75,
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Fig. 1. Ice-core proxies for atmospheric circulation plotted using
maps from the NCEP/NCAR re-analysis (US National Oceanic and
Atmospheric Administration—-Cooperative Institute for Research in
Environmental Sciences (NOAA-CIRES) Climate Diagnostics Cen-
ter, http://www.cdc.noaa.gov/) based on the period AD 1948-2002.
(a) Map of SON zonal wind anomalies (ms™') composited from
years where Ca®* (ITASE 00-1 ice core) exceeds the mean by +1
standard deviation (+1¢) minus years where Ca®* falls below —1o.
Positive (negative) anomalies correspond to increased (decreased)
Ca?*. Yellow star (eastern) is location of ITASE 00-1, and yellow star
(western) of Siple Dome. (b) Map of JJA 850mbar zonal wind
anomalies composited similarly from NO5~ (in the Law Dome ice
core) except that the sense is low (<—10) years minus high (>+10).
Thus positive (negative) anomalies correspond to decreased (in-
creased) NO;™. Yellow star is location of Law Dome. (c) Map of
SON surface pressure anomalies composited from Na® (in the
ITASE 01-2 ice core), in the sense high (+10) minus low (-10) years.
Positive (negative) anomalies correspond to an increase (decrease)
in Na*. A major negative anomaly defines the general region of the
Amundsen Sea low. Red star is location of ITASE 01-2, and yellow
star of Siple Dome.
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P<0.01, respectively) with the SON surface circumpolar
mean zonal wind over the period of NCEP/NCAR re-analysis
coverage (AD 1948-2002) (Yan and others, 2005). Anomalies
as high as 4ms™' (Fig. 1) exist in regions where mean
(AD 1948-2002) SON winds are 8-12ms™'. From this
correlation we demonstrate that stronger (weaker) westerly
winds are conducive to more (less) transport of crustal and
marine source Ca’* to both ice-core sites. Correlation
between Ca”* series and higher levels of zonal wind in the
atmosphere (500 mbar, not shown) reveals a similar westerly
wind influence.

Nitrate ion (NO5") input to Antarctica is dominated by
transport from long-range sources through the upper
troposphere and stratosphere (Legrand and Kirchner,
1990), and, other than sites where significant re-emission
to the atmosphere occurs (very low accumulation rate),
concentrations range from high to low between inland and
coastal Antarctica (Mulvaney and Wolff, 1994). As such,
increased levels of NO;™ at near-coastal sites such as Law
Dome suggest increased transport of inland source air
toward the coast. Recent results from an ice core 600 km
east of Law Dome reveal correlations between the June—
August (JJA; the period of maximum NO;™ input (Whitlow
and others, 1992)) surface pressure gradient from East
Antarctica to the sub-Antarctic and NO;™ in this core (r =
-0.52, P<0.005, AD1948-90) and strong surface wind
drainage (Goodwin and others, 2003). We find a similar
relationship using changes in Law Dome NO;™ and JJA
850 mbar zonal wind. Anomalies in JJA 850 mbar zonal
wind up to 4ms™' over the general region of Law Dome
(Fig. 1) are found where the mean (AD1948-2002) JJA
850mbar flow is 3-7ms™". Furthermore, as Law Dome
NO;~ decreases (increases) there is an increase (decrease)
in zonal wind transport over the ocean near 40-50°S of up
to 3ms™' where mean (AD 1948-2002) JJA winds are 5-
T6ms™' (Fig. 1).

Previous work indicates that higher (lower) Na* concen-
trations in the Siple Dome ice core are coincident with
higher (lower) levels of SON cyclone intensity in one of the
major quasi-stationary lows in the circumpolar trough, the
Amundsen Sea low (ASL) (Kreutz and others, 2000). SON
timing is consistent with the seasonal maximum in Na™ in
Antarctic ice cores (Whitlow and others, 1992; Kreutz and
others, 2000; Steig and others, 2005). The same association
is demonstrated for ITASE 01-2 ice core (Fig. 1). Annual
values of Na™ in the Siple Dome ice core are correlated
(r=-0.32, P<0.001 (annual series) and r=-0.51,
P<0.001 (3 year smoothed series)) with SON surface pres-
sure changes over much of the South Pacific for the period
AD 1900-95 (Kreutz and others, 2000). For the period
AD 1948-2002, negative anomalies close to 7 mbar in the
region of the ASL are associated with increased levels of
Siple Dome Na™ (Fig. 1).

In summary, the ice-core records chosen for our study
allow tracing of three different transport pathways. Sea-salt
Na* (equivalent to total Na*) and some of the Ca’*
associated with sea salt are mainly representative of
medium- to low-range circulation, inside the polar vortex.
Crustal Ca** (most of the Ca”* identified in the EOF analysis
reported below) is representative of zonal atmospheric
circulation near the edge of the polar vortex, because its
sources are mainly located at 40-50° S. Nitrate is affected by
long-range tropospheric and stratospheric transport with
more poorly understood pathways.
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Fig. 2. Jointly associated variance represented by EOF1 (black light line, normalized units) between proxies for solar variability and
atmospheric circulation (thick lines) using 10 year resampled data. Proxies are: (a) South Pole '°Be (%o) proxy for solar variability; (b) Siple
Dome Ca** (parts per billion (ppb)) proxy for SON surface zonal wind; (c) Law Dome NO;~ (ppb) proxy for JJA 850 mbar zonal wind; and
(d) Siple Dome Na* (ppb) proxy for SON surface pressure. Proxy for solar variability is plotted as the inverse of the '°Be series (Bard and

others, 2000). EOF1 is oriented in all plots to aid in visually examining the statistical fit.

DECADAL- AND LONGER-SCALE ASSOCIATIONS
BETWEEN SOLAR VARIABILITY AND ATMOSPHERIC
CIRCULATION

To investigate the association between solar variability and
the ice-core proxies for atmospheric circulation used in this
study, we compare the latter to a record of ice-core '°Be.
The most proximal record for our study comes from a South
Pole ice core (Raisbeck and others, 1990). The cosmogenic
nuclide data from this study are reported in Bard and others
(2000) as changes per mil vs present value and also reported
as reconstructed solar irradiance (W m™) by scaling to
various estimates of reductions in solar irradiance during the
Maunder Minimum compared to present values (e.g. Zhang
and others, 1994; Solanki and Fligge, 1998). Since the South
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Pole '°Be time series ranges in resolution from 2 to 22 years
(mean 7.8; <12% of samples >10year resolution) over the
600 years focused upon in this study, we resample all series
to a common 10 year resolution.

Statistical associations between South Pole '°Be and ice-
core proxies for zonal wind (Siple Dome Ca** and Law
Dome NO37) and surface pressure (Siple Dome Na™) are
investigated using multidimensional (empirical orthogonal
function (EOF)) analysis (Fig. 2) and linear correlations. EOF
analysis reveals shared variance between '°Be and the
atmospheric proxies. EOF1 contains the greatest shared
variance such that 62% of the '°Be is inversely associated
with 60% of the Siple Dome Ca”* and directly associated
with 61% of Law Dome NO;~ and 30% of Siple Dome Na™.
On EOF2, 58% of the Siple Dome Na* variance is inversely
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Fig. 3. (a) Annual values of the Siple Dome Ca?* proxy for surface zonal wind compared to annual values of the solar cycle (sunspot number,
ftp.ngdc.noaa.gov) for the period 1720-1990. (b) Multi-taper method (Mann and Lees, 1996): three 20 prolate tapers smoothing of Siple
Dome Ca®*. Dashed lines refer to 95% (lower) and 99% (upper) significance estimated using a robust red-noise method (Mann and Lees,
1996), and numbers above peaks refer to mean period (years). Periodicities close to previously suggested solar cycles are shaded.

associated with 18% of the '°Be variance. Remaining FOFs
do not reveal significant (>10%) variance association
between '°Be and the atmospheric proxies. Straight linear
correlations between '’Be and Siple Dome Ca”*, Law
Dome NO;~ and Siple Dome Na* are, respectively, r=
-0.55, r=0.61 and r=0.39 for P>0.01 (maximum at
0 lag).

Figure 2 demonstrates the close decadal-scale corre-
spondence between the '°Be ice-core proxy for solar
variability and ice-core proxies for polar atmospheric
circulation. Shared variance between all of the series is
represented by EOF1 in this figure. When solar irradi-
ance increases (decreases), Siple Dome Ca®* concen-
trations increase (decrease). From Figure 1 increased
Ca”* is characterized by intensification of zonal winds
over, in particular, the Indian and Pacific Oceans. When
solar irradiance increases (decreases), Law Dome NO;~
concentrations decrease (increase). From Figure 1 low
NO;™ is characterized by an increase in zonal wind
strength.

Referring to Figure 1, when the 39% of the variance in
Siple Dome Na* associated with '°Be through EOF1
increases (decreases), solar irradiance (inverse of '°Be)
decreases (increases). EOF2 captures 58% of the joint
variance in the inversely associated Siple Dome Na* and
'9Be series. Clearly there is a strong but complicated
association between solar irradiance and the Siple Dome
Na* proxy for the ASL that may be more precisely
constrained by investigating the position of the ASL over
time through the examination of more ice-core records.
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ASSOCIATIONS BETWEEN THE SOLAR CYCLE AND
SOUTHERN HEMISPHERE ATMOSPHERIC
CIRCULATION

To further investigate the association between solar irradi-
ance and proxies for zonal wind we compare annual values
of these proxies with annual values of the solar cycle for the
common period of high-resolution overlap (AD 1720-1990).
Although there is a weak identified association between Law
Dome NO;~ and solar flares (Palmer and others, 2001b),
there is no significant correlation between NO5;~ and
sunspot number. However, visual inspection of Siple Dome
Ca”* series compared to the sunspot record reveals similar
behaviour and since AD 1825 very nearly in-phase structure
(Fig. 3). Differences in phasing between Ca’* and the
sunspot record may be a consequence of dating errors in the
older portion of the ice-core record and/or non-linearities in
the association between Ca®* and surface zonal wind
produced by changes in boundary conditions, such as sea-
ice extent, not constrained by this study. The largest
departure in relative magnitude between Ca’* and the
sunspot record is during the period AD 1896-1901, close to
the nominal end of the Little Ice Age. The only other major
Ca** concentration anomaly of the last 1200 years occurs
near the onset of the Little Ice Age (Kreutz and others, 1997).
These Ca®* concentration anomalies (five and ten times,
respectively, the mean of the last 1200years) appear to
signal major periods of climate reorganization.

Statistically based associations between solar variability
and the Siple Dome Ca®* proxy for surface zonal wind
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Fig. 4. Association between solar flux and SON surface zonal wind
for the period 1975-2002 using an image created on the NCEP/
NCAR re-analysis (NOAA-CIRES Climate Diagnostics Center,
http://www.cdc.noaa.gov/). Values of r >0.345, P = 0.990.

(Fig. 3) reveal significant similarities. Periodicities at 5.5, 10,
20 and 75years coincide with the 10-11year Schwabe
sunspot cycle, harmonics of the Schwabe cycle (5.5 years
and the 22 year Hale double sunspot cycle), and are close to
the 80-90 year Gleissberg cycle. Highly prominent peaks in
the surface zonal wind proxy at 6.5 and 13 years demon-
strate that the solar-atmospheric circulation association
suggested in this study is only part of a more complex series
of controls on Southern Hemisphere atmospheric circulation
related perhaps to changes in sea-ice extent and natural
oscillations in the ocean-atmosphere system. Alternately
dating errors of +1-2 years in the older (>50 years) sections
of the Siple Dome Ca®* record may introduce sufficient
artefacts in timing to make periodicities of 5.5-6.5 years and
10-13 years not differentiable from the half Schwabe and
full Schwabe cycles, respectively.

A MECHANISM FOR SOLAR FORCING OF
ATMOSPHERIC CIRCULATION

While we cannot definitively demonstrate the mechanism
by which changes in solar irradiance affect the changes in
atmospheric circulation over the Antarctic and Southern
Ocean observed in our records, we note that our findings are
consistent with other studies, notably, model results and
observational data. These suggest that increased solar
ultraviolet radiation leads to increased production of strato-
spheric ozone, resulting in increased (decreased) tempera-
tures in the lower stratosphere (troposphere) (Randel and
Cobb, 1994; Chandra and others, 1996; McCormack and
Hood, 1996), and consequently an increase in the thermal
gradient from high to low latitudes attended by an increase
in lower-tropospheric zonal wind speeds over the Northern
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Fig. 5. Eckert-Greifendorff global projection displaying the location
of ice-core sites utilized in this study as well as the position of the
seasonal range of the northern and southern polar fronts and the
Inter-Tropical Convergence Zone (ITCZ) for general perspective.

1. GISP2; 2. 20D; 3. Mount Logan; 4. ITASE 01-2; 5. ITASE 00-1;
6. Siple Dome; and 7. Law Dome.

Hemisphere (Shindell and others, 1999). We note that the
association between solar variability and zonal wind speed
developed using the NCEP/NCAR re-analysis over the
Southern Hemisphere (Fig. 4) is consistent with the solar—
zonal-wind relationship utilized in this study. It should be
noted that recent anthropogenically induced depletion of
ozone over Antarctica would subdue the solar-zonal-wind
relationship during maxima in the solar cycle. As a
consequence, results in Figure 4 may underestimate the
natural solar—zonal-wind relationship.

ARCTIC EXAMPLES OF THE ASSOCIATION
BETWEEN SOLAR VARIABILITY AND ATMOSPHERIC
CIRCULATION

Northern Hemisphere ice-core records also reveal decadal-
scale associations with solar variability over the Holocene
(O’Brien and others, 1995; Mayewski and others, 1997) and
Schwabe cycle periodicities (Mayewski and others, 1993a).
To investigate the association between Northern Hemi-
sphere climate and solar variability further, we examine
three ice-core records that provide proxies for atmospheric
circulation spanning the North Pacific to Eurasia. The
Greenland Ice Sheet Project 2 (GISP2) K* record from
central Greenland provides a proxy for the behaviour of the
Siberian high (Meeker and Mayewski, 2002). The 20D Ca?*
record from south Greenland (Mayewski and others, 1993b)
is not calibrated with an atmospheric circulation feature but
offers evidence of dust transport off adjacent continents
through most probably the activity of westerly atmospheric
flow. The Mount Logan Ca”* record from Yukon Territory,
Canada, (Mayewski and others, 1993b) reveals statistically
significant correlations with the behaviour of the Kara Sea
low (E.C. Osterberg and others, unpublished information).
We utilize these records in a preliminary examination
only because all are relatively old and the sample resolution
and dating for each is generally poorer than the Antarctic
records discussed here. Some of these records will be
reinvestigated using newly collected ice cores from sites
close to the older records, so we present the following
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primarily to stimulate future investigations. The three ice-
core records we use in conjunction with the Antarctic data
already presented offer a bipolar perspective (Fig. 5) of solar
forcing of the polar atmosphere.

In Figure 6 we compare the annually dated portions of
these Northern Hemisphere ice-core records with the
sunspot record. Since these comparisons are based on older
records we will present only a visual examination in this
study. Robust splined annual values of 20D Ca’* are
positively coincident with solar cycles from AD 1983 to
1924, 1896 to 1833 and 1782 to 1764 and more poorly
coincident during intervening periods. Positively correlated
periods suggest intensified westerly transport during the
positive phase of the solar cycle. Robust-splined annual
values of Mount Logan Ca”* are positively coincident with
the solar cycle over the periods from AD 1970 to 1892, 1870
to 1840 and 1820 to 1770 and less clearly related during
intervening periods. Positively correlated periods reveal
intensification of the Kara Sea low coincident with the
positive phase of the solar cycle. Raw values of GISP2 K*
coincide positively with solar cycles over the periods
AD 1984 to 1936, 1920 to 1890 and 1774 to 1723 and are
inverse to the solar cycle throughout much of the intervening
portion of the record. Periods with a positive correlation
indicate intensification of the Siberian high coincident with
the positive phase of the solar cycle.
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annual values (light blue) and robust spline (dark blue); and (c) GISP2 K* raw data values (dark blue).

The positive periods of correlation for these ice-core
series and the solar cycle are generally consistent with the
timing of periods of greater sunspot activity. In general,
the Siberian high, Kara Sea low and westerly flow appear
to be intensified (lessened) during the positive (negative)
phase of sunspot cycles and most consistently during
the positive phase of more active sunspot cycles. Further
investigation into the timing and mechanism of the solar-
climate association in the Northern Hemisphere must
wait for ice cores covering more recent portions of the
record.

CONCLUSIONS AND IMPLICATIONS

In this paper we demonstrate that, on multi-decadal to
annual timescales, increases in solar irradiance lead to
intensification of zonal winds near the edge of the polar
vortex over much of the Southern Ocean and Antarctica and
perhaps to intensification of atmospheric circulation
throughout portions of the mid-upper latitudes of the
Northern Hemisphere. Despite the assertion of a solar—
climate association in both hemispheres, comparison
between solar-irradiance-induced changes in atmospheric
circulation in the Northern and Southern Hemispheres may
not be straightforward due to differences in geography
between the hemispheres.
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The identification of a solar—climate link and of a possible
mechanism for this link will help to elucidate controls on the
global climate system and should enhance predictability.
However, recent changes in Southern Hemisphere tropo-
spheric circulation, such as anthropogenically driven photo-
chemical ozone depletion in the lower stratosphere over
Antarctica (Thompson and Solomon, 2002), and other
anthropogenically induced changes in climate will no doubt
provide challenges to the natural order imposed by the sun—
climate association. Decoding the natural climate system,
however, is essential to the prediction of global climate
change.

There is significant societal relevance in understanding
and eventually predicting the behaviour of climate. For
example, Southern Hemisphere circumpolar winds influ-
ence atmospheric circulation over the Indian and Pacific
Oceans and through this association may change the
hydrologic balance over currently drought-ridden portions
of Australia.

The solar-irradiance-atmospheric-circulation association
suggested here vies for a key role in the control of Holocene,
and perhaps older, abrupt climate-change events. The
association displays fast onset/decay, broad geographic
impact and is consistent with observed and modelled
mechanisms for solar—climate forcing. Whether change in
solar irradiance can provide sufficient forcing to be the sole
trigger for abrupt climate change, or whether it is just
sufficient to offset the critical balance of natural oscillations
in the climate system, remains to be demonstrated.
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