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1. Introduction

One of the aims of this paper is to examine the following conjecture, attributed to
Mahowald on p. 255 of (2), Part 2. Let M be a closed connected smooth manifold of
odd dimension q (q^ 1,3,7) and with tangent bundle T. Let the inclusion of a
compactified fibre in the Thorn complex of T be written /x : S" —* TV.

Conjecture A. The Whitehead square [ji, jx] in ir^-iiTr) is zero if and only if the
Kervaire mod 2 semi-characteristic x*(^0 is non-zero.

As we shall see, this is false in general, but it is true for a restricted class of manifolds
including ir-manifolds. (I have avoided calling it 'Mahowald's conjecture' since
Mahowald knew it to be false. I am grateful to him for a conversation about this
question. A misprint in (2) has been corrected here—the version printed in (2) is false
even when M is Sq.)

In (12), Marcum and Randall study [/x, \i] more generally when fi,: S" —* Tg is the
analogous homotopy Thom class of any q -plane bundle £ In this paper we concentrate
mainly on T and one other special case, the normal bundle v to an embedding of M" in
Euclidean space R2". Also, we restrict q to be odd, q^ 1, 3,7. (When q is even, [p., ji]
may be studied using Euler classes as in Proposition 2.1 of (12). If q = 1, 3 or 7 then
[i, i] = 0 for a generator i of irq(S

q), so [n, p-]= ft#[t, i] = 0.) We use classical Hopf
invariants, with an associated cohomological detection method developed by Browder
and Dupont. There is some overlap of results with (12), but our method is slightly
different, and it leads to a rather satisfactory answer for v. It is a pleasure to
acknowledge the stimulus of (12) and of correspondence with Duane Randall. Since
this paper was written, Larry Smith has kindly sent me a preprint in which he
independently proves Proposition 2.5(a) by a rather different method.

We also relate the study of [/x, /x] to work of James and Thomas in (11). One
by-product (Proposition 2.3) is of separate interest as a footnote to (11), and gets a
self-contained proof in the appendix. This was given at a meeting of the Edinburgh
Mathematical Society, whose hospitality I acknowledge with gratitude.

2. Statement of results

All manifolds considered here are closed, connected, smooth and odd-dimensional.
Cohomology is taken with mod 2 coefficients except that the 'degree' of a map means
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the usual degree in integral cohomology. We write jx for any homotopy Thorn class and
U for any cohomology Thorn class, wherever this is unlikely to cause confusion.
Likewise, for any manifold M" we write T for its tangent bundle and v for the normal
bundle to an embedding of M" in R2q. We begin with results about v.

Theorem 2.1. (a) If [/x, /x] = 0 in Tv then q = 2r - 1 for some integer r.
(b) When q = 2r — l, there exists a q-dimensional manifold with [/x, /x] = 0 in Tv.

A suitable example for (b) is real projective space RP(2 r - l ) , or any manifold of
dimension 2r — 1 which admits a stable map to (RF(2r -1 ) of non-zero mod 2 degree. (In
fact one can show that this accounts for all examples.) In particular there is an actual
map of non-zero mod 2 degree from R P l n j J x R P ^ x . . . xRP(n,) to RF(2 r - l )
provided £ w, =2r — 1 and the multinomal coefficient ((2 r - l ) ! ; nj!, n2\ n,!) is odd.

It is interesting to relate this discussion to (11). When £ is a q -plane bundle over a
finite-dimensional complex K, let /(£) be the 'fibre-homotopy James-Thomas number
of £', i.e. the number of distinct fibre-homotopy equivalence classes of (q — l)-sphere
bundles over K which are stably fibre-homotopy equivalent to the sphere-bundle S£
When K is a q-dimensional manifold (q odd) it is known that j(£) is either 1 or 2, and
in particular for UP(q) we have j(v) = 1 if and only if q = T — 1 for some integer r (see
(11), (15).

Proposition 2.2. With the above notation, [/x, <x] = 0 in Tv if and only if j(v) = 1.

Proposition 2.3. If j(v) = 1 then q = T — 1 for some integer r.

Of course if we assume Proposition 2.2 then Theorem 2.1(a) and Proposition 2.3
imply each other.

Proposition 2.4. Suppose y(v) = 2, and let Sv' be a (q — l)-sphere bundle over Mq

which is stably, but not actually, fibre-homotopy equivalent to Sv. Then [fi',/x'] = 0,
where \L' is the homotopy Thorn class of v'.

Our results about T are less satisfying, but they do give an indication of the amount
of truth in Conjecture A. For some of the discussion it is not essential to have a
manifold—a q-dimensional complex with a unique q-cell will do. Let us call a q-plane
bundle £ over such a complex stably mod 2 reducible if there exists a map from S2q+i to
the suspension 2T£ inducing an isomorphism of (mod 2) cohomology in dimension
2q + l. For any manifold, v is stably mod 2 reducible. A manifold M will be called
special (for want of a better name) if T is stably mod 2 reducible. For example any
77-manifold is special.

In the next two results, w; denotes the ith mod 2 Stiefel-Whitney class of T.

Proposition 2.5. Suppose that either
(a) M is a homotopy n-manifold, or
(b) M is special, of dimension q = 2r(2m +1) — 1 with r, m > 0, and W; = 0 for 1S i ^

2r.
Then Conjecture A holds for M.
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Notice that case (a) is included in case (b) unless q +1 is a power of 2. An example in
Section 7 shows that not all special manifolds obey Conjecture A.

Proposition 2.6. Suppose that q is as in Proposition 2.5(b) and that M" is not special,
but wf = 0 for 1S i g 2r~l and for i = 2r+1m. Then |>, /*] f 0 in TV.

We need vanishing of Stiefel-Whitney classes to make our present proofs work.
Examples in Section 7 indicate that such conditions may actually be needed to get any
result like Proposition 2.6. Clearly Proposition 2.6 gives scope for Conjecture A to fail,
and in Section 7 we give counterexamples. The conjecture could plausibly be weakened
by adding the hypothesis /(T) = 2 (to eliminate 'indeterminacy'); but Example 7.5 shows
that the modified conjecture still fails in general.

Some of our techniques apply more generally. In the following results, K is a
q-dimensional complex, and for simplicity we assume that K has a unique q-cell.

Proposition 2.7. Suppose that S£ and S| ' are stably fibre-homotopy equivalent
(q - \)-sphere bundles over K and that | is not stably mod 2 reducible. Let n, /x' denote
the homotopy Thorn classes of £, £' respectively. Then [/x, JLI] = 0 if and only if [/x', /x'] =
0.

Proposition 2.8. Suppose that £ is a stably mod 2 reducible q-plane bundle over K.
Then either O, <x] = 0 in T£ or /(£) = 2.

In particular Proposition 2.8 shows that half of Proposition 2.2 (the implication
j(v) = l^ [ f i , /x] = 0) holds more generally. The converse fails in general: for example if
rq is the tangent bundle of S" (q odd, qf\,3,l) then [/x, /x] = 0 in TV, and S" is
special, but ;(T<,) = 2 .

3. Hopf invariants

We recall some facts about Hopf invariants. Let £ be a q-plane bundle over a
connected q-dimensional complex, q odd. From (18) p. 548, part of the EHP exact
sequence for T£ is:

•••-•• "2,(7?) "^ irn+iCSI?) * i r ^CET?A 7?) A ^ ^ ( T ? ) ^ . . . (3.1)

Here ir^+iCZT^ A T£) is infinite cyclic or of order 2 according as £ is orientable or not.
Let H2 denote the Hopf invariant in the latter case and its mod 2 reduction in the
former case. Comparison with the EHP sequence for S" shows that [JA, p,] generates
the image of P in (3.1) and is zero if and only if there exists a map /: S2"*1 -* 2T£ with
H2{f) f 0. The method for calculating H2(f) is due to Steenrod in the case of spheres,
but in our case it is convenient to quote (4). Let U denote the Thom class in Hq(T£).
According to Corollary 5.15 of (4), H2(f) is detected by the functional Steenrod square
Sqf+l(ZU) provided the latter has zero indeterminacy, i.e. provided / induces the zero
homomorphism f* on H2"*1. However, even when f* f 0 we may still detect H2(f) by a
functional square following Browder (5). Let Kq denote an Eilenberg-MacLane space
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of type (Z/2, q) with fundamental cohomology class i, and consider U as a map from T£
to JCq. By Section 1 of (5) and Corollary 5.15 of (4), H2(f) is detected by Sqf£,V£<<),
which has zero indeterminacy.

4. Normal bundles

As before let v be the normal bundle to an embedding of a manifold M" in R2", q
odd. The following easy lemma simplifies the study of [fi, /x] in Tv.

Lemma 4.1. The degree in dimension 2q + l of any map f: S2""1"1 -* £7V may be
changed arbitrarily without changing the Hopf invariant H(f).

Proof. Let a: S2" —> Tv be obtained from an embedding of M in R2" via the
Pontrjagin-Thom construction. It is well known that a has degree 1 in dimension 1q,
and H(2a) = 0 by (3.1). Since H is a homomorphism, H(j+?,a) = H(f) and the lemma
follows.

We may now prove Theorem 2.1(a). If [/u,, /x] = 0 in Tv then by (3.1) there exists a
map /: S2q+1 —> 2Tv with H 2 ( / )^0 . By Lemma 4.1 we may assume that / has even
degree, so Sq*+1(ZU) has zero indeterminacy and by Section 3, Sq^+1(SL0^0 since
H 2 ( / )^0 . From an S-dual of / we obtain a map g: 2"M —»S" for n large. Let s
generate Hn(Sn) and let x denote the canonical anti-automorphism of the mod 2
Steenrod algebra. Then by S-duality, (*&?q+1)g(s) ^ 0 and exactly as in the proof of
Lemma 2.3 in (6) it follows that q = 2r — 1 for some integer r.

To prove Theorem 2.1(b), recall from (3) that if M = UP(q) then stably Tv is the
stunted projective space

Here k is the order of the reduced Grothendieck group KO(UP(q)). Let / be the map
which, when suitably suspended, attaches the top cell in P£_q_i. We may compute
Sq?+1(2U) by applying Sqq+1 to the generator of Hfc-q~1(P£_q_1). A familiar calcula-
tion shows that this is non-zero if (and only if) q + l = 2r for some integer r > 3, and
Theorem 2.1(b) follows by Section 3. (Theorem 2.1(b) still holds when r= 1,2 or 3
since then [t, i] = 0.)

To verify the remark after Theorem 2.1, note that if 0: M-^>UP(q) is an S-map
inducing an isomorphism of cohomology in dimension q, then its S-dual yields a map
i/r: STv(RP(q)) -> 2Tv(M) preserving 21/ . Hence if /: S2""1"1 -» STvflRP(q)) has even
degree and H2(f) j= 0, then if/°f has the same properties so [ji, /x] = 0 in Tv(M) by (3.1).

5. Connection with James-Thomas number

We begin by recalling some facts about fibre-homotopy automorphisms which are
key ingredients in our proof of Proposition 2.2. The first is a result of Dupont in (10)
which may be formulated as follows. Let K be a q-dimensional complex with a unique
q-cell, q odd, and let £ be a q-plane bundle over K. Let a be a stable fibre-homotopy
automorphism of S£. We may think of a alternatively as a fibring over S'xK, so
wq+1(a) is a well-defined element of H q + 1 (S 1 xK). Thus wq+1(a) may be evaluated on
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the fundamental homology class of S1 x K to yield a mod 2 number x(a). Suppose that
X is a complex with H^+n{X)^ZI2 for some large n and SqQ+1Hq+n-\X) = 0. Let
/: X -» 2nT£ satisfy

(a) f*&nU) = Q
(b) /*: H"+2fl(2"Tf) - • Hn+2q(X) is an isomorphism.

Notice that 7a °f also satisfies (a) and (b), where Ta is the map of 2"T| induced by a.
As in Section 3 let us represent the cohomology Thorn class of £ by a map U from T£
to an Eilenberg-MacLane space with fundamental class i. Then Proposition 4.4 of (10)

) = xi.a). (5.1)

In (10), K = M is a manifold, X is a space in a Wu cospectrum, and in the applications
S£ is stably fibre-homotopy equivalent to ST. But (5.1) applies equally well to other
cases: for example if £ is stably mod 2 reducible we may take X = S2q+n and there is a
map /: S2""1"" -» 2"T£ satisfying (a) and (b).

We need also the following theorem.

Theorem 5.2. ((10), (11)). Let £ be a q-plane bundle over a q-dimensional complex
with a unique q-cell, q odd. Then /'(£) = 1 and only if there exists a stable fibre-
homotopy automorphism a of S£ with wq+1(a)^0.

This follows from (10), Corollary 2.3, Definition 2.4 and Proposition 2.7. Alterna-
tively, it is a reformulation of Theorem 1.6 of (11).

The final ingredient is a result of Wall relating degree 1 maps from S2"*" to 2"7V
with stable fibre-homotopy automorphisms of Sv (over the identity map of M). Any
such automorphism a gives rise to a homotopy equivalence 7a: 2"TV —> 2" TV for
n ^ 1 (unique up to homotopy for n S2). By Theorem 3.5 of (17) any choice of degree
1 map /: S2q+" —* 2"TV determines a one-one correspondence a —> Ta°f between
homotopy classes of stable fibre-homotopy automorphisms of Sv and homotopy classes
of stable maps of degree 1 from S2q+" to lnTv.

Proof of Proposition 2.2. To establish the 'if part we prove the more general
Proposition 2.8. Suppose £ is as in Proposition 2.8 and suppose /(£) = 1. Let g: S2q+1 -»•
2Tf induce an isomorphism of H2q+1. By Theorem 5.2 there exists a stable fibre-
homotopy automorphism a of S£ with wq+1(a)j=0. Now apply (5.1), taking X = S2q+n

and / = 2B~1g. Since x (a )^0 , one of the terms on the left-hand side of (5.1) must be
non-zero, so either g or a desuspension of Ta°f provides a map, h say, from S 2 ^ 1 to
27? with H2(h) ± 0. Hence [/x, /x] = 0 in T£ by (3.1). This proves Proposition 2.8 and a
fortiori one half of Proposition 2.2.

Conversely suppose |>, ft] = O in TV. By (3.1) there exists a map /: S2q+1 -» 2TV
with H2(f)J

zQ, and by Lemma 4.1 we may assume / has degree 1. Let a be as in the
proof of Lemma 4.1, so that 2a: S2"*1 -»• 27V has degree 1 and H(2a) = 0. By Wall's
result recalled above, there exists a stable fibre-homotopy automorphism a of Sv such
that Ta°!a = f. Then x («)^0 by (5.1), so j(v) = l by Theorem 5.2.

Proposition 2.4 can be proved in the above style (as can Proposition 2.7, whose proof
is omitted), but I prefer the following proof, pointed out to me by Duane Randall. I am
very grateful for his permission to use it here.
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Proof of Proposition 2A. (Randall). Suppose that j(v) = 2. Take a cellular decom-
position M = M o U e " with a unique q-cell. Choose classifying maps /, / ' : M —* BO(q)
for v, v respectively, with f = f on MQ. since /(v) = 2, the difference class d{y, v') in
Trq(BO(q)) = 7Tq_1(O(c})) is non-zero. On the other hand, Sv and Sv' are stably
fibre-homotopy equivalent. Putting these facts together we get Jd(v, v') = [t, t] where
J: 7rq_!(O(q)) -*• TT^-ICS") is the usual J-homomorphism. Let vo = v \ Mo and let
/xo, |A> M-' be the homotopy Thorn classes of vo, v, v respectively. Since the attaching
map for the top cell in Tv is zero in ir^-iiTvo), it follows from Theorem D of (14) that
the attaching map for the top cell in Tv' is \i.o*Jd{y, v') = fAo*[i> «J = [M<O> HO]- Hence

Remark. Duane Randall has pointed out that some other results in this section may
alternatively be proved by the above technique and Browder-Levine embedding
theory.

6. Tangent bundles

First we prove Proposition 2.6. Suppose M" is not special, but wf = 0 for 1S i S 2 r - 1

and for i = 2r+1m, where q = 2r(2m + l ) - l , r, m>0 . Let / be any map from S2"*1 to
STT. We shall prove H2(/) = 0; the result then follows by (3.1).

Since M is not special, / has even degree, so Sq?+1(2L0 has zero indeterminacy and
detects H2(f)- Now we use the Adem decomposition

Sq«+1 = Sq2'Sq2~'~ + £ bjSq^-'Sq1. (6.1)

Here b, is a mod 2 binomial coefficient and / ranges from 1 to 2r - 1 . Since for
isy<i2 r ~ 1 and for j = 2r+1m we have Sq\(ZU) defined and zero (with zero indetermi-
nacy) it follows that Sq^+l(Xt/) = 0 as required.

Remark. Duane Randall has pointed out that Proposition 2.6 may equivalently be
proved by applying (directly to TT) a secondary operation based on (6.1).

Next we prove Conjecture A for a homotopy -n-manifold i.e. assuming ST is stably
fibre-homotopy trivial. In this case ST is fibre-homotopy trivial if and only if x*(M) = 0
(see for example (9), and recall that q is odd, qj=\,3,7). Thus if x*(M) = 0 then ST is
fibre-homotopy trivial and [jx, ii]i=0 in TT since otherwise [i, i] = 0 in T T ^ - ^ S " ) . On
the other hand if x#(M) ^ 0 then by (9), Proposition 3.4 and Definition 3.1, there exists
a map / : S^ + 1 - • 2 T T with H 2 ( / )^0 so [/x, f*] = 0 in TT by (3.1).

Before proving Conjecture A under assumption 2.5(b), we discuss special manifolds
briefly. For M special, there exists a map from S2""1"1 to S T T of odd degree. Equival-
ently by S-duality there exists a map from T(2vs() to S2n of odd degree, where vst is an
n-plane normal bundle of M with n large. Then by ((3), proof of Proposition 2.8) and
((1), Theorem (1.1)), it follows that 2vSI has odd order in the fibre-homotopy sense.
(The converse is also true—see (8).) In particular it is easily checked that w{ = wt for all
i, where wt is the dual Stiefel-Whitney class.

Lemma 6.2. If Mq is special, q = 2r(2m + 1 ) - 1 with r,m>0 and wf = 0 for 1 ^ i ^
2r~2 then wf = 0 for i = 2r+1m.
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Proof. This may be proved for the dual Stiefel-Whitney classes in a straightforward
fashion following the method in (13).

To see that special manifolds are rather scarce, note that if any stable mod 2
cohomology operation arriving in H^CTT) is non-zero then M is not special.

Proof of Proposition 2.5(b). Suppose that M satisfies 2.5(b) and suppose that
[ji, M.] = 0 in TT. AS in the proof of Proposition 2.2 of (12), let g: S 'U^je2" -»• TT
extend ji. By hypothesis, a secondary operation 3> associated with (6.1) is defined on
l/T. Also, $ detects [<, «.] by (7), so 3>(C/T) ^ 0. Now, for example by (16), Remark (b) on
p. I l l , wegetx*(M)^0.

For the converse we use the Browder-Dupont method described in (16). Let X' be as
in Section 8 of (16): recall then H2q+n(X')«Z/2 and

SqiH2q+'l-i(X') = 0 for l ^ i ^ 2 r and for i = q + l. (6.3)

Suppose x*(M)^0. Then by (16, Section 8) and Theorem 2.7, there is a map
g': X' —*• 2"TT (an allowable X'-orientation) inducing an isomorphism of H2""1"" and
with Sql^g '(2nt) / 0. Since M is special, there exists a map /: S2""1"1 -»• XTT of odd
degree. Suppose, for a contradiction, that H2(f) = Q. We may compose 2""1/ with a
map of odd degree from X' to S2""1"" to get h: X' -* X T T such that Sq |^ h (2 n i ) = 0.
Then g = g' + h satisfies Sq|*u.g(£

ni.) ^ 0 and g induces the zero homomorphism on
H2""1"", so Sql+1{tnU)i=0 with zero indeterminacy. But each term SqQ+1~' on the
right-hand side of (6.1) lies in the right ideal of the mod 2 Steenrod algebra generated
by the Sq' with 1S i ^ 2 r - 1 (cf. (16) p. 110). By hypothesis and Lemma 6.2, Sqg(2

nL/) is
defined for l ^ ; ^ 2 r ~ 1 and for / = 2r+1m. Using (6.1) and (6.3) we now get the
contradiction Sqg

+1(2"LO = 0. Hence H2(f)£0, so O, /x] = 0 in TT by (3.1).

7. Examples

In this section we present some examples relevant to the previous results. Proposition
2.6 suggests how to get counterexamples to Conjecture A. However, we begin with a
simple counterexample which does not satisfy all the hypotheses of Proposition 2.6.

Example 7.1. Let M = RP(11). Then x*(M) = 0. We shall prove [>, n] = 0 in TT by
exhibiting a map /: S23 -» XTT with H2(f) ± 0. In the notation of Section 4, ITT = P\l-
Let / be the attaching map for the top cell in P\\. Since / has even degree and Sq12^ 0
in P2^ it follows that H2(f) f- 0. In this argument, 11 may be replaced by 4k + 3 for any
positive integer k.

In Example 7.1, M is not special and w^O for i = 2r+1m. In fact when M is not
special and we do not insist on wt vanishing as in Proposition 2.6, literally anything can
happen concerning the values of x*(M) and of [fi, /A] in TT. TO illustrate this we give
three further examples, omitting details.

Example 7.2. If M = CP(4fc) x S3 then [ft, ft] + 0 in TT and x*(M) + 0.

Example 13. If M = RP(8k + l ) x S 2 then [pi, ti]£0 in TT and **(M) = 0.
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Example 7.4. If M is the total space of the S3-bundle Sv over <QP(2) in the notation
of (3) then [/x, /x] = 0 in TT and x*(M) f 0.

In Example 7.2, /(T) = 1. With the next example, this shows that there is no analogue
of Proposition 2.2 for tangent bundles in general.

Example 7.5. If M = RP(2)xS4fe-1 (fc>2) then [p,ft] = 0 in TT, **(M)^0 and
KT) = 2 .

Example 7.5 shows that even if we add the hypothesis /(T) = 2 to Conjecture A, the
modified conjecture is still false in general. The next example illustrates Proposition
2.6.

Example 7.6. If M = QP(2k)xS9 then wf=0 for i = l,2,8fc+8, x*(M)^0 and
[fi, /x] =£ 0 in TT.

The final example shows that not all special manifolds obey Conjecture A.

Example 7.7. If M = KxS13 where K is the Klein bottle, then M is special (I am
grateful to Reg Wood for pointing this out), x*(M) = 0 and ;(T) = ;(v) = 1, hence
[jx, /x] = 0 in TT by Proposition 2.2.

I do not know wheather all special manifolds with ;(T) = 2 obey Conjecture A. It is
easy to show (using Proposition 2.3) that /(T) = 2 for any special manifold whose
dimension is not of the form 2r —1.

Appendix

Here a self-contained proof of Proposition 2.3.
Let | be a q-plane bundle over a manifold Mq (q odd). As before we write &, for the

stable class of f. By Theorem 5.2, /(£) = 1 if and only if there exists a stable sphere
fibring a over S1*-^! with wq +i(a)^0 and of 'type' (0, 4t)> i-e. the restriction of a to
the wedge S1vM is 0v&,. Suppose there exists such an a. Then S q q + V 0 in Ta. By
S-duality, the stable sphere fibring (3 = vst - a is of type (0, vst - £,), and xSq"+1 ^ 0 in
T/3, i.e. the Wu class uq+i(|3) f 0. In particular if 4, = vst then /3 is of type (0,0), hence
is induced from a bundle y over SM with uq+1(-y)^0. It is well known that uq+1 is
decomposable unless q +1 is a power of 2, and the result follows since cup-products
vanish on a suspension. This last argument has been used by Brown in (6) p. 381 and
by Jones and Rees in (2), Part I, p. 144.

REFERENCES

(1) J. F. ADAMS, On the groups J(X)-I, Topology 2 (1963), 181-95.

(2) A.M.S. Colloquia Proceedings, Vol. 32 (Providence, R.I., 1978).

(3) M. F. ATIYAH, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310.

(4) J. M. BOARDMAN and B. STEER, On Hopf invariants, Comment. Math. Helv. 42 (1967),
180-221.

(5) W. BROWDER, The Kervaire invariant of framed manifolds and its generalizations, Ann.
of Math. 90 (1969), 157-86.

https://doi.org/10.1017/S0013091500016552 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016552


WHITEHEAD SQUARES IN THOM COMPLEXES 229

(6) E. H. BROWN JNR., Generalizations of the Kervaire invariant, Ann. of Math. 95 (1972),
368-83.

(7) E. H. BROWN JNR and F. P. PETERSON, Whitehead products and cohomology operations,
Quart. J. Math. (Oxford) (2) 15 (1964), 116-20.

(8) I. DIBAG, Degree theory for spherical fibrations, to appear.

(9) J. L. DUPONT, On homotopy invariance of the tangent bundle I, Math. Scand. 26 (1970),
5-13.

(10) J. L. DUPONT, On homotopy invariance of the tangent bundle II, Math. Scand. 26 (1970),
200-220.

(11) I. M. JAMES and E. THOMAS, An approach to the enumeration problem for non-stable
vector bundles, /. Math. Mech. 14 (1965), 485-506.

(12) H. J. MARCUM and D. RANDALL, The homotopy Thorn class of a spherical fibration,
Proc. Amer. Math. Soc. 80 (1980), 353-358.

(13) W. S. MASSEY and F. P. PETERSON, On the dual Stiefel-Whitney classes of a manifold,
Bol. Soc. Mat. Mexicana (2) 8 (1963), 1-13.

(14) R. J. MTLGRAM and ELMER REES, On the normal bundle to an embedding, Topology 10
(1971), 299-308.

(15) W. A. SUTHERLAND, The fibre homotopy enumeration of non-stable sphere bundles and
fibrings over real projective spaces, J. London Math. Soc. (2) 1 (1969), 693-704.

(16) W. A. SUTHERLAND, The Browder-Dupont invariant, Proc. London Math. Soc. (3) 33
(1976), 94-112.

(17) C. T. C. WALL, Poincare complexes: I, Ann. of Math. 86 (1967), 213-245.

(18) G. W. WHITEHEAD, Elements of homotopy theory (Springer-Verlag, 1978).

NEW COLLEGE
OXFORD
OX1 3BN

https://doi.org/10.1017/S0013091500016552 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016552

