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Abstract. The longitudinal distribution of solar active regions shows non-homogeneous spa-
tial behaviour, which is often referred to as Active Longitude (AL). Evidence for a significant
statistical relationships between the AL and the longitudinal distribution of flare and coronal
mass ejections (CME) occurrences is found in Gyenge et al. 2017 (ApJ, 838, 18). The present
work forecasts the spatial position of AL, hence the most flare/CME capable active regions are
also predictable. Our forecast method applies Autoregressive Integrated Moving Average model
for the next 2 years time period. We estimated the dates when the solar flare/CME-capable
longitudinal belts face towards Earth.
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1. Motivation
The existing flare and CME forecasting tools are usually based on the local dynamics

of active regions, such as the magnetic topology (e.g., Korsós et al. 2014, Korsós &
Erdélyi 2016). However, certain global phenomena are also able to provide opportunities
for predicting the locus of solar eruptive events, such as the longitudinal inhomogeneous
properties of active regions (e.g., Bumba et al. 1965; Bogart 1982; Berdyugina et al.
2006; Balthasar 2007; Zhang et al. 2011). In our previous study, Gyenge et al. 2017
(hereinafter GY17), we found that the most complex active regions appear near the
Active Longitude (AL). We concluded that the source of the most probably flare/CME-
capable active regions is at the AL. In this paper, we combine our recently developed
AL tracking method by Autoregressive Integrated Moving Average (ARIMA) model for
forecasting the longitudinal position of the AL numerous Carrington Rotations (CRs) in
advance.

2. Forecasting the Active Longitude
We employ the Debrecen Photoheliographic Data (DPD) sunspot catalogue for deter-

mining the position of the AL. The DPD covers 540 Carrington Rotations, which equals
to about five solar cycles. Panel A of Figure 1 shows the migration of the AL. The hori-
zontal axis represents time. The vertical axis shows the Carrington Phase (CP = L/360),
which is the longitudinal position L of the most significant sunspot group clusters in a
certain CR. The clustering method (DBSCAN) groups together points that are relatively
closely packed together in a high-density region and it marks outlier points that stand
alone in low-density regions (Ester et al. 1996). The longitudinal location of the clusters
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(B) Data after differencing.
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(C) Autocorrelation
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Figure 1. Migration of the AL (Panel A), the normalised denoised signal (Panel B), the auto-
correlation (Panel C) and partial correlation (Panel D) of the differentiated data for the northern
hemisphere are shown. One lag represents around a year.

represent the position of the AL. The AL identification method developed based on an
empirical approach, described in GY17. The data is distinguished by the hemispheres.

Seasonal ARIMA model (e.g. Ho & Xie. 1998) is used for projecting the future values
of time series, derived from the parameters ARIMA(p,d,q) × (P,D,Q). The parameters
p and P are the number of non-seasonal and seasonal autoregressive (AR and SAR)
terms. The parameters q and Q are the non-seasonal and seasonal moving average (MA
and SMA) terms. Finally, the parameters d and D are the non-seasonal and seasonal
differences (Box & Jenkins. 1968).

The application of the ARIMA model requires stationarity data; if yt is considered as a
stationary time sample, then the distribution of any subsample (yt , ..., ys) is independent
on t for all s (Chatfield 1975). The signal is denoised by applying a moving average with
3 CRs window (Panel A of Figure 1). The black line the marks actual position of the AL
clusters and the grey belt within the migration demonstrates the mean squared error.
The data is non-stationary if a pronounced trend is present. Dickey-Fuller (ADF) tests
are used to study the trend-stationarity. The null hypothesis of the test is that the unit
root is present in a time series. The alternative hypothesis could mean trend-stationarity.
The results of the test also suggest that the data is non-stationary (northern hemisphere
data: p-value = 0.6351 and southern hemisphere: p-value = 0.3054).

The trend-stationarity data can be archived by differencing. Now, the first difference of
the time sample means the change between consecutive data points, and it is written as
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Forecasts from ARIMA(1,1,0)(1,1,0)[14]
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Figure 2. Forecasting the AL for the norther hemisphere. The vertical axis is the Carrington
Phase (CP ) and the horizontal axis stands for the Carrington Rotation (CR). The 3σ standard
deviation is displayed by the grey band.

y′
t = yt −yt−1 . Seasonality makes it so that the mean of the observations is not constant,

but instead it evolves according to a cyclical pattern. The seasonally differenced series has
a similar definition but the difference here means the difference between an observation
and the corresponding observation from the previous “AL-cycle”: y′

t = yt − yt−n , where,
n is the “AL-cycle”. In GY17, we found that the pattern of the AL migration does
not correspond well with the 11-year solar cycle. The lengths of the cycloid AL pattern
iterates between 8 years and 14 years. However, there is an 11-year cyclic behaviour
on average. Panel B of Figure 1 shows the seasonal differenced and a first differenced
data to obtain stationary time sample. The ADF tests confirms the results obtained
with differencing and seasonal differencing (northern hemisphere: p-value = 0.09696 and
southern hemisphere: p-value = 0.04897). We found that seasonal differencing D = 1 and
differencing d = 1 are useful terms for the ARIMA model estimation.

The next step of the parametric estimation of the ARIMA model is the examination of
the autocorrelation (ACF) and partial autocorrelation (Partial ACF) of the differenced
data. Applying ACF and Partial ACF provides some initial guess value about the ap-
propriate ARIMA model parameters (Box et al. 1994). Due the down-sampled data, lag
10 corresponds to 140 CR, which equals to the 11-year solar cycle. Panel C of Figure 1
(ACF) shows a harmonic wave decay pattern and the Partial ACF (Panel D of Figure
1) cuts off quickly. The ACF also reveals the existence of the fluctuation at positive
lag around lag 10 (also 20 and 30). If the Partial ACF displays a sharp cut-off while
the ACF decays more slowly, this behaviour clearly suggests an AR signature p = 1
(Box et al. 1994). The seasonal spikes in the ACF seem to be clear, they fade away
in the ACF and cut off after lag 1 in the Partial ACF. This is the sign of a seasonal
SAR model P = 1 (Box et al. 1994). So, it seems ARIMA(1,1,0) × (1,1,0) is a good
model for estimating the future values of the time series to the northern hemisphere
(Figure 2). Similar methodology is applied for the southern hemisphere data (Panel B of
Figure 3), however, the statistical error is an order of magnitude larger than in the other
hemisphere. Due the large error the souther hemisphere data does not seem to provide
reliable forecast.
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Forecasts from ARIMA(1,1,0)(1,1,0)[14]
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Figure 3. Forecasting the AL for the southern hemisphere. The vertical axis is the Carrington
Phase (CP ) and the horizontal axis stands for the Carrington Rotation (CR). The 3σ standard
deviation is displayed by the red band.

3. Conclusion
By applying our method outlined in this short report, we are able to forecast the

potential flare and/or CME sources several CRs in advance. We predict that the enhanced
CME and flare active longitudinal belt will face towards Earth in weeks 41, 42, 46, 50 in
2017 and weeks 2, 5, 9, 13, 17, 20, 24, 27, 35, 39 in 2018. These estimates indicate 60% of
flare and CME activity and the highest probability of fast CME occurrence (see GY17).
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