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In the ion cyclotron range of frequency (ICRF), the presence of a lower hybrid (LH)
resonance can appear in the edge of a tokamak plasma and lead to deleterious edge
power depositions. An analytic formula for these losses is derived in the cold plasma
approximation and for a slab geometry using an asymptotic approach and an analytical
continuation near the LH resonance. The way to minimize these losses in a large machine
like ITER is discussed. An internal verification between the power loss computed with
the semi-analytical code ANTITER IV for ion cyclotron resonance heating (ICRH) and
the analytic result is performed. This allows us to check the precision of the numerical
integration of the singular set of cold plasma wave differential equations. The set of cold
plasma equations used is general and can be applied in other parameters domain.
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1. Introduction

A potentially important edge power loss mechanism for ion cyclotron resonance heating
(ICRH) arising in the presence of a lower hybrid (LH) resonance in the edge of a tokamak
plasma has gained renewed interest in view of ICRH application to future large fusion
machines like ITER and DEMO as it will likely be present in their scrape-off layer (SOL).

Historically, ion heating at the LH frequency range was expected to take place near
the LH resonance through mode conversion from a fast electromagnetic wave to a slow
electrostatic one or through the direct launch of a slow wave (Stix 1965; Hooke & Bernabei
1972; Bellan & Porkolab 1974). However, this ion heating scheme proved to be difficult
to reproduce and the ion heating efficiency was often too low to be of interest (Porkolab
1984; Gormezano 1986).

In the ion cyclotron range of frequency (ICRF), the same confluence between the fast
and the slow waves near the LH resonance can take place in the edge of the plasma where
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it can lead to parasitic power losses. The presence of a LH resonance appears at low
densities, in non-inverted heating scenarios (i.e. f > fci where fci is the cyclotron frequency
of the majority ions and f is the frequency of the radio-frequency (rf) waves launched by
the antenna). In these conditions, for a toroidal wavenumber |kz| which is smaller than the
propagation constant in vacuum k0, the fast wave undergoes a confluence with the slow
wave. On top of this, the misalignment of the Faraday shield (FS) can also create a direct
excitation of the slow wave. These two effects can lead to edge power depositions and
were discussed theoretically in earlier works (Berro & Morales 1990; Heikkinen & Bures
1990; Alava & Heikkinen 1992; Lawson 1992). Two recent papers (Messiaen & Maquet
2020; Messiaen, Maquet & Ongena 2021) provide simple rules to minimize the power loss
at this LH resonance, constraining the current distribution on the strap array in amplitude
and phase.

Edge power losses in tokamaks should be avoided as they can lead to a reduction of
the power deposited in the plasma core and to deleterious impurity release from the first
wall of the device. A correlation between ICRH related impurity release and low |kz| �
k0 present in the kz radiation spectrum launched by ICRH antennae was investigated in
Maquet & Messiaen (2020).

Numerically, the LH resonance is particularly hard to simulate (Lu et al. 2016;
Nicolopoulos, Campos-Pinto & Després 2019; Usoltceva et al. 2019; Otin et al. 2020;
Tierens et al. 2020). In the edge of a tokamak, the plasma waves can be described in a
first approximation by the collisionless cold plasma dielectric tensor. However, at the LH
resonance, the rf fields are singular. Numerical computation requires the introduction of
finite collisions in the tensor terms and need a very fine spatial resolution to correctly
resolve the electromagnetic fields. Moreover, the fast and slow wave modes of the cold
plasma coalesce due to their confluence in this region and cannot be treated as separated
modes.

A recent upgrade of the semi-analytical code ANTITER II, called ANTITER IV, is now
describing the waves launched by an ICRH antenna in the cold plasma limit, including
the full description of the fast and slow wave confluence and the LH resonance aspects
(Messiaen et al. 2021). The present paper analytically derives the power loss at the LH
resonance in § 2, compares the results with the power loss computed numerically by
ANTITER IV in § 3 and applies this analysis to an ICRH antenna like the one of ITER in
§ 4.

2. Analytical derivation

The edge plasma is described by the cold dielectric plasma tensor and Maxwell’s
equations expressed in the radial x direction for a slab geometry and Fourier analysis in
the ( y, z) directions, where z represents the direction along the total magnetic field B0.
The plasma wave model considered leads to a system of 4 first-order ordinary differential
equations (ODEs) of the form Y(x)′ = A(x)Y(x)

d
dx
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Moreover,

Ex = − ky

k2
0ε1

ωBz + kz

k2
0ε1

ωBy − i
ε2

ε1
Ey, (2.2)

ωBx = kyEz − kzEy. (2.3)

In the expressions above ε1, ε2 and ε3 are the components of the cold dielectric plasma
tensor (Swanson 2012) and ω is the angular frequency of the rf waves launched by the
antenna. This set of cold plasma equations is general and can be applied in any parameter
domain. In the ICRF, the field components Ey and Bz can be associated with the fast wave
predominant components of interest for heating and Ez and By can be associated with the
slow wave predominant components. This system is singular at the location x0, where
ε1(x0) = 0 which corresponds to the LH resonance in the cold plasma description. The
resonance location is independent of the wavenumber and only depends on the launched
wave frequency and on the plasma composition, density and magnetic field.

In what follows, the method used to derive the power loss at this LH resonance was
obtained from an asymptotic expansion of the system of differential equations and from
an analytical continuation around the singularity. Analytical continuation has been used
for a long time to assess collisionless absorption at cold plasma resonances (e.g. Golant &
Piliya 1972). The application of such method to matrix wave equations is similar to the one
used in Faulconer & Koch (1994) where the authors derive the power loss at the Alfvén
resonance.

2.1. Asymptotic expansion in the vicinity of the LH resonance
Choosing the position of the LH resonance at the origin x = 0, one can expand ε1(x) in a
Taylor series as ε1(x) = ε ′

1(0)x + O(
x2

)
, where ε ′

1 is the derivative of ε1 with respect to x.
This leads to an asymptotic expression of A(x) of the system (2.1)
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x0), (2.4)

with ε ′
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1(0) and where
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A straightforward computation shows that the matrix A0 satisfies

A2
0 = 0. (2.6)

This property will be fundamental in the forthcoming computations. The matrix A0 can
also be expressed in a way that will become handy later
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2.2. Fields near the resonance
To derive expressions for the tangential (y, z) fields near the resonance we consider x as
being a complex variable (i.e. we will consider the analytic continuation of our system of
equations over the complex plane). Close to x = 0, one can truncate the expansion (2.4) as

A(x) � A0

ε ′
1 x

. (2.8)

In this approximation, using the property (2.6), we observe that A(x) and its primitive
commute. This enables us to use the general theorem derived in appendix A. The solution
to the system (2.1) reads⎛
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where C ≡ (
C1, C2, C3, C4

)T is a constant column vector depending on the initial
conditions of the problem. Here, log denotes the principal value of the complex logarithm.
The last equality in (2.9) is exact due to the property (2.6). More explicitly, our solution is
given by ⎛
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with α(x) ≡ log(x)/k2
0ε

′
1 and where we used relation (2.7).

The expression above clearly shows that all fields except By are singular at the
resonance. One can nevertheless construct a particular combination of them which remains
non-singular at x = 0. Left multiplication of (2.10) by the line vector

(−ky ε2k2
0 k0 0

)
leads to

k2
0ε2Ey − kyiωBz + kziωBy = k2

0ε2C2 − kyC1 + kzC3 ≡ Υ, (2.11)

where, from (2.2), Υ can be written as

Υ = ik2
0ε1Ex. (2.12)

This indicates a relationship between the fields combination Υ and the radial electric field
Ex. Note that the electric field component Ex dominates the other electric field components
near the singularity and that the product ε1Ex, as Υ , is non-singular at the LH resonance as
was already realized using a field potential approach (Dolgopolov 1966; Golant & Piliya
1972).

We finally get from (2.10)

iωBz = C1 + α(x)ε2k2
0Υ, (2.13)

Ey = C2 + α(x)kyΥ, (2.14)

iωBy = C3, (2.15)

Ez = C4 + α(x)kzΥ. (2.16)

These are the expressions of the singular part (i.e. up to O(
x0

)
corrections) of the ( y, z)

fields in the vicinity of the LH resonance (located at x = 0).
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2.3. Power loss at the LH resonance
Our next goal consists in computing the power loss at the LH resonance using the
expressions of the fields derived above. In our case, the power loss ΔP is given by the
difference of the Poynting flux S(x) after and before the resonance

ΔP ≡ lim
κ→0+

S(x)
∣∣∣∣
x=+κ

x=−κ

. (2.17)

The Poynting flux can be written as

S(x) ≡ Re
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y

)
(2.18)
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Im
[
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∗]. (2.19)
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Im
[
Ey(iωBz)

∗] = Im
(
C2C∗

1

) + Im
[
α∗(x)bΥ ∗ + α(x)a∗Υ

]
. (2.21)

Making use of these expressions and of the identity Υ = −a + b + c, the Poynting flux
can be rewritten as
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We finally have
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On the other hand, one has the identity
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1|
. (2.25)

A proof of this equality is given in appendix B. Plugging (2.25) into (2.24) leads to the
final result

ΔP = −π

k2
0ωμ0|ε ′

1|
|Υ |2 (2.26)

= −πk2
0

ωμ0|ε ′
1|

|ε1Ex|2, (2.27)

where Ex, ε1 and ε ′
1 are taken at the LH resonance location x = 0.

This equation confirms that power is lost at the resonance. Relation (2.27) gives insight
in the physics underlining the edge power loss: it does not depend on the toroidal electric
field Ez but on the local radial electric field Ex. The power loss also inversely depends on
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the derivative of the first dielectric tensor ε1 component: a larger density gradient in the
edge will lead to lower power losses if the numerator of (2.27) is constant. This formula
is the version in SI units of the formula given in Golant & Piliya (1972) using a local
quasi-static assumption. Formula (2.27) avoids this electrostatic assumption but assumes
a more stringent structure of the dielectric tensor.

The power loss in relation (2.27) is expressed for a single wavelet (ky, kz) in the Fourier
domain. To find the total power loss corresponding to a strap current distribution of an
antenna array, relation (2.27) has to be integrated over the Fourier domain (summed over
the considered (kz, ky) grid in the periodic geometry of a tokamak) with the corresponding
spectrum of Ex(kz, ky). From Parseval’s theorem, the edge power loss at the LH resonance
is obtained

Pedge = 1
(2π)2

−πωε0

|ε ′
1|

∫∫
|ε1Ex|2 dky dkz, (2.28)

where Ex, ε1 and ε ′
1 are, again, taken at the lower hybrid resonance location x = 0.

The power loss relation at the LH resonance derived in (2.27) does not depend on the
working range of frequencies considered. However, the rest of the text will be focused
on the ion cyclotron range of frequencies. As relation (2.27) is exact, it provides an
opportunity to cross-check the numerical integration performed in ANTITER IV at the
LH resonance and will be examined in § 3.

2.4. Parallelism with previous works
In the paper of Faulconer & Koch (1994), the same method as the one presented above
is used to derive the losses of the fast wave at the Alfvén resonance. This fast wave is
described by a system of 2 first-order ODEs

d
dx

(
iωBz
Ey

)
= 1

u

(−ε2k2
0ky −u2 + ε2

2k4
0

u − k2
y ε2k2

0ky

)(
iωBz
Ey

)
. (2.29)

Here, the Alfvén resonance corresponds to the singular point u = 0 where u is defined as

u ≡ k2
0ε1 − k2

z . (2.30)

The authors find that the power loss at the Alfvén resonance follows

ΔP = −π

ωμ0|u′| |uEx|2, (2.31)

where Ex, ε1 and ε ′
1 are taken at the LH resonance location u = 0. Despite the identical

form of the two formulas (2.26) and (2.31), one can expect differences in the power loss
results. Indeed, the Alfvén resonance is an approximation (Stix 1992; Bellan 1994) in the
limit me → 0) and corresponds to the fast wave power lost at the confluence with the slow
wave while the LH resonance corresponds to the power lost by the slow wave through
mode conversion.

3. ANTITER IV

In this section, the analytical results derived in § 2 are used in the restricted case of ICRH
to monitor the precision of the integration performed in ANTITER IV while crossing the
LH resonance and to validate the power loss computed. ANTITER is a semi-analytic code
describing an antenna in front of a plasma in a plane geometry in the cold plasma limit.
The code uses Fourier analysis in the previously defined ( y, z) directions and numerical
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FIGURE 1. ITER 2010 low electron density profile. The antenna and the LH resonance density
are displayed.

integration in the radial x one. Concerning the boundary conditions, the tangential fields
are matched with the antenna excitation at the antenna aperture plane where an ideal FS
adjusts the field polarization. On the plasma core, no reflection, i.e. single-pass absorption,
is assumed (Messiaen et al. 2010). The antenna layout is described by a set of boxes
recessed into a metal wall containing infinitely thin straps.

The edge plasma electron density profile used for the study is an ITER H-mode reference
profile considered as one of the most conservative modelling cases for ICRH coupling
(2010low – Carpentier et al. 2011). This specific choice of density profile is used to
illustrate the LH power loss taking place in large machines. The electron density profile
is presented in figure 1 along with the antenna position and the LH density layer. The
ITER magnetic field, minor and major radius used are respectively B0 = 5.3 T, R0 =
6.2 m, a = 2 m. The antenna radial position is x = 8.422 m. The wave frequency used
is 55 MHz and the plasma composition chosen is a 0.56 − 0.44 deuterium–tritium mix.
The periodicity of ITER is approximated through (kz,nky,m) Fourier spectral components.
For ITER, these Fourier spectral components form a dense set of points and are thus
presented as a continuous set in the rest of the text. The size of the grid considered is
−30 m−1 < kz < 30 m−1 and −25 m−1 < ky < 25 m−1.

ANTITER II only describes the fast wave using the system (2.31), with the
approximation of vanishing electron mass. The power transfer from fast wave and slow
wave at their confluence is evaluated by the power loss at the Alfvén resonance. ANTITER
IV extends the above model to include a detailed description of both the slow and fast
waves’ excitation and their interaction in an non-homogeneous plasma by solving the
system (2.1) (Messiaen et al. 2021). The novelty brought by ANTITER IV lies in its ability
to describe direct Ez excitation at the antenna, which was impossible in ANTITER II. In
the ICRH non-inverted scenario, the following properties are obtained from the dispersion
relation of the homogeneous plasma: (i) without direct Ez excitation, the slow wave is
generated by the confluence with the fast wave which mainly occurs for |kz| < k0; (ii) with
a direct Ez excitation by the antenna, the slow wave can be excited when |kz| > k0 and can
propagate between the cutoff, occurring for ε3 = 0 close to the wall, and the LH layer.
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FIGURE 2. The four plasma conductance matrix elements seen at the antenna position as a
function of low (ky, kz). The kz = ±k0 line is also represented by red lines.

The boundary condition at the antenna output is described by four admittance matrix
elements ξ−1

ij obtained from the integration of (2.1). Those elements take the form

(
ωBz
ωBy

)
=

(
ξ−1

11 ξ−1
12

ξ−1
21 ξ−1

22

)(
Ey
Ez

)
, (3.1)

and describe the relationship between the four tangential plasma components Ey, Ez, Bz
and By for a pair (ky, kz) considered in the Fourier expansion. The real part of these four
admittance matrix elements, the conductance elements, found at the antenna position is
presented in the figure 2 for all wavenumbers (ky, kz) considered and is linked to the power
coupled at the antenna aperture Prad by relations (2.19) and (3.1) as

2Prad = 1
(2π)2ωμ0

Re
{∫∫ [( |Ey|2

ξ ∗
11

+ EyE∗
z

ξ ∗
12

)
−

(EzE∗
y

ξ ∗
21

+ |Ez|2
ξ ∗

22

)]
dky dkz

}
. (3.2)

In ANTITER IV, the LH resonance is handled by adding an imaginary part to the
dielectric tensor component ε1 in order to integrate the system (2.1). This corresponds
to the numerical implementation of an analytical continuation. The imaginary part is
introduced in the form of collisions in the cold plasma tensor terms (e.g. Swanson (2012),
chap. 3, p. 105). The value of this dissipative term is discussed in the next sub-section.

3.1. Fields near the LH resonance with ANTITER IV
We first investigate the fields’ behaviour near the LH resonance. The fields near the
resonance depend on the imaginary dissipative term applied in ANTITER IV. Relation
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(2.11) and appendix B give some intuitions of this dependence: ε1Ex being non-singular
near the LH resonance, one can write in this region

|Ex| ≈ |C|√
(Δrε ′

1)
2 + Im(ε1)2

, (3.3)

with C a constant. The dissipative term replaces the field singularity Ex at the resonance by
a peak of amplitude |C|/Im(ε1) and a 3 dB width below maximum w3 dB = 2 Im (ε1)/ε

′
1

around that resonance. This dissipative term only influences significantly the fields and
the power loss over several widths w3 dB and does not need to be added elsewhere.

An optimal dissipative term and an optimal radial division of the domain exist in
ANTITER IV and arise as a trade-off between the numerical cost of the integration and
the expected accuracy of the numerical results:

• The optimal step size Δr imposed should be smaller than the characteristic peak
width w3 dB of the fields near the resonance in order to correctly resolve their
variation. Practically, the integration step size is locally refined near the resonance
to Δr of 0.1 to 0.02 w3 dB. This adaptation can be performed with an automatic
adaptive Runge–Kutta routine or based on the ε1 value.

• The result of the numerical integration follows the theoretical correction term of
(B 8) derived in appendix B which is proportional to arctan

(
Im(ε1)/(κε ′

1)
)
; Im(ε1)

being small, the numerical accuracy evolves linearly with the dissipative term. For
the antenna excitation case considered, convergence can be reached for the full grid
for values of w3 dB < 10−4 m. An example of the obtained agreement is given in the
next section, figure 4.

To illustrate the discussion above, the Poynting flux and the absolute radial electric
field |Ex| are displayed in figures 3(a) and 3(b) for two dissipative terms and a pair
(ky, kz). The dissipative term used are such that the 3 dB width w3 dB is equal 10−4 m
and 10−6 m which corresponds respectively to a collision frequency ν/ω of 12 × 10−4 and
12 × 10−6. Figure 3(a) shows that two dissipative terms lead to the same Poynting flux
jump. Figure 3(b) illustrates the asymptotic behaviour of the radial electric field Ex when
low collisionality is imposed.

For the rest of the paper, unless specified otherwise, the optimal dissipative term leading
to w3 dB = 10−4 m is chosen as it leads to reliable results with a smaller subdivision of the
radial domain.

3.2. Power loss at the LH resonance with ANTITER IV
The power losses at the LH resonance using the Poynting flux (2.19) and the analytical
power loss (2.27) computed with the fields of ANTITER IV are compared.

This exercise is first performed for a purely poloidal excitation (i.e. Ey(ky, kz) = 1 at the
antenna aperture while ensuring Ez(ky, kz) = 0). For this specific excitation, the power loss
is mainly limited to wavenumbers smaller than the wave propagation constant in vacuum
|kz| < k0 as they correspond to the fast wave undergoing a wave confluence with the slow
wave. This fact is verified in figure 4. We also observe that the error between the analytical
Poynting flux given in (2.27) and the numerical integration of ANTITER IV is negligible.
In this case, figure 4 also illustrates the link between the power loss computed and the
admittance matrix element as only the first matrix element ξ−1

11 will enter in the power
derivation (3.2).

The same test can be performed for a purely toroidal polarization (i.e. Ez(ky, kz) = 1 and
Ey(ky, kz) = 0). Here, we see a strong interaction which is no longer limited to the region
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(a) (b)

FIGURE 3. (a) Poynting flux jump observed around the LH resonance for a pair (ky, kz) and for
two dissipative terms. (b) Absolute value of the radial electric field |Ex| around the LH resonance
for a pair (ky, kz) and for the same dissipative terms for a pure poloidal electric field excitation.

FIGURE 4. Power loss at the LH resonance for a pure Ey(kz, ky) excitation. Red lines delimit
the |kz| < k0. Here k0 = 1.15 m−1.

|kz| < k0 but extends to |kz| > k0 m−1 and peaks at |kz| = k0 and ky close to 0. There is
again only a negligible difference between the results obtained with the two methods. The
comparison between figure 5 and ξ−1

22 in figure 2 illustrates the link between the power loss
computed due to direct slow wave excitation and the admittance matrix element ξ−1

22 .
For a field-aligned antenna with a field-aligned FS, figure 4 shows that the power losses

can be minimized by avoiding the |kz| < k0 region in the power spectrum. The antenna
power spectrum can be easily modified by shaping the Ey spectrum excited by the antenna
(i.e. by the adjustment of the current amplitude and phase distribution over the straps; see
§ 4). A FS that is not aligned with the background magnetic field will excite a spurious Ez
spectrum that can, in turn, lead to non-negligible new losses for low |kz| above k0, as shown
in figure 5. Indeed, for an excitation of Ey and Ez of equal amplitude, the losses due to Ez
are one order of magnitude larger than the losses due to Ey. The same magnitude difference
is also visible in the conductance matrix elements Re(ξ−1

11 ) and Re(ξ−1
22 ) shown in figure 2.

Note that wave reflection on metallic elements protruding in the far SOL region and not
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FIGURE 5. Power loss at the LH resonance for a pure Ez(kz, ky) excitation. Red lines delimit
the |kz| < k0. Here k0 = 1.15 m−1.

parallel to B0 will also create an undesirable Ez excitation (Kohno, Myra & D’Ippolito
2015) that cannot be modelled in ANTITER IV. These new losses can be reduced by
further depleting the low |kz| part of the power spectrum at the expense of a reduction in
the power coupled to the plasma core (Messiaen et al. 2021).

Finally, one could minimize the power losses by controlling the density profile i.e. by
enlarging the density gradient near the LH location while avoiding a similar increase in
the numerator of (2.27). This could be done using appropriate gas puff (Zhang et al. 2019)
and could lead to a substantial decrease of the ratio of edge power losses to the power
coupled to the core by increasing the power coupled to the bulk plasma and decreasing the
edge power losses.

4. Application to an antenna of the ITER type

The results of the previous sections indicate how to minimize power losses in the
presence of a LH resonance in the plasma edge for a given plasma profile. In this section,
ANTITER IV uses an antenna like the one of ITER in front of the ITER 2010low electron
density profile to illustrate the conclusions and observations made in §§ 2 and 3. The
antenna model used in ANTITER IV is presented in the figure 6(a) and is composed of
24 straps grouped into triplets (Lamalle et al. 2013). The antenna triplets are illustrated
in figure 6(b). We first show the effect on the antenna power spectrum of different
misalignment of the antenna box and FS with the background magnetic field B0. The link
between the radial electric field Ex and edge power loss is illustrated. Finally, an example of
the sensitivity of the edge power loss under different edge density distances and gradients
is given.

4.1. Effect of the antenna box and FS misalignment
The effect of a misalignment of the antenna box and the FS with the background magnetic
field B0 was already discussed in Messiaen et al. (2021) and is performed here considering
three cases to illustrate the discussion of § 3 with concrete examples. Each case presents
the antenna power spectrum for the two conventional phasings (0ππ0) and (0π0π) and a
phasing (0.00, 2.9, 3.7, 0.3) minimizing the low |kz| part of the power spectrum (Maquet
& Messiaen 2020) for a fixed and even current amplitude of 1 A on the straps. The phasing
(0π0π) produces no excitation at kz = 0 and is rather depleted of low |kz| excitation due
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(a) (b)

FIGURE 6. (a) Front face of the ITER antenna model used in ANTITER IV. (b) ITER 2012
ICRF antenna design showing the 24 strap array grouped in 8 triplets with their feeding a quarter
of the array is shown with the Faraday screen removed (Lamalle et al. 2013).

(a) (b)

FIGURE 7. An antenna box and a FS aligned to the magnetic field. (a) The kz power spectrum
and (b) kz edge power loss spectrum for a current distribution on straps of 1 A and three different
toroidal phasings. A poloidal phasing of π/2 is imposed for load resilience. The toroidal phasing
(0.0, 2.9, 3.7, 0.3) rad minimizes the edge LH power losses.

the large kz dominant peak excited in its power spectrum as seen on figure 7. The phasing
(0ππ0) shows a larger depletion of excitation at low |kz| due to the fact that both the
excitation and its derivative with respect to kz are cancelled for kz = 0. Note that the same
phasing has allowed high power ICRH in the all metal AUG tokamak (Bobkov et al. 2016).
The third phasing minimizes the low kz part of the power spectrum by a simplex method
varying the phase current distribution of the strap array. The examples shown below aim at
illustrating the effects of the polarization of the antenna excitation and present the expected
behaviour for an ITER-like antenna system.

The three cases considered are:

• An antenna box and a FS aligned to the magnetic field. As explained in § 3.2, this
case only creates edge losses in the lower |kz| < k0 part of the power spectrum.
Figure 7(a) presents the power spectrum found for the three cases discussed above.
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(a) (b)

FIGURE 8. A misaligned antenna box and an aligned FS. (a) The kz power spectrum and (b)
kz edge power loss spectrum for a current distribution on straps of 1 A and three different
toroidal phasings. A poloidal phasing of π/2 is imposed for load resilience. The toroidal phasing
(0.0, 2.9, 3.7, 0.3) rad minimizes the edge LH power losses.
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FIGURE 9. A misaligned antenna box and a misaligned FS. (a) The kz power spectrum and
(b) kz edge power loss spectrum for a current distribution on straps of 1 A and three different
toroidal phasings. A poloidal phasing of π/2 is imposed for load resilience. The toroidal phasing
(0.0, 2.9, 3.7, 0.3) rad minimizes the edge LH power losses.

Figure 7(b) presents the related edge power loss spectrum. The figure shows that
the LH losses are concentrated at |kz| smaller or near k0 as expected.

• A misaligned antenna box and an aligned FS. This case deforms the power loss
spectrum but does not lead to direct spurious Ez excitation and consequently only
slightly changes the power loss at the LH resonance. The same computation done
in figure 7 is presented in figure 8 but with an antenna box tilting at an angle of 15◦.

• A misaligned antenna box and a misaligned FS. This case creates an undesirable
Ez excitation and increases substantially the power loss at the LH resonance as
expected from the discussion of § 3.2. The misalignment of the FS with the
magnetic field can be treated in ANTITER IV using the poloidal electric field Ey
computed in the aligned case and rotating it by an angle of 15◦ with respect to B0
(Messiaen et al. 2021). This condition corresponds to FS aligned with the triplets
array. The result is presented in figure 9.
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(a) (b)

FIGURE 10. Map showing respectively: (a) the percentage of power loss in the edge and (b) the
integrated radial electric field

∫∫ |Ex|2 dky dkz at the LH resonance as a function of the power
ratio Pcentral/Ptot and a central phase deviation Δφ from the phasing minimizing the edge power
loss (0, 2.9 + Δφ, 3.7 + Δφ, 0.3).

4.2. Link with the radial electric field
One can also verify that the minimization of the LH power loss corresponds to the
minimization of the local radial electric field Ex at the LH resonance in ANTITER IV.
To do so, a scan of the radial electric field is performed as a function of the toroidal power
ratio Pcentral/Ptot, between the two inner strap array powers Pcentral and the total strap array
power Ptot, and as a function of a phase deviation Δφ to the phasing minimizing the LH
power losses (0, 2.9 + Δφ, 3.7 + Δφ, 0.3) rad found for an antenna box and a FS aligned
to the magnetic field. The figure of merit chosen for the radial electric field is its integrated
value

∫∫ |Ex|2 dky dkz computed for a fixed value of collisions ν/ω at the LH position. The
strap power is found from the impedance matrix Z computed in ANTITER IV. This matrix
relates the voltage and currents at the ports V = ZI and gives access to the power fed at
each port i using Pi = 1

2 ViI∗
i .

The result, displayed in figure 10, shows that the minimum of LH power losses
corresponds to a minimum of Ex excitation at the resonance. The same minimum of power
loss corresponds to the minimum of excitation of the low kz part of the power spectrum. It
should be noted that the amplitude value of the Ex fields at the LH depends on the collision
frequency used during the integration and does not have a physical basis.

4.3. Influence of the edge gradient
The power loss given by (2.26) is inversely proportional to the derivative of ε1 and,
consequently, to the gradient of the density profile along the radial direction x. To illustrate
this, a steepening of the 2010low density profile is enforced by imposing an exponential
decay from a point in the profile to the antenna mouth for the misaligned antenna box
and FS case discussed in § 4.1. To ensure a nearly constant antenna power coupling, the
starting point of the density decay is chosen before the wave cutoff densities of the two
toroidal phasing cases (0π0π) and (0ππ0) considered. Indeed, the density profile below
the cutoff density has only a weak influence on the coupling (Messiaen & Weynants
2011). The different density profiles constructed are presented in figure 11(a) along with
the LH resonance and the cutoff density values of the 2 phasing cases considered. To
ensure convergence in the smallest decay length cases, a smaller optimal dissipative term
leading to w3 dB = 10−5 m had to be enforced. The corresponding ratio of edge power loss
Pedge/Ptot as a function of the decay length imposed is presented in figure 11(b) for the
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FIGURE 11. (a) Density profile constructed with exponential decaying lengths considered.
(b) Corresponding increase of edge power losses as a function of the decay length considered
and an even current strap excitation.
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FIGURE 12. (a) Density profile constructed with the same exponential decaying lengths
crossing the LH resonance at different position. (b) Corresponding increase of edge power losses
as a function of the LH position considered and an even current strap excitation.

conventional toroidal phasings (0π0π) and (0ππ0) and for a even current distribution
on straps of 1 A. The same figure also shows the edge power ratio corresponding to the
2010low density profile with an associated decay length best fitting the ε1 gradient at the
LH resonance. The increase of power loss with the decrease of the edge density gradient
is verified because the numerator of (2.27) does not change much over the (ky, kz) grid
considered.

4.4. Influence of LH distance
The sensitivity of the edge power losses to the position of the LH resonance can also be
illustrated. This is done in the same condition as § 4.3 by imposing a fixed exponentially
decaying density profile at different position from the antenna aperture. The density
profiles constructed are presented in figure 12(a) along with the LH resonance and the
cutoff density layers of the conventional toroidal phasings (0π0π) and (0ππ0). The
corresponding edge power loss ratio Pedge/Ptot as a function of the LH position imposed is
potted in figure 12(b) for the toroidal phasings (0π0π) and (0ππ0) and for an even current
distribution on straps of 1 A. One observes that the edge power loss at the LH resonance
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is relatively independent of its position in this particular case where the numerator (2.27)
does not change much over the (ky, kz) grid considered.

5. Conclusion

This paper presents an analytical derivation of the power loss arising in the presence of
the singular point ε1 = 0 in the differential system of (2.1) describing an inhomogeneous
cold plasma in a slab geometry. The power loss expression found (2.27) is valid for any
cold plasma parameter domain considered ( f , B0, ne, ion mix) and can therefore be applied
on a large (ky, kz) region to study the losses arising in any frequency domain of a cold
plasma.

We limit our study to the ICRH power loss arising for a non-inverted scenario in
the presence of a LH resonance located in the plasma edge of a fusion machine. The
analysis first shows that, while the radial electric field Ex and the cold plasma tensor
component ε1 are singular at the LH resonance, their product remains finite. The power
loss found (2.27) is linked to the local product |ε1Ex| at the LH resonance position and
is inversely proportional to the slope along the radial direction x of the cold dielectric
tensor component ε1 at the LH location. The analytical formula of the power loss is then
used to verify the accuracy of the numerical integration performed by the semi-analytical
code ANTITER IV using the same slab description and cold plasma model. Excellent
agreement is found between the two. Finally, we illustrate possible scenarios that could
minimize the ITER ICRH power losses:

(i) In a screen aligned to the total magnetic field B0 scenario, one should avoid the
excitation of the lower |kz| < k0 part of the antenna power spectrum.

(ii) In the case of direct Ez excitation due to a misalignment of the FS with the
background magnetic field, the lower |kz| region to be avoided in the power spectrum
is enlarged above k0.

Consequently, to minimize power losses at the LH, the present analysis suggests having
a field aligned FS and to avoid the excitation of the low toroidal part of the antenna power
spectrum as in Messiaen et al. (2021). The fact that the power loss is inversely proportional
to the derivative of ε1 along x also provides a method to directly influence the power loss
at the LH resonance by steepening the plasma density profile near the antenna in the LH
density region. The study of Zhang et al. (2019) also points out the potential of using gas
puff as a tool to increase the power coupled to the plasma and to further decrease the LH
power loss in ITER provided that the increase of |ε1Ex| does not overcome the one of ε ′

1.
Those conclusions should also hold for other large fusion devices like DEMO.

While the results are in line with earlier work (e.g. Berro & Morales 1990; Lawson
1992), the limits of the model should also be emphasized. The model neglects finite
temperature effects preventing the detailed description of the wave conversion at the LH
resonance to new electrostatic waves (e.g. ion Berstein waves). The model does not take
into account the poloidal and toroidal inhomogeneity of the plasma density profile. It
also neglects possible nonlinear effects (e.g. ponderomotive force and sheath effects; a
first evaluation of ponderomotive effects is given in Berro & Morales 1990) arising in
the presence of strong rf fields excited by the antenna. The optimal settings to minimize
losses at the LH might not be optimal considering these other phenomena and a trade-off
between them might be needed. Finally, the present knowledge of the ITER SOL is
derived from theoretical models and therefore there is no guarantee that it corresponds
to the experimental density profile in future ITER operations. The model also uses plane
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geometry and an antenna recessed into the wall of the machine with no protruding parts
in the far-SOL region.

In conclusion, the phenomena associated with the LH resonance – high fields, surface
waves, coaxial modes extending outside the antenna location in the edge region (Messiaen
et al. 2021) and, in particular, the related edge power absorption – are possible sources
of impurity release that must be taken into account within and on top of the presently
considered phenomena such as rf sheath rectification effects and convective cells.
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Appendix A. A theorem about matrix differential equations

Theorem A.1. Consider a first-order matrix ordinary differential equation of the form

d
dt

x(t) = A(t)x(t), (A 1)

with x a n × 1 vector and A a n × n matrix. If A(t) commutes with its integral
∫ t A(s) ds

then the general solution of the differential equation is

x(t) = e
∫ t A(s) dsc, (A 2)

where c is an n × 1 constant vector.

Proof. Using the definition of the matrix exponential, the solution (A 2) can be written

x(t) = e
∫ t A(s) dsc =

∞∑
n=0

(∫ t

A(s) ds
)n

n!
c. (A 3)
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Its derivative reads

d
dt

x(t) = d
dt

⎛
⎜⎜⎝

+∞∑
n=0

(∫ t

A(s) ds
)n

n!

⎞
⎟⎟⎠c, (A 4)

= A(t)
+∞∑
n=1

(∫ t

A(s) ds
)n−1

(n − 1)!
c, (A 5)

= A(t)e
∫ t A(s) ds, (A 6)

where the second equality follows from the fact that, if
∫ t A(s) ds commutes with its t

derivative A(t), one can write

d
dt

(∫ t

A(s) ds
)n

= nA(t)
(∫ t

A(s) ds
)n−1

. (A 7)

We finally have
ẋ(t) = A(t)x(t). (A 8)

�

Appendix B. Proof of (2.25)

We will here provide a proof of the identity

Im[α(x)]
∣∣∣∣
x=+κ

x=−κ

� − π

k2
0|ε ′

1|
. (B 1)

To prove this assertion, one has to notice that, in fact, the LH resonance is not exactly
located at x = 0. Because of the collisions arising in the plasma, the frequency ω is not
real but possesses a small, positive, imaginary part

ω = Re ω + i Im ω, | Im ω| 
 | Re ω| and Im ω > 0. (B 2)

Consequently, ε1 can be expanded as

ε1(ω) = ε1(Re ω + i Im ω) = ε1(Re ω) + i Im ω
∂ε1

∂ω

∣∣∣∣
ω=Re ω

+ O(
(Im ω)2), (B 3)

and also exhibits a small imaginary part, Im ε1 � Im ω(∂ε1/∂ω). Recalling ourselves that
ε1(ω) = 1 − ∑

α(ω
2
pα/(ω

2 − ω2
cα)), one can show that Im ε1 is indeed positive

Im ε1 � Im ω
∂ε1

∂ω
� 2 Re ω Im ω

∂ε1

∂ω2
� 2 Re ω Im ω

∑
α

ω2
pα[

(Re ω)2 − ω2
cα

]2 > 0. (B 4)

In the following, we will simply write ω instead of Re ω. The main consequence of
the discussion above is that ε1(x) does not vanish anymore at x = 0, but at x = x̄ ≡
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−i Im ε1/ε
′
1. In other words, the LH resonance is no longer located at x = 0, but at

x − x̄ = 0. This fact is easily implemented in (2.24) by replacing Im α(x)
∣∣x=+κ

x=−κ
by

Im α(x)
∣∣∣∣
x−x̄=+κ

x−x̄=−κ

= 1
k2

0
Im

[
log(κ + x̄) − log(−κ − x̄)

ε ′
1

]
(B 5)

� 1
k2

0

arg (κ + x̄) − arg (−κ − x̄)
ε ′

1
. (B 6)

One has

arg (κ + x̄) = arctan
(

Im(ε1)

κε1

)
, (B 7)

arg (−κ − x̄) =

⎧⎪⎪⎨
⎪⎪⎩

π − arctan
(

Im(ε1)

κε1

)
, ε ′

1 > 0

−π + arctan
(

Im(ε1)

κε1

)
, ε ′

1 < 0
. (B 8)

Noticing that, for |κ| � |Im ε1/ε
′
1|, one has

arg (κ + x̄) � 0, (B 9)

arg (−κ − x̄) �
{

π, ε ′
1 > 0

−π, ε ′
1 < 0 . (B 10)

Equation (B 6) becomes

Im α(x)
∣∣∣∣
x−x̄=+κ

x−x̄=−κ

� − π

k2
0|ε ′

1|
, (B 11)

which is the desired result.
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