ON THE RANDOM DISORIENTATION OF TWO CUBES
D. C. HANDSCOMB

1. Introduction. We are given two identical symmetrical bodies (e.g.,
cubes) with independent random orientations; then we can always, in several
ways, turn one of these bodies about some axis through its centre of gravity,
so as to bring it into the same orientation as the other body. The smallest
angle of rotation needed will be called the disorientation, d, of the two bodies,
and we shall be concerned with the distribution of d under these conditions.

Ignoring symmetry, the relative orientation of the bodies is given uniquely
(modulo rotations of 27) by a single rotation; the required smallest rotation
is the combination of this with some member of the symmetry group of the
body. Using this fact only, and constructing random orthogonal matrices to
describe the rotations, Mackenzie and Thomson (6) get an estimate of the
distribution of d for cubes, by the Monte Carlo method. I shall now show how,
by another method, the distribution can be found explicitly.

2. Representation of rotations. We want a rotation to stand for the
relative orientation of two independently oriented bodies; the distribution
of rotations must therefore be invariant under any further arbitrary rotation
of either body. Delthiel (5, pp. 99-106) sets out to obtain a distribution
invariant in just such a manner. In the course of his work he represents the
rotation Z through angle V about the axis with direction cosines «, 3, v by
the coordinates A = asinzV, p = Bsind V, » = ysin} V, p = cos} V, satisfying
N+ u 4t +p? = L

He goes on to find the law of composition of rotations so represented, which
is (altering his notation slightly):

=N )’ — vy 4 N,

w'= =N 4 up’ + N+ o,
) = )\,LL/ _ M)\/ + Vp, + pVI,
"= 2N — ,u,u' — ' + pp',

where the rotation %"’ is the resultant of & and ' in that order. Note that
N u, v, pand — N\, — u, — v, — p both correspond to the same rotation, a
point which he does not mention. After this he changes his co-ordinates again
and obtains the probability measure he is looking for.

However the equation A? + p? + »? + p? = 1 above may be regarded as
the equation of a hypersphere in 4-space, simply by taking X\, u, v, p as Car-
tesian co-ordinates, so that every rotation corresponds to a pair of antipodal
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points of the unit hypersphere. It is easy to verify that his measure is equiva-
lent to the measure of hypersurface of this hypersphere; indeed its invariance
under the group of rotations is evident from the law of composition, which
shows that the transformation (N, ', ¥/, o') = (A", u”, ¥”, ") is simply a
rotation of 4-space when A? 4 u? + »2 4 p? = 1.

The identity _# corresponds to = (0,0, 0, 1) and &, the inverse of £,
to = (\, u, », — p).

Suppose now that we apply an arbitrary rotation # to a symmetrical body;
what is the smallest rotation needed to restore it to its original aspect? If G
is the rotational symmetry group of the body in its original state, we want
to find the rotation ¥ € G, such that %' = %% has the smallest possible
value of V”. Now the fourth line of the law of combination states that
cosi V" = R.S (to use vector notation), and ¥ € G implies that Z € G, so
that we need only look for the & giving the largest value to R.S, which is the
member S of the set of points of the hypersphere representing G, which is

nearest to the point R representing & ; we can then find the value of V",
which is d.

3. Application to Cubes. Take lines parallel to the edges of one cube as
axes; its 24 symmetry rotations are then represented by the following points
and their antipodes:

Identity 0,0,0,1)

Rotations of:

= about (1, 0, 0) etc. (1,0,0,0) (0,1,0,0) (0,0,1,0)
+ % m about (lr ]-y 1) etc. (%) %1 %y %) (— %y - %y %) %)
(— %1 %, %! %) (%! - %: - %y %)
(%1 - %: %v %) (_ %7 %1 - %’ %)
%y%) —%:%) (_ %y - %:_12‘:%)
= about (0, 1, 1) etc. 0, V3 v$,0) (v$,0,v3,0) (vV3, V50,0

0, v3 — V50 (V3,0 — v3,0) (v3, — v3,0,0)

=+ 37 about (1,0, 0) etc. (+/%,0,0, v3) (0, v3,0,v3%) (0,0, V%, v3)
(= +%,0,0,v3) (0, — v$,0,v3) (0,0, — V3, v3)
Now the first 12 of these points, with their antipodes, are the vertices of a
24-cell, a regular polytope with Schlifli symbol {3, 4, 3} (3, p. 156); the
remainder are the vertices of a reciprocal polytope, also a 24-cell, of the same
size. This configuration is obtained directly from the cubic group by various
methods by Coxeter (2; 4) and by Robinson (7). It is symmetrical, in the
sense that all its vertices are equivalent. Since we want to work out a distri-
bution involving only the vertex nearest to a random point of the sphere, we
can with justice select any one vertex, say (1,0, 0, 0), and let the random
point be taken only from the sector of the hypersphere which is nearer to
this vertex than to any other of the 48.
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4. Calculation of the Distribution. We can now find the probability
density for any angle d. The points of 4-space subtending with the point
(1,0,0,0) an angle of 3d at the origin lie in the hyperplane N = cosid,
which meets the hypersphere in the sphere p? + »?> 4 p? = sin?3d. Those
points which subtend a smaller angle with this vertex than with any other of
the 48 lie in the hypersolid bounded by the hyperplanes A 4= u = +/2X,
Ny =+2MNEp = V2N, X £ u £ » & p = 0, which are the loci of points
equidistant from (1,0, 0,0) and from (v3, = +v%,0,0), (3,0, =3, 0),
(v/%,0,0, = v3), (3, £ 3, = %, £ 1), respectively. These hyperplanes meet
A = cos 3d in the 6 planes of a cube: u, v, p = & (/2 — 1)cos 3d, and the 8
planes of an octahedron: = p & » £ p = cos 3d, both concentric with the
sphere. These 14 planes together bound a truncated cube, whose faces are 6
regular octagons and 8 equilateral triangles. (See (1), Plate I, No. 15, for
illustration.)

If d < 45°, the whole sphere lies within the truncated cube, so that p(d) is
48 times the probability density of points of 4-space lying on this hypersphere,
namely,

48- 3- 4x-sin’3d 7w
27’ 180’
where d is measured in degrees. Thus if d < 45°,
p(d) = (2/15) (1 — cosd).

If d > 45°, we have to reduce this by a factor equal to the proportion of
the surface of the sphere lying outside the truncated cube. If 45° < d < 60°,
the sphere meets the octagonal faces only. The proportion of area cut off by
these 6 planes is 3{1 — (v/2 — 1)cot 3d}. Therefore if 45° < d < 60°:

p(d) = (2/15) (1 — cosd) (3(v/2 —1) cot 3d — 2)
= (2/15) (3(v/2 —. 1)sind — 2(1 — cos d)).

If d > 60°, the sphere meets the triangular faces also; it does not meet the
edges provided that tan 3d < 2 — +/2, or d < 60.6°. The proportion of area
cut off by these 8 faces is 4(1 — (1/4/3)cot 3d). Therefore if 60° < d < 60.6°:

p@d) = (2/15) ({3(v/2 — 1) + (4/+/3)} sind — 6(1 — cos d)).

If d > 60.6°, we have to increase this to allow for the sectors of sphere we
have cut off twice, where an edge of the truncated cube goes inside the sphere.
The proportion of the surface of a sphere common to the interiors of two
small circles on it, of angular radii 4, B, whose centres subtend an angle C
at the centre, is:

1 cos A cos B — cos C)
S(4,B,C) = 27"[31‘0 COS( sin 4 sin B

cos B — cos C cos A cos 4 — cos B cos C
—cos 4 arc cos ; . —cos B arc cos ; ; .
sin Csin 4 sin B sin C
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Each octagonal face meets the sphere in a circle of radius
a(d) = arc cos((v/2 — 1)cot 3d),
each triangular face in one of radius
b(d) = arc cos ((1/+/3)cot 1d),

two octagonal faces meeting at right angles and a face of each type meeting
at an angle m — ¢, where cos ¢ = 1/4/3. The maximum value of d is
attained when all the vertices of the truncated cube lie on the sphere, when
cos d = +(24/2 — 1), d = 62.8°. Therefore if 60.6° < d < 62.8°:

p(d) = 2/15)[{3(v2 — 1) + (4/+/3)}sin d
+ {12 S(a,a,37) + 24 S(a,b,c) — 6} (1 — cos d)].
Substituting and simplifying:
p(@) = (2/15) [{3(v2 — 1) + (4/+/3)} sind — 6(1 — cos d)]

t*1d
+ (8/57) (1 — cosd) {arc cos <3 T 2\c/02 = cot%d)

cot’td — 24/2 )1

1
1 arc cos
T ( 3 — cot’ld

- (+v/2 — 1) cot 3d >
— (8/57) s1nd{2(\/2 — 1) arc cos <{1 — (W2 = 1)otia)?

2 1
+ (1/4/3) arc cos <(\?§ — clczt;:;;)id )} .
This completes the distribution. The mean works out to be 42.7°.

I wish to record my thanks to the United Kingdom Atomic Energy Authority
for a financial grant, to Messrs Mackenzie and Thomson for bringing this
problem to my notice through a private communication and for independently
checking my formulae, to Mr. J. M. Hammersley for helpful criticism, and to
Dr. Coxeter for further references.
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