
ON THE RANDOM DISORIENTATION OF TWO CUBES 

D. C. HANDSCOMB 

1. Introduction. We are given two identical symmetrical bodies (e.g., 
cubes) with independent random orientations; then we can always, in several 
ways, turn one of these bodies about some axis through its centre of gravity, 
so as to bring it into the same orientation as the other body. The smallest 
angle of rotation needed will be called the disorientation, d, of the two bodies, 
and we shall be concerned with the distribution of d under these conditions. 

Ignoring symmetry, the relative orientation of the bodies is given uniquely 
(modulo rotations of 2ir) by a single rotation; the required smallest rotation 
is the combination of this with some member of the symmetry group of the 
body. Using this fact only, and constructing random orthogonal matrices to 
describe the rotations, Mackenzie and Thomson (6) get an estimate of the 
distribution of d for cubes, by the Monte Carlo method. I shall now show how, 
by another method, the distribution can be found explicitly. 

2. Representation of rotations. We want a rotation to stand for the 
relative orientation of two independently oriented bodies; the distribution 
of rotations must therefore be invariant under any further arbitrary rotation 
of either body. Delthiel (5, pp. 99-106) sets out to obtain a distribution 
invariant in just such a manner. In the course of his work he represents the 
rotation Si through angle V about the axis with direction cosines a, f3, y by 
the coordinates X = as infF, /x = jftsin^F, v = 7 sin J F, p = cosJF, satisfying 
X2 + p2 + v2 + p2 = 1. 

He goes on to find the law of composition of rotations so represented, which 
is (altering his notation slightly) : 

X" = Xp' + ixv' - vp! + pX', 
M " = - X / + pp' + *X' + PA*', 
v" — \p — pX' + vp + pv\ 
p = — XX — ixix — vv -f- pp , 

where the rotation S#" is the resultant of S# and Si' in that order. Note that 
X, /x, v, p and — X, — /x, — v, — p both correspond to the same rotation, a 
point which he does not mention. After this he changes his co-ordinates again 
and obtains the probability measure he is looking for. 

However the equation X2 + /x2 + v2 + p2 = 1 above may be regarded as 
the equation of a hypersphere in 4-space, simply by taking X, /x, i>, p as Car­
tesian co-ordinates, so that every rotation corresponds to a pair of antipodal 
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points of the unit hypersphere. It is easy to verify that his measure is equiva­
lent to the measure of hypersurface of this hypersphere ; indeed its invariance 
under the group of rotations is evident from the law of composition, which 
shows that the transformation (A', \x , / , p) —» (A", y.", v", p") is simply a 
rotation of 4-space when A2 + M2 + ^2 + P2 = 1. 

The identity ^corresponds to ± (0 ,0 ,0 , 1) and $, the inverse of ^ , 
to ± (A, n, v, - p). 

Suppose now that we apply an arbitrary rotation 3% to a symmetrical body ; 
what is the smallest rotation needed to restore it to its original aspect? If G 
is the rotational symmetry group of the body in its original state, we want 
to find the rotation y ç G, such that ^ " = £/&& has the smallest possible 
value of V". Now the fourth line of the law of combination states that 
cos fF" = R.S (to use vector notation), and y f G implies that ^ Ç G, so 
that we need only look for the Sf giving the largest value to R.S, which is the 
member 5 of the set of points of the hypersphere representing G, which is 
nearest to the point R representing 01 \ we can then find the value of V", 
which is d. 

3. Application to Cubes. Take lines parallel to the edges of one cube as 
axes; its 24 symmetry rotations are then represented by the following points 
and their antipodes : 

Identity (0, 0, 0, 1) 

Rotations of: 

7T about (1, 0, 0) etc. (1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) 

=fc f 7T about (1, 1, 1) etc. (I, i , i | ) ( - i , - i , - i | ) 
( _ 1 1 I 1 W I — I — i 1Ï 
\ 2> 2i 2> 2 / \2i 2> 2> 2 / 

^2> 2> 2i 2) \ 2i 2i 2i 2) 

(2, 1 _ 1 I W _ 1 _ 1 1 !\ 
\2i 2i 2i 2) \ 2i 2i 2i 2) 

•K about (0, 1, 1) etc. (0, Vh Vh 0) (VI , 0, V I , 0) (VI , V I , 0, 0) 
(o, VI, - VI, o) (VI, o - VI, o) (VI, - VI, o, o) 

± | x about (1, 0, 0) etc. (VI , 0, 0, V I ) (0, V I , 0, VI ) (0, 0, V I , V I ) 
(- VI, o, o, VI) (o, - VI, o, VI) (o, o, - VI, VI) 

Now the first 12 of these points, with their antipodes, are the vertices of a 
24-cell, a regular poly tope with Schlâfli symbol {3, 4, 3} (3, p. 156); the 
remainder are the vertices of a reciprocal poly tope, also a 24-cell, of the same 
size. This configuration is obtained directly from the cubic group by various 
methods by Coxeter (2; 4) and by Robinson (7). It is symmetrical, in the 
sense that all its vertices are equivalent. Since we want to work out a distri­
bution involving only the vertex nearest to a random point of the sphere, we 
can with justice select any one vertex, say (1, 0, 0, 0), and let the random 
point be taken only from the sector of the hypersphere which is nearer to 
this vertex than to any other of the 48. 
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4. Calcula t ion of t h e Dis t r ibu t ion . We can now find the probability 
density for any angle d. The points of 4-space subtending with the point 
(1 ,0 ,0 ,0) an angle of \d at the origin lie in the hyperplane X = cosjd, 
which meets the hypersphere in the sphere /x2 + v2 + p2 = sin2 |d. Those 
points which subtend a smaller angle with this vertex than with any other of 
the 48 lie in the hypersolid bounded by the hyperplanes X zb /x = V2X, 
X ± v = V2X, X zb p = \/2X, X ± M ± f ± P = 0, which are the loci of points 
equidistant from (1, 0, 0, 0) and from (Vè, ± Vh 0> 0), (Vh 0, db Vh 0), 
(Vè, 0» 0> =*= Vè)> (I» db h =b è> =*= i ) , respectively. These hyperplanes meet 
X = cos \d in the 6 planes of a cube: n, v, p = =b (A/2 — l)cos Jd, and the 8 
planes of an octahedron: ± ju db v ± p = cos |d , both concentric with the 
sphere. These 14 planes together bound a truncated cube, whose faces are 6 
regular octagons and 8 equilateral triangles. (See (1), Plate I, No. 15, for 
illustration.) 

If d < 45°, the whole sphere lies within the truncated cube, so that p(d) is 
48 times the probability density of points of 4-space lying on this hypersphere, 
namely, 

48- \- 47T- %m\d 7T 
2TT2 ' 180 ' 

where d is measured in degrees. T h u s if d < 45°, 

p(d) = (2/15) (1 - c o s d ) . 

If d > 45°, we have to reduce this by a factor equal to the proport ion of 
the surface of the sphere lying outside the t runca ted cube. If 45° < d < 60°, 
the sphere meets the octagonal faces only. T h e proport ion of area cu t off by 
these 6 planes is 3{1 - ( V 2 - l)cot%d\. Therefore if 45° < d < 60°: 

p(d) = (2/15) (1 - cos d) ( 3 ( V 2 - 1 ) cot^d - 2) 
= (2/15) (3(V2 - , l )s ind - 2(1 - cosd)). 

If d > 60°, the sphere meets the triangular faces also; it does not meet the 
edges provided that tan \d < 2 — v % or d < 60.6°. The proportion of area 
cut off by these 8 faces is 4(1 - ( l /V3)cot \d). Therefore if 60° < d < 60.6°: 

p(d) = (2/15) ({3(V2 - 1) + (4/V3)} sin d - 6(1 - cosd)). 

If d > 60.6°, we have to increase this to allow for the sectors of sphere we 
have cut off twice, where an edge of the truncated cube goes inside the sphere. 
The proportion of the surface of a sphere common to the interiors of two 
small circles on it, of angular radii A> B, whose centres subtend an angle C 
at the centre, is: 

S(A,B,C) = - M arccosf ! c o s A c o s & ~~ c o s ^ i 
sin A sin B / 

. I cos B — cos Ccos A\ „ /cos A — cos B cos C\ 
— cos A arc cosi —77^—7 / — cos B arc cos I :—^—.—~ / 

\ sin C sin A / \ sin B sin C / J 
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Each octagonal face meets the sphere in a circle of radius 

a(d) = arccos((V2 — l)cot^d), 

each triangular face in one of radius 

b(d) = arc cos ( ( l /V3)cot id), 

two octagonal faces meeting at right angles and a face of each type meeting 
at an angle w — c, where cos c = 1/V3. The maximum value of d is 
attained when all the vertices of the truncated cube lie on the sphere, when 
cos d = i (2V2 - 1), d = 62.8°. Therefore if 60.6° < d < 62.8°: 

p(d) = (2/15)[{3(V2 - 1) + (4/V3)}sin d 
+ {12 S(a,a±ir) + 24 S(a,b,c) - 6} (1 - cos d)]. 

Substituting and simplifying: 

p(d) = (2/15) [{3(V2 - 1) + (4/V3)} sin d - 6(1 - cosd)] 

+ (8 /5 . ) (1 - cos d) {arc cos i ^ ^ ^ ^ - ^ j 

+ 1 arc cos (s°Ù±ILh&\\ + 2 a r c c o s ^ g _ ^ ^ Jf 

~ (8 /5 . ) sin d { 2 (V2 - 1) arc cos ( ^ 1 ^ 

+ (1/V3) arc cos { ^ 3 ~ ~ ^ I ^ ) } • 

This completes the distribution. The mean works out to be 42.7°. 
I wish to record my thanks to the United Kingdom Atomic Energy Authority 

for a financial grant, to Messrs Mackenzie and Thomson for bringing this 
problem to my notice through a private communication and for independently 
checking my formulae, to Mr. J. M. Hammersley for helpful criticism, and to 
Dr. Coxeter for further references. 
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