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EXPONENTS OF THE CLASS GROUPS OF

IMAGINARY ABELIAN NUMBER FIELDS

A.G. EARNEST

It is a classical result, deriving from the Gaussian theory of

genera of integral binary quadratic forms, that there exist only

finitely many imaginary quadratic fields for which the ideal

class group is a group of exponent two. This finiteness has

been shown to extend to all those totally imaginary quadratic

extensions of any fixed totally real algebraic number field. In

this paper we put forward the conjecture that there exist only

finitely many imaginary abelian algebraic number fields which

have ideal class groups of exponent two, and we examine the

extent to which existing methods can be brought to bear on this

conjecture. One consequence of the validity of the conjecture

would be a proof of the existence of finite abelian groups which

do not occur as the ideal class group of any imaginary abelian

field.

Introduction.

In spite of the central role in algebraic number theory played by

the ideal class groups of algebraic number fields, surprisingly little is
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232 A. G. Earnest

known about the structural properties of these groups. The purpose of

this paper is threefold: (.1) to raise some specific questions regarding

one structural invariant - the exponent - for the class groups of certain

fields, (2) to survey the extent to which existing methods can be

brought to bear on these questions, and (3) to analyze several well-

known classes of fields.

All fields to be considered in this paper will be algebraic

number fields. For such a field F , we will denote by 0 the ring of

algebraic integers of F and by U the group of units of 0 . The

class group C = 1-/V 3 where !„ is the group of all fractional

ideals of F and P_ is the subgroup of principal ideals, is well-

known to be a finite abelian group. The order of this group is the class

number of F , which we denote by fe_ . The object of study here, the
r

exponent of the group C , is the smallest positive integer e for

which x8 = 1 for all x e C
r

In the light of a classical result of Heilbronn [10], any fixed

positive integer occurs at most finitely often among the class numbers

of imaginary quadratic fields. In 1971 Uchida [15] proved that the

finiteness of the number of fields having a fixed class number extends

to the collection of all imaginary abelian fields, regardless of degree.

Employing Gauss' determination of the 2-rank of the ideal class

group of a quadratic field, it follows from a theorem of Chowla [5] that

there exist only finitely many imaginary quadratic fields having class

groups of exponent two. This result has been generalized to the collect-

ion of all totally imaginary quadratic extensions of any fixed totally

real number field [#]. In view of this generalization and Uchida's

result for class numbers, it seems reasonable to ask whether this finite-

ness of the number of fields having class groups of exponent two can

likewise be extended to a broader class of fields, perhaps to the entire

collection of imaginary abelian fields. It is this question that we

will address in this paper.

The results which we obtain lend support to a conjecture that there

are indeed only finitely many imaginary abelian fields whose class groups
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Imaginary abelian number fields 233

have exponent two. One interesting consequence of the truth of this

conjecture would be a proof of the existence of finite abelian groups

which do not occur as the class group of any imaginary abelian field.

We will treat here only the existence of fields having class

groups of exponent two, although it is natural to raise the analogous

finiteness questions for any fixed exponent. Such general questions

appear to be intractable at this point, as even the results for the special

case of imaginary quadratic fields remain incomplete.

We now give a brief outline of the contents of this paper. Known

results for the exponents of the class groups of imaginary quadratic

fields are surveyed in Section 1. From this point on we begin in the

most general context possible and specialize further in each succeeding

section. In the context of a field K which is a relative quadratic

extension of a number field L , we develop in Section 2 a formula for

the order of the subgroup of squares in C in terms of the group of

K

units of L , the relative norm mapping from K to L , and the class

groups of K and L . This formula, which is derived from a formula of

Hasse and is given in Proposition 2.1, simplifies in the special case

that K is a CW-field and L its maximal totally real subfield. This

case is considered in Section 3. Section 4 is specialized further to

imaginary abelian fields, and our most general result on the finiteness

of the number of such fields having class groups of exponent two appears

here as Theorem 4.2. In the final section we show how the results from

the preceding sections can be applied to prove finiteness within several

classes of imaginary abelian fields, including all those of degree four.

An excellent survey of the known results on class numbers of

imaginary abelian fields is presented by Masley C/2]. In the special

case of imaginary quadratic fields there is of course a wealth of experi-

mental evidence to draw upon when analysing class group structure. We

mention here only the tables of Buell [3D, which in particular indicate

that certain specific small finite abelian groups (for example, the

direct sum of three copies of the cyclic group of order four) do not occur

as the ideal class group of any imaginary quadratic field [4]. Interesting

heuristic explanations for many of the computationally observed properties

of class groups, particularly in the quadratic field case, are presented

in [6].
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In comparison with the exponent invariant discussed here, more

recent attention has been focused on other structural invariants, namely

the p-ranks for various primes p , for the class groups of general

number fields; see, for example, the paper of Cornell and Rosen [7].

1. Imaginary Quadratic Fields.

In this section we will survey some known results on the class

groups of imaginary quadratic fields. Let -D be the discriminant of an

imaginary quadratic field. For convenience, in this section we will denote

the class number ^{ic/^n) b v h(-D) and the exponent of ^Q(J~n) b v

In 1934, Heilbronn [70] proved that

(1) h(-D) -*• » as d ->• °° .

This result can now be viewed as a direct consequence of the Siegel-Brauer

theorem, which in this context asserts that

(2) l o 9 h(-D) - 1 as D - - .

log Jf)

An immediate consequence of (1) is that any fixed positive integer is the

class number of at most a finite number of imaginary quadratic fields.

Also in 1934, an extension of (1) was proven by Chowla [5], who

established that

(3) h(~D- •* » as D •* » ,

2

where r is the number of distinct prime divisors of D .

The significance of (3) from the present point of view arises from

the fact that the 2-rank of CQ. J—JZ\ is precisely r - 1 . A

generalization of (3) appears as a special case of [S; Theorem 21. If t

is any fixed positive integer and r(t) denotes the 2 -rank of

then that theorem implies

(4)

It follows that for any fixed t e B , there exist at most finitely many

discriminants -D such that e(-D) = 2 . In particular, it follows

from (3) that there exist finite abelian groups which do not occur as the
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class group of any imaginary quadratic field.

To emphasize the lack of computational effectiveness in the finite-

ness results for exponents, we note that in contrast to the case of class

numbers, where all imaginary quadratic fields (as well as fields from some

more general classes) having class number one or two have been determined

(see [12] for a survey of known results), it even remains an open question

whether the existing list of imaginary quadratic fields having class groups

of exponent two is complete. In this regard the strongest known result is

that there can exist at most one field 4M/35) with discriminant D > 5460

and e(-D) = 2 [J7] .

In 1969 Iwasawa posed the problem of determining lim inf e(-D) as

D •*• » . A conditional answer was provided by Boyd and Kisilevsky [2] in

1971 and, independently, by Weinberger [?7] in 1973. Under the assumption

of a suitable Generalised Riemann Hypothesis, those authors proved that

(5) e(-D) -*• °° as D •* •» .

Also contained in both of these papers is an unconditional proof that

there exist only finitely many discriminants D for which e(-D) = 3 .

2. Relative Quadratic Extensions.

The squares in the class group of Q(^-D) correspond to the

equivalence classes of primitive integral binary quadratic forms of

discriminant -D which are contained in the principal genus. Since the

equivalence classes of such forms are equally distributed among all genera,

T-l
and the number of such genera is 2 , where r is the number of prime

divisors of D , it follows that exactly h(-D)/2 ~ of the elements of

C-. /-jji are squares. This section will be devoted to deriving the

analogous formula for relative quadratic extensions.

In this section we consider number fields K and L with K a

quadratic extension of L . We seek to compute the order of the subgroup

2
C of squares in C« .

The primary ingredient in this computation is a formula of Hasse

[9; Section 13, Satz 73] which computes the index of P in the subgroup
K.

A = {X e I : X e p̂ .} of 1^ y where a denotes the nontrivial
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L-automorphism of K . Specifically,

(6) [ A .- PK1 = h L k

where ^v/r denotes the relative field norm and v is the number of prime

ideals of 0^, which are ramified in K/L .

<j>
Consider the exact sequence 0 •+• A ->• I -v C , where §(X) = A Pv

for X e lv . If G = {X
2~a : X e Jv) , then i.^(/s>) = G?v/?v . Thus, we

A. A K K

have GVV/?V s lv/k and it follows that

Moreover, Cv = TVV/?V , where J = {X : X e lv} . In the familiar case
A K. A A

where L = Q and K = Q(v-D) , we have GV = TVV since all ideals of
K K

0= Z are principal. Hence, combining (6) and (7) yields the formula
L

mentioned in the first paragraph of this section.

Of course 0T is generally not a principal ideal domain. So we

need to consider E = {XO : X £ 7 } . Note that any ideal of the type
A u

X1+° , X e \v , lies in E due to the identity X
1+a = N(X)OV , where

A A
N : Iv -*• Ir denotes the usual norm homomorphism. It follows that GE = TE.

K Li

So the subgroup G E Pv/Pv of C_, contains both TV^/Pj. and GPV/PV .
A A A A A A A

The isomorphism theorems of group theory yield

^p ,5 K = E/rE n GPJ

and rp /p A a E/(E n

Consequently ]C J | = | T P ^ | = [E ^ E n TP,3 * "

Finally, evaluating \^i/^v\ u s i n 9 (6> a n d (7> yields:

PROPOSITION 2 . 1 . Let A" awd L i e number fields with K a
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quadratic extension of L . Then

„ h IE : E n GP
(8)

3. CW-Fieids

We now specialize the results of the previous section to the case

that K is a CM-field; that is, K is a totally imaginary quadratic

extension of a totally real number field L . Several general relation-

ships in this context between the class groups C and C will yield

A Lj

simplifications of the index factors appearing in (8).

Consider the two group homomorphi sms i : C •*• C and N : C -*• C
L K KL

the first of which is induced by the mapping 1 •*• lv given by X •+ X0v

and the second of which is induced by the usual norm mapping from T-v to

lj . The next proposition is a consequence of a general theorem from

class field theory.

PROPOSITION 3.1. If K is a CM-field with maximal totally real

sub field L , then N : C ->• C is surjeative.
Proof. C'6, Theorem lO.liJ.

PROPOSITION 3.2. If K is a CM-field with maximal totally real

sub field L, then the kernel of the mapping i : C •* C has order 1
Lj A

or 2 .

Proof. [16, Theorem 10.3] .

Note that the kernel of i may in fact have order two. For example,

this occurs for K = ®(/l0 , ̂ 2) which is the Hilbert class field of

L = t}(JlO) and (2, /Id) is a nonprincipal ideal of 0T which becomes
Li

principal over X .

COROLLARY 3.3. Let K be a CM-field with maximal totally real
sub field L . If C has exponent two, then

A

(i) C_ is a 2-group;

Hi) [E : E n GPV1 = 1 ;
A

(Hi) IE : En TP ]̂ = XhL , where X = 1 or \ = j .
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Proof. (i) is immediate from Proposition 3.1. For (ii) , consider

X0K e E , * e I . By 3.1, there exists Y e I such that N(YP) =

N(Y)?L = X?L . Thus, • (X0K)PK = (N(Y)0K)?K = Y
1+a?K = ^ " ^ since CR

has exponent two. So E c GP as desired. Finally, for (iii) , TPv= Pv
A A A

implies that tE ; E n TV' ] = [E : E n P ] = KCC J| and the result

follows from 3.2. Q

From Proposition 3.1 it follows that, in the context of this section,

hT divides h.v . We denote the quotient hv/hT by hv . In light of
L K A L K

Corollary 3.3, equation (8) yields:

COROLLARY 3.4. Let K be a CM-field with maximal totally real

sub field L . If Cv has exponent two, then

(9) h~K=

where p = 0 or -1 .

4. Imaginary Abelian Fields.

Finally we specialize to the case of imaginary abelian fields K ;

that is, for the remainder of this paper K will be a finite normal

extension of $ having abelian Galois group and no real embeddings into

C . Such a field K necessarily has even degree n = 2n. and is a

quadratic extension of its maximal totally real subfield X . So K is

a CW-field and all results from the preceding section are applicable with

Uchida has proven [ 151 that for any positive integer N there exist

only finitely many imaginary abelian fields K for which the relative

class number factor hv does not exceed N (somewhat more general fields
A

are considered by Uchida, but we refer only to the abelian case here) .

The proof of this result consists of two major steps. First, it is shown

that hv becomes arbitrarily large when -j is sufficiently small,
A log a

where d denotes the absolute value of the discriminant of K [75,

Theorem 2]. Secondly, — -j is shown to be sufficiently small for
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almost all (not necessarily imaginary) abelian number fields [75,

Proposition 1].

Minor modifications of the proof of Theorem 1 of [15] yield the

following lower bound for hj, in terms of the discriminant d .

— J~ e
PROPOSITION 4.1. For any positive number e, hv > d holds for

all but finitely many imaginary abelian fields K .

Remark 4.2. The exponent -j - e appearing in the above proposition

cannot be improved. To see this, consider the case that K is a

cyclotomic field Q(c ), p prime. For such fields

log hR = 2- log p - |- log IT + [7 + 76] log p ,

for some 9 with -2 S 6 S 3 [13] . The first term on the right is

— log d + -g log p , so

7 log d

for sufficiently large p .

The lower bound for 7z in Proposition 4.1 can be used along with

equation (9) to prove the finiteness of the number of K which have class

groups of exponent two and which satisfy a condition on the size of

For the imaginary abelian field K , denote by h. and dQ the

class number and discriminant, respectively, of the maximal totally real

subfield X. . Recall that the positive integer d has the factorization

9

d =

where dv/v denotes the absolute norm of the relative different Vv /vK/KQ K/KQ

of K over KQ . For use in the proof of Theorem 4.4 we establish the

following lemma.

LEMMA 4.3. Let e and X be positive constants. There exist at
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most finitely many imaginary abelian fields K for which

d m 0
 dZo<xF •

Proof. Let p. denote the ith rational prime and let t be the

_t *
smallest positive integer for which p, > X . Denote X TT p • by

Z i=l V

c(\) . Observe that if Q~,...,Q are powers of distinct prime ideals of
J. S

s
0v j then A | | N(Q.) > c(\) 3 where N denotes the absolute norm.

Since V' , has exactly r distinct prime factors, X dv,,, =
K/KQ K/KQ

\~rN(Vv/7. ) > a(\)n . As Kn i s an a b e l i a n f i e l d , i t fo l lows from [75 ,K/KQ 0

Proposition 1] that there exist at most finitely many choices of K. for

which

log d. 2 log a(\) '

So for almost all Kn , the inequality dv /v dn > X holds for all
U ' n

relative quadratic extensions K of K .

To complete the proof it suffices to consider those K having a

fixed K as maximal totally real subfield. Suppose there were an

infinite collection H of imaginary abelian fields K for which #. is

the maximal totally real subfield and for which dv/v dn < X . Since
K/KQ 0

only finitely many K e H have the same discriminant, dv ,„ is
K/K0

arbitrarily large for almost all K e H . Since the power to which a prime

ideal divides ® / is bounded from above as a function only of n , it
K/K0

follows that N(Pv/lr ) is arbitrarily large for almost all K e H , where
K/K0

Pv/V denotes the prime ideal divisor of V . of largest absolute norm.
K/KQ K/KQ

In particular, there exist only finitely many K e H for which
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N(PV/V ) < Xa(\)~nd~e . For a l l other K e H we then have dv ,v dZ
n > \ r .

a cxintradiction. D

THEOREM 4.4. For any positive constants a. and 6 , there exist

at most finitely many imaginary abelian fields K for which

h. < adt and C has exponent two.

Proof. Let F f= F J denote the collection of a l l imaginarya, 6

abelian fields for which hn £ adZ. . Let F and F be defined as
( J O 1 <&

follows:
1 A

f- = {K e F : h~ < d4 8 }
J A

and

F2 = {K e F .- 2 « > d^ } .

Let F' = F\{F u F } . Since F and F are f ini te by Proposition 4.1

and [75, Proposition 1] , respectively, i t suffices to prove that in F'

there are only finitely many fields K for which C has exponent two.

If K is such a field, then by equation (9)

h~ = IN (K) n U : I? ]2r-1+v h. .
A ' 0 o 0

2 n0
By Dirichlet's Unit Theorem, INV/V (K) n Uy : lrv ] < 2 . So, by

definition of F' , we have

"v/v

4' 8 < f d 2 ' 2

Substituting d = dv/v an , we haveK/K0 °

1 §. 1 L 1 A
A~ 8 2~ 4 J - J 2 ~ 2
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L L L
A~ 8 A r

d m 0
 d o < a 8 •

But the final inequality can hold for at most finitely many imaginary

abelian fields K by Lemma 4.3. Q

Remark 4.5. For any e > 0 and any positive integer n , the

existence of infinitely many totally real fields k of degree n for

which h, > df is established in [/]. However, from the Siegel-Brauer

Theorem it follows that for any e > 0 ,

log hvRv
< 1 + e

log

holds for almost all abelian fields k , where /?, denotes the regulator

of k . The regulator of any totally real field is bounded from below by

log -p— [77]. Hence, there exists a constant a_ such that for

I-
any e > 0 , the inequality h, < 0.A, holds for almost all totally

real abelian fields k .

5. Special types of fields.

In this section we will prove finiteness results for several specific

types of imaginary abelian fields.

PROPOSITION 5 .1 . There exist only finitely many imaginary normal

quartia extensions K of Q for which Cv has exponent two.

Proof. Let K be such a quartic f ie ld and K^ the real quadratic

2
subfield of K . Since C has exponent two, Cv i s t r i v i a l by

K KQ
Corollary 3.3 (i). So

2-rank Q.

°
where either t = iv_ - 1 or r - 2 and r is the number of distinct

prime divisors of d . So for any 6 > 0 , h„ < dn holds for all
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but at most finitely many such K . Since each fixed K- has at most

finitely many imaginary quadratic extensions K for which C has
A

exponent two [8, Theorem 1], the result follows from Theorem 4.4. Q

In the special case that the quartic extension has noncyclic Galois

group, a stronger result is readily obtained.

PROPOSITION 5.2. Let t e IN be fixed. There exist at most

finitely many imaginary bicyclie biquadratic fields K for which C

has exponent 2

Proof. Let K be such a field and denote by k and k the
J. O

imaginary quadratic subfields of K . If X e. \. (i = 1,2) , then

H
T QR= (XQR)

 e ?K since C^ has exponent 2 . Hence,

2t+l „*
= Nj. _ (X 0 ) e V So C is a group of exponent 2 , for

i i i

some 0 £ s < t + 1 . It follows from (4) that there are only finitely

many choices for k. . Since fe7 and ko determine K , the result

follows. g

PROPOSITION 5.3. There is no prime p = 3(mod 4) for which

C>w i is a nontrivial 2-group.

Proof. For p B 3(mod 4), H(^p) is a subfield of Q(z, ) and

iS n o n P r i n c i P a 1' t h e n

is nonprincipal ill; Corollary to Theorem 2]. Hence whenever C w . i

is a 2-group, ^Q/J—i must equal one. The only primes p = 3(mod 4)

for which ^Q(/Z~) = 1 a r e P = 3,7,11,19,43,67 and 163 . h ( } = 1

for the first four of these values of p, L . . = 211 , and
V K J

, = (67)(12739) (see [76]). The smallest odd prime divisor of the
)

f i r s t factor of fe_, , i s 181 (see [ /6 ] ) . D
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Remarks 5.4. (1) if m\n , then h^. ,\hhf , . So

has an odd prime factor whenever n has an odd prime factor p - 3 (mod 4),

p * 3,7,11,19.

(2) The only prime p for which Cfi, • is a 2-

V
group and ^/-. i < 10 is p = 29 , for which the class group is

Z. 0 Z 0 Z. • The only composite values of m for which C^, . is a

2-group and fe , , < JO are m = 39,56,65,68 and 720, for which the
*'V

class numbers are 2,2,64,8 and 4 , respectively. Of these,

and ^Q/t i a r e cyclic; the structure of ^ . . has not been

determined. These numerical results are extracted from [12] and [J4].
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Notes Added In Proof.

(1) In equation (6), r = rQ - r^ - rg + u , where rQ is the number of

prime ideals of 0 which are ramified in K/L , r, and rn are the

numbers of real and complex archimedean prime spots on L , respectively,

and u is the number of real archimedean prime spots on L over which

there lies a complex archimedean prime spot on K .
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(2) Professor Kitaoka has kindly pointed out that the reference [J?D does

not suffice on p.243; the appropriate reference here is to Corollary 2 of

R. Gold and P. Ponomarev, Scalar extensions of binary lattices,

Number Theory and Algebra (Academic Press, 1977), 91-95.
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