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ON WARING’S PROBLEM:

THREE CUBES AND A SIXTH POWER

JÖRG BRÜDERN and TREVOR D. WOOLEY1

Abstract. We establish that almost all natural numbers not congruent to 5
modulo 9 are the sum of three cubes and a sixth power of natural numbers, and
show, moreover, that the number of such representations is almost always of
the expected order of magnitude. As a corollary, the number of representations
of a large integer as the sum of six cubes and two sixth powers has the expected
order of magnitude. Our results depend on a certain seventh moment of cubic
Weyl sums restricted to minor arcs, the latest developments in the theory of
exponential sums over smooth numbers, and recent technology for controlling
the major arcs in the Hardy-Littlewood method, together with the use of a
novel quasi-smooth set of integers.

§1. Introduction

It is widely expected that for any fixed positive integer k, all large

natural numbers satisfying the necessary congruence conditions should be

representable as the sum of three cubes and a kth power of natural numbers.

Let νk(n) denote the number of representations of the positive integer n in

this manner. Then a formal application of the circle method leads to the

conjecture that the asymptotic formula

νk(n) ∼ Γ
(

4
3

)3
Sk(n)n1/k

should hold, where

Sk(n) =

∞
∑

q=1

q−4
q
∑

a=1
(a,q)=1

∑

1≤x1,...,x4≤q

e

(

a

q
(x3

1 + x3
2 + x3

3 + xk
4 − n)

)

denotes the singular series associated with the representation problem at

hand. Here, and throughout, we write e(z) for e2πiz . In this paper we show
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14 J. BRÜDERN AND T. D. WOOLEY

that ν6(n) is almost always as large as is predicted by the heuristic asymp-

totic formula.

Theorem 1. There are positive numbers C and δ such that the in-

equality

ν6(n) ≥ CS6(n)n1/6

fails to hold for at most O(N1−δ) of the natural numbers n not exceeding

N .

It follows from the classical theory of singular series that S6(n) � 1

uniformly in n 6≡ 5 (mod 9) (see §8 below for a discussion of this issue), and

so it follows from Theorem 1 that almost all such natural numbers n are

the sum of three cubes and a sixth power of natural numbers. We note that

a consideration of congruence conditions modulo 9 reveals that ν6(n) = 0

whenever n ≡ 5 (mod 9). Another immediate consequence of Theorem 1

is that all large natural numbers are the sum of six cubes and two sixth

powers of natural numbers.

Theorem 2. Let R(n) denote the number of representations of the

integer n as the sum of six cubes and two sixth powers of natural numbers.

Then for all sufficiently large n, one has R(n) � n4/3.

This lower bound again coincides with the expected order of magnitude

for R(n). In order to deduce Theorem 2 from Theorem 1, one merely notes

that

R(n) =
∑

1≤m≤n

ν6(m)ν6(n−m).

Since Theorem 1 shows that ν6(m) and ν6(n−m) are simultaneously � n1/6

for all but o(n) of the integers m with

m 6≡ 5 (mod 9), n−m 6≡ 5 (mod 9) and 1 ≤ m ≤ n,

the lower bound recorded in Theorem 2 is immediate. Considerably weaker

lower bounds for R(n) have been claimed by Ming Gao Lu [13] and Breyer

[1]. Both authors employ an asymmetric choice of generating functions

within an application of the circle method, thereby excluding an almost

all result for three cubes and a sixth power from the scope of their meth-

ods. The presence of large common factors between certain of the variables,
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WARING’S PROBLEM 15

moreover, necessitates that their arguments discard almost all representa-

tions from the discussion.

Our methods are also applicable when k ≤ 5, and lead to conclusions

allied to those of Theorems 1 and 2 which read mutatis mutandis, save

that congruence conditions may be omitted. These results seem to be new

when k = 5, but for k = 4 results of the type considered here are at least

implicit in the literature. Brüdern [4] has shown that the number, R∗(n), of

representations of a large integer n as the sum of six cubes and two fourth

powers satisfies R∗(n) � n3/2, a lower bound which corresponds to that

recorded in Theorem 2. The arguments of that paper are readily modified

to establish the existence of positive numbers c and δ with the property

that ν4(n) > cn1/4 for all but O(N1−δ) of the integers n with 1 ≤ n ≤ N .

Further work within this circle of ideas concerns the exceptional set Ek(X),

which we define by

Ek(X) = {1 ≤ n ≤ X : νk(n) = 0}.

Brüdern [2] has provided bounds of the type card(Ek(X)) � X1−δk with

explicit values of δk, for k = 4 and 5, and these estimates have subsequently

been improved by Lu [14]. When k = 3, meanwhile, these problems reduce to

the classical Waring problem for four cubes. While this is certainly the most

prominent member in this series of problems, describing its long history is

hardly the point of the present paper. We refer the reader to Vaughan

[17], Brüdern [5], Wooley [24] and Kawada [12] for an account of recent

developments concerning this problem.

We establish Theorem 1 through the use of the Hardy-Littlewood

method. The proof has many similarities with Vaughan’s approach [18]

to the seven cubes theorem, though we must work harder to achieve suc-

cess. Indeed, our methods make fundamental use of a minor arc estimate

involving a product of seven cubic exponential sums which is of indepen-

dent interest; it has already found applications beyond those in this paper

(part IV of Brüdern, Kawada and Wooley [7]). This paper is therefore or-

ganised in two chapters. The first deals with the minor arc estimate alluded

to above, while the second is devoted to the proof of Theorem 1. Both

chapters are equipped with an introductory section to which the reader is

referred for a finer discussion of the underlying ideas. However, we do take

this opportunity to draw the reader’s attention to the use of a variant of the

usual smooth Weyl sum in the second chapter, the point being that con-

trol of such exponential sums on the major arcs of the Hardy-Littlewood
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16 J. BRÜDERN AND T. D. WOOLEY

dissection is substantially enhanced. This device should be useful whenever

smooth Weyl sums occur in an application of the Hardy-Littlewood method.

Throughout, ε and η will denote sufficiently small positive numbers. We

usually take P to be the basic parameter, a large real number depending

at most on ε and η. We use � and � to denote Vinogradov’s well-known

notation, implicit constants depending at most on ε and η. Also, we write

[x] for the greatest integer not exceeding x, and ‖y‖ for minn∈Z |y − n|.
In an effort to simplify our analysis, we adopt the following convention

concerning the parameter ε. Whenever ε appears in a statement, we assert

that for each ε > 0 the statement holds for sufficiently large values of the

main parameter. Note that the “value” of ε may consequently change from

statement to statement, and hence also the dependence of implicit constants

on ε.

The authors thank the referee for careful comments.

I. A Minor Arc Estimate related to Seven Cubes

§2. Introductory comments

This chapter, which is self-contained, establishes a technical minor arc

estimate to which we have referred in the introduction, and which we expect

to be useful elsewhere. It is necessary to fix some notation before the key

result can be described. We define the classical Weyl sums f(α) = f(α;P )

and F (α) = F (α;P ) by

f(α;P ) =
∑

P<x≤2P

e(αx3) and F (α;P ) =
∑

1≤x≤P

e(αx3),(2.1)

and when B ⊆ [1, P ] ∩ Z, we define the exponential sum h(α) = h(α;B) by

h(α;B) =
∑

x∈B
e(αx3).(2.2)

In the applications within this paper, and in work of Brüdern, Kawada and

Wooley [7], we restrict B to be one of two sets of smooth numbers. In this

context, when R and Q are real numbers with 1 ≤ R ≤ Q, define the sets

of smooth numbers A(Q,R) and A∗(Q,R) by

A(Q,R) = {n ∈ [1,Q] ∩ Z : p prime, p|n⇒ p ≤ R},

A∗(Q,R) = {n ∈ [1,Q] ∩ Z : p prime, p|n⇒
√
R < p ≤ R},(2.3)
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and then define the subset C(P,R) of A(P,R) by

C(P,R)(2.4)

=

K
⋃

k=0

{lm : m ∈ A∗(2kP/
√
R,R) and 2−1−k

√
R < l ≤ 2−k

√
R},

where K = [14 logR]. We remark that whenever n ∈ C(P,R), then n is

uniquely represented in the shape n = lm with m ∈ A∗(2kP/
√
R,R),

2−1−k
√
R < l ≤ 2−k

√
R and 0 ≤ k ≤ K, as is apparent by considering

the prime factorisation of n. We confine attention to the situation in which

B is equal either to A(P,R) or C(P,R). The mean value estimates which

play an important role in our subsequent deliberations are recorded in the

following lemma.

Lemma 1. Let ξ denote the positive root of the polynomial ξ3 +16ξ2 +

28ξ−8, and put γ = 3ξ/(8+2ξ). Then for each ε > 0, there exists a positive

number η0 = η0(ε) such that whenever R ≤ P η0 and B ⊆ A(P,R), one has

∫ 1

0
|F (α; 2P )2h(α;B)4|dα� P 3+ξ+ε(2.5)

and
∫ 1

0
|h(α;B)|5dα � P

5

2
+γ+ε.(2.6)

Proof. By hypothesis one has B ⊆ A(P,R), so that on considering the

underlying diophantine equations and noting (2.1) and (2.2), the estimate

(2.5) is immediate from Theorem 1.2 of Wooley [24]. The upper bound

(2.6), meanwhile, follows from Lemma 5.1 of Wooley [24] in like manner,

since the fifth moment estimate provided by the latter rests, ultimately, on

the number of solutions of certain underlying diophantine equations, and

such is not increased by substituting for the range of the variables B in

place of A(P,R).

We note for future reference that the numbers ξ and γ occurring in the

statement of Lemma 1 satisfy the inequalities

0.2495681 < ξ < 0.2495682 and 0.0880918 < γ < 0.0880919.
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18 J. BRÜDERN AND T. D. WOOLEY

Finally, we take Y to be a real number satisfying 1 ≤ Y ≤ P 1/7 to be

fixed later, and write Q = P/Y . When B ⊆ [1,Q] ∩ Z, we then define the

exponential sum g(α) = g(α;Y ;B) by

g(α;Y ;B) =
∑

Y <p≤2Y
p≡2 (mod 3)

h(αp3;B),(2.7)

in which the summation is over prime numbers p.

We are now equipped to announce the main result of this chapter.

Theorem 3. Suppose that Y is a real number with P 1/8 ≤ Y ≤ P 1/7.

Let m denote the set of real numbers α ∈ [0, 1] such that whenever q is a

natural number with ‖qα‖ ≤ Y 3P−2, then one has q ≥ PY 3. Also, when

B ⊆ A(Q,R), define the mean value I(Y ) = I(Y ;B) by

I(Y ) =

∫

m

|f(α;P )2g(α;Y ;B)5|dα.(2.8)

Then for each ε > 0, there exists a positive number η0 = η0(ε) such that

whenever R ≤ P η0 , one has

I(Y ) � P 4+γ+εY −1−γ .

A weaker estimate for I(Y ) occurs inter alia in work of Vaughan [18],

with Y restricted to the immediate vicinity of P 1/8. The argument of

Vaughan yields the upper bound I(P 1/8) � P 4− 1

32
+ε, whereas Theorem

3 establishes an estimate at least as strong as

I(Y ) � P 3.9521(2.9)

in the whole range of Y . The bound provided by Theorem 3 is of course

strongest when Y = P 1/7, in which case the exponent in (2.9) reduces to

3.9327. However, larger values of Y thin out the minor arcs, and this is

a nuisance in applications, due to increasing difficulties in handling error

terms in the treatment of the major arcs. In practice one must balance

I(Y ) against the latter error terms, and thus the optimal choice of Y may

be smaller than P 1/7. In the applications within this paper, only values of

Y close to P 1/8 will be employed, but it is hoped that the superior bounds

available for larger Y will be of utility elsewhere.
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The improvements over the aforementioned work of Vaughan [18] rep-

resented in Theorem 3 stem from three sources which are best described

within a sketch of the proof of Theorem 3. We begin with a p-adic iter-

ation restricted to minor arcs. This procedure is due to Vaughan [17]. It

transforms |f(α)|2 into a quadratic exponential sum, and also brings into

the analysis fifth moments of |h(α;B)|. We estimate the latter through the

“breaking convexity” device of Wooley [24], a tool unavailable at the time

of writing of [18]. This already provides some savings. In estimating the

quadratic exponential sum resulting from differencing |f(α)|2, we make fur-

ther savings by averaging over p. This idea is not new; the work of §§5–7

of Vaughan [17] contains all of the necessary ideas. We collect together the

relevant details in an abstracted form in Lemma 4 below. Finally, the wider

available range for Y is a consequence of a more sophisticated removal of

certain undesirable common factors which arise in the variables underly-

ing the p-adic iteration. It is the latter which entails the elaborate analysis

described in §5 below.

§3. Some auxiliary equations and inequalities

We begin our approach to Theorem 3 by collecting together various

mean value estimates for cubic exponential sums. For the remainder of this

chapter we write, for the sake of concision,

f(α) = f(α;P ), g(α) = g(α;Y ;B), h(α) = h(α;B),

and suppose throughout that B ⊆ A(Q,R). Also, we suppose that η0 is a

positive number sufficiently small in the context of Lemma 1, and take R

to be a real number satisfying R ≤ P η0/10.

Lemma 2. Whenever P 1/8 ≤ Y ≤ P 1/7, one has

∫ 1

0
|F (α; 2P )2g(α)4|dα � P 3+εY 2.

Proof. The special cases Y = P 1/8 and Y = P 1/7 are contained in all

essentials in Lemma 1 of Vaughan [18] and the Proposition of Brüdern [6],

respectively, but there is no explicit reference for intermediate values of Y .

Although it would be straightforward to extend the argument underlying

the proof of Lemma 1 of Vaughan [18], for the sake of completeness we give a

proof which is somewhat simpler than Vaughan’s original treatment. Some
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of the ideas introduced here will also prove profitable in the verification of

the next lemma.

Let ρ(n) denote the number of integral solutions of the equation

n = x3 + p3
1y

3
1 + p3

2y
3
2 ,(3.1)

with

1 ≤ x ≤ 2P, yi ∈ B, Y < pi ≤ 2Y, pi ≡ 2 (mod 3) (i = 1, 2).(3.2)

Also, let ρ1(n) denote the corresponding number of solutions in which the

additional condition (x, p1p2) = 1 holds. Observe that in any solution x,p,y

of (3.1) counted by ρ(n) but not counted by ρ1(n), one has that p1|x or p2|x.
Let ρ2(n) denote the number of solutions of (3.1) satisfying (3.2) and the

conditions p1 = p2 and p1|x, and let ρ3(n) denote the corresponding number

of solutions in which p1 6= p2 and p1|x. Then by symmetry one has

ρ(n) ≤ ρ1(n) + ρ2(n) + 2ρ3(n).

On making use of Cauchy’s inequality and considering the underlying dio-

phantine equation, we therefore deduce that

∫ 1

0
|F (α; 2P )2g(α)4|dα =

∑

n∈N

ρ(n)2 � S1 + S2 + S3,(3.3)

where

Sj =
∑

n∈N

ρj(n)2 (j = 1, 2, 3).(3.4)

We first estimate S2. Observe that if x,p,y is any solution of (3.1)

counted by ρ2(n), then we have p1|x, and thus we may substitute x = p1z.

In this way we deduce that

ρ2(n) ≤
∑

Y <p≤2Y

σ2(n, p),

where σ2(n, p) denotes the number of integral solutions of the equation

n = p3(z3 + y3
1 + y3

2),

with

1 ≤ z ≤ 2Q and yi ∈ B (i = 1, 2).
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By Cauchy’s inequality, therefore, on considering the underlying diophan-

tine equation, we derive from (3.4) the estimate

S2 ≤ Y
∑

Y <p≤2Y

∑

n∈N

σ2(n, p)
2

≤ Y 2

∫ 1

0
|F (α; 2Q)2h(α)4|dα.

The estimate (2.5) of Lemma 1 therefore yields

S2 � Q3+ξ+εY 2.(3.5)

Next consider S3. When x,p,y is a solution of (3.1) counted by ρ3(n),

we may again substitute x = p1z. If w is an integer of the shape w =

p2y2, with p2 and y2 as in (3.2), moreover, the latter representation of w

is necessarily unique, since (p2, y2) = 1. Also, since p1 6= p2, one has that

(p1, p2y2) = 1. Thus we deduce that

ρ3(n) ≤
∑

Y <p≤2Y

σ3(n, p),

where σ3(n, p) denotes the number of integral solutions of the equation

n = p3(z3 + y3) + w3,

with

1 ≤ w ≤ 2P, (w, p) = 1, 1 ≤ z ≤ 2Q, y ∈ B.
By Cauchy’s inequality, it follows from (3.4) that

S3 � Y
∑

Y <p≤2Y

∑

n∈N

σ3(n, p)
2,

whence S3 � Y S4, where S4 denotes the number of integral solutions of

the equation

w3
1 − w3

2 = p3(z3
1 − z3

2 + y3
1 − y3

2),

with Y < p ≤ 2Y and

1 ≤ wi ≤ 2P, (wi, p) = 1, 1 ≤ zi ≤ 2Q, yi ∈ B (i = 1, 2).

Since Y ≤ P 1/7, it follows from Theorem A of Vaughan [17] that

S4 � P
3

2
+εQ2Y − 5

2 ,
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whence

S3 � P
3

2
+εQ2Y − 3

2 .(3.6)

It remains to estimate S1. Define the exponential sum Fd(α) by

Fd(α) =
∑

1≤x≤2P
(x,d)=1

e(αx3).(3.7)

Then on considering the underlying diophantine equation, it follows from

(3.4) that

S1 =

∫ 1

0

∣

∣

∣

∑

p1,p2

Fp1p2
(α)h(αp3

1)h(αp
3
2)
∣

∣

∣

2
dα,

where the summation over p1 and p2 is subject to (3.2). Two applications

of Cauchy’s inequality now yield

S1 � Y 2
∑

p1,p2

∫ 1

0
|Fp1p2

(α)2h(αp3
1)

4|dα.

Consequently, on considering the underlying diophantine equation, we de-

duce that

S1 � Y 3S5,(3.8)

where S5 denotes the number of integral solutions of the equation

x3
1 − x3

2 = p3
1(y

3
1 − y3

2 + y3
3 − y3

4),

with p1 subject to (3.2) and yj ∈ B (1 ≤ j ≤ 4), and also

1 ≤ xi ≤ 2P, (xi, p1) = 1 (i = 1, 2).

But on combining Lemma 3.7 of Vaughan [19] with Lemma 1 above, one

readily confirms that

S5 � P 3+εY −1 + P
10

3
+εY − 11

3 ,

and so we may conclude from (3.8) that

S1 � P 3+εY 2 + P
10

3
+εY − 2

3 .(3.9)
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On combining the conclusions of (3.3), (3.5), (3.6) and (3.9), we finally

discover that for P 1/8 ≤ Y ≤ P 1/7, one has the estimate

∫ 1

0
|F (α; 2P )2g(α)4|dα

� Q3+ξ+εY 2 + P
3

2
+εQ2Y − 3

2 + P 3+εY 2 + P
10

3
+εY − 2

3

� P 3+εY 2,

and hence the proof of the lemma is complete.

Lemma 3. Denote by T (Y ) the number of integral solutions of the

equation

p3
1(x

3
1 − x3

2) = p3
2(y

3
1 − y3

2 + y3
3 − y3

4),(3.10)

with

Y < pi ≤ 2Y and 1 ≤ xi ≤ 2Q (i = 1, 2),(3.11)

yj ∈ B (1 ≤ j ≤ 4).(3.12)

Then whenever P 1/8 ≤ Y ≤ P 1/7, one has

T (Y ) � Y Q3+ξ+ε.

Proof. Let T0(Y ) denote the number of solutions of (3.10) counted

by T (Y ) in which p1 = p2, let T1(Y ) denote the corresponding number of

solutions with p1 6= p2 and p2 - x1x2, and let T2(Y ) denote the corresponding

number of solutions with p1 6= p2 and p2|x1x2. Then plainly,

T (Y ) = T0(Y ) + T1(Y ) + T2(Y ).(3.13)

We begin by estimating T0(Y ). Suppose that p,x,y is a solution of

(3.10) counted by T0(Y ). Then since p1 = p2, the number of available

choices for p is O(Y ). Fixing any one such choice for p, the equation (3.10)

takes the shape

x3
1 − x3

2 = y3
1 − y3

2 + y3
3 − y3

4,

whence by (3.11) and (3.12), the estimate

T0(Y ) � Y Q3+ξ+ε(3.14)

is immediate from Lemma 1, on considering the underlying diophantine

equation.
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Next suppose that p,x,y is a solution of (3.10) counted by T2(Y ). Then

since p1 6= p2 it follows from (3.10) that p2|x1 if and only if p2|x2. We may

therefore substitute xj = p2wj (j = 1, 2), and thus deduce from (3.10) that

p3
1(w

3
1 − w3

2) = y3
1 − y3

2 + y3
3 − y3

4,

with w1 and w2 integers satisfying 1 ≤ wj ≤ 2QY −1 (j = 1, 2). On noting

that the number of representations of an integer z in the shape pw, with

Y < p ≤ 2Y and 1 ≤ w ≤ 2QY −1, is at most 8, we arrive at the estimate

T2(Y ) � Y T3(Y ),

where T3(Y ) denotes the number of integral solutions of the equation

z3
1 − z3

2 = y3
1 − y3

2 + y3
3 − y3

4 ,

with y satisfying (3.12), and 1 ≤ zj ≤ 4Q (j = 1, 2). Consequently, on

considering the underlying diophantine equation, it follows from Lemma 1

that T3(Y ) � Q3+ξ+ε, whence

T2(Y ) � Y Q3+ξ+ε.(3.15)

Finally, suppose that p,x,y is a solution of (3.10) counted by T1(Y ).

We substitute ui = p1xi (i = 1, 2), and observe that since p1 6= p2, one has

p2 - u1u2. Thus we deduce that T1(Y ) � T4(Y ), where T4(Y ) denotes the

number of integral solutions of the equation

u3
1 − u3

2 = p3
2(y

3
1 − y3

2 + y3
3 − y3

4),

with

Y < p2 ≤ 2Y, 1 ≤ yi ≤ Q (1 ≤ i ≤ 4),

1 ≤ uj ≤ 4P, (uj, p2) = 1 (j = 1, 2).

But Theorem A of Vaughan [17] provides the estimate T4(Y ) � P
7

2
+εY − 9

2 ,

and thus

T1(Y ) � P
7

2
+εY − 9

2 .(3.16)

On collecting together (3.13)–(3.16), we find that for P 1/8 ≤ Y ≤ P 1/7,

one has

T (Y ) � Y Q3+ξ+ε,

and thus the proof of the lemma is complete.
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§4. Differencing restricted to minor arcs

In this section we provide an abstracted version of an iterative method

restricted to minor arcs, in the shape of Lemma 4 below. Hopefully, the main

ideas of Vaughan [17, §§5–8] will be more easily accessible in this form. In

advance of the statement of Lemma 4, we recall the definition of the minor

arcs m from the statement of Theorem 3, and define the exponential sum

fd(α) similar to that defined in (3.7) by

fd(α) =
∑

P<x≤2P
(x,d)=1

e(αx3).(4.1)

Lemma 4. Suppose that Y is a real number with P 1/8 ≤ Y ≤ P 1/7,

and let S : R −→ [0,∞) be a Riemann integrable function of period 1. Then

∫

m

∑

Y <p≤2Y
p≡2 (mod 3)

|fp(α)|2S(p3α)dα � P 3/2+εY −5/2

∫ 1

0
S(α)dα.

Proof. In order to establish the lemma we must rework Lemmata 6, 8

and 10 of Vaughan [17] with some care. Let n denote the set of α ∈ [0, 1)

with the property that whenever q is a natural number with ‖qα‖ ≤ PQ−3,

then one has q > P . By following the argument of the proof of Lemma 10

of Vaughan [17], beginning at equation (8.3) of that paper, we deduce that

∫

m

∑

Y <p≤2Y
p≡2 (mod 3)

|fp(α)|2S(p3α)dα � I,(4.2)

where

I =

∫

n

∑

Y <p≤2Y
p≡2 (mod 3)

Φp(α)S(α)dα,(4.3)

and

Φp(α) =
∑

P<y≤2P
(y,p)=1

1 + 2<
(

∑

1≤h≤H

∑

2P+hp3<y≤4P−hp3

(y,p)=1
y≡h (mod 2)

e
(

1
4αh(3y

2 + h2p6)
)

)

,

with H = PY −3.
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In the next step, we remove the coprimality condition (y, p) = 1 from

the definition of Φp(α). This we achieve by following the argument of §5 of

Vaughan [17]. For ease of comparison, we make use of the notation of [17],

but introduce as little of this as is possible. Write

F (β, γ;h) =
∑

2P<y≤4P
y≡h (mod 2)

e
(

3
4βy

2 − γy
)

,

Gh(ρ, σ) =
∑

Y <p≤min{2Y,(P/(2h))1/3}
p≡2 (mod 3)

e
(

1
4ρp

6 + σp3
)

,

Ξp(α) = 2<
(

∑

1≤h≤H

e
(

1
4αh

3p6
)

∑

2Pp−1+hp2<y≤4Pp−1−hp2

y≡h (mod 2)

e
(

3
4αhp

2y2
)

)

,

and then define

T2(p) =

∫

n

Ξp(α)S(α)dα, T3 =

∫ 1

0
S(α)dα,(4.4)

T5(γ, θ) =

∫

n

∑

1≤h≤H

|F (αh, γ;h)Gh(αh3, θγh)|S(α)dα.(4.5)

On recalling (4.3), the proof of Lemma 6 of Vaughan [17] (see, in particular,

equations (5.13) and (5.26) of [17]) shows that

I � I1 + I2 + |I3|,(4.6)

where

I1 = PY T3, I2 = (logP ) sup
0≤γ≤1
θ=±1

T5(γ, θ), I3 =
∑

Y <p≤2Y
p≡2 (mod 3)

T2(p).(4.7)

We investigate the terms Ij (j = 1, 2, 3) in turn. Observe first that

when Y ≤ P 1/7, one has PY ≤ P 3/2Y −5/2, and thus when i = 1 it follows

from (4.4) and (4.7) that

Ii � P 3/2+εY −5/2

∫ 1

0
S(α)dα.(4.8)
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In order to bound I2, we begin by noting that as a consequence of

Lemma 7 of Vaughan [17], the estimate

sup
α∈n

(

∑

1≤h≤H

|F (αh, γ;h)|2
)

� HP 1+ε

holds uniformly in γ. Furthermore, since H3/4Y 2 � HY in the range of Y

under consideration, a simplified version of the argument used to establish

Lemma 8 of Vaughan [17] yields the bound

sup
α∈n

(

∑

1≤h≤H

|Gh(αh3,±γh)|2
)

� P εHY,

uniformly in γ. Consequently, on recalling (4.4), an application of Cauchy’s

inequality to (4.5) shows that

T5(γ, θ) � H(PY )1/2+εT3 � P 3/2+εY −5/2T3,

uniformly in γ ∈ R and θ = ±1. It therefore follows from (4.7) that the

inequality (4.8) holds with i = 2.

Finally, suppose that α ∈ n. Then an inspection of the argument on

pages 155 and 156 of Vaughan [17] reveals that in the range of Y under

consideration, one has
∑

Y <p≤2Y
p≡2 (mod 3)

|Ξp(α)| � P 3/2+εY −5/2,(4.9)

except possibly when there is a natural number q with

‖qα‖ ≤ (H2Q2P−2)Q−3 and q ≤ H2Q2P−2.

But since P ≤ Y 8, the latter inequalities imply that ‖qα‖ ≤ PQ−3 and

q ≤ P , contradicting our hypothesis that α ∈ n. On recalling (4.4) and

(4.7), we conclude from (4.9) that the inequality (4.8) holds with i = 3.

The proof of the lemma is completed by collecting together (4.2), (4.6)

and the estimates (4.8) for 1 ≤ i ≤ 3.

In this paper we require only the case S(α) = |h(α;B)|5 of Lemma

4. We note for future reference that on combining Lemmata 1 and 4, one

obtains the estimate
∑

Y <p≤2Y
p≡2 (mod 3)

∫

m

|fp(α)2h(p3α;B)5|dα� P
3

2Y − 5

2Q
5

2
+γ+ε.(4.10)
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§5. The proof of Theorem 3

Having marshalled our forces in the preceding sections, we may now

seize the proof of Theorem 3. Recalling the definitions (2.1) and (4.1), we

observe first that

f(α) = fp(α) + f(αp3;P/p).(5.1)

Thus it follows from (2.7) that

f(α)g(α) =
∑

p

(fp(α) + f(αp3;P/p))h(αp3),(5.2)

where here, and in the remainder of this section, the summation over primes

p and any allied variables is over the range Y < p ≤ 2Y with p ≡ 2 (mod 3).

In view of (2.8), one deduces from (5.2) that

I(Y ) ≤ I1 + I2,(5.3)

where

I1 =

∫

m

∣

∣

∣

∑

p

fp(α)h(αp3)
∣

∣

∣
|f(α)g(α)4|dα(5.4)

and

I2 =

∫

m

∣

∣

∣

∑

p

f(αp3;P/p)h(αp3)
∣

∣

∣
|f(α)g(α)4|dα.(5.5)

Suppose first that I2 ≥ I1. Then on recalling (2.8), it follows from an

application of Hölder’s inequality to (5.5) that

I2 ≤ I(Y )1/2J
1/4
1 J

1/4
2 ,(5.6)

where

J1 =

∫ 1

0
|g(α)|6dα and J2 =

∫

m

∣

∣

∣

∑

p

f(αp3;P/p)h(αp3)
∣

∣

∣

4
dα.(5.7)

But on considering the underlying diophantine equations, we deduce from

Lemma 2 that

J1 � P 3+εY 2,(5.8)

whence by (5.3) and (5.6), one has

I(Y ) � P
3

2
+εY J

1/2
2 .(5.9)
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In order to estimate J2 we apply Weyl’s inequality. The latter shows

that when X is sufficiently large, and |f(β;X)| ≥ X3/4+η, then there exist

a ∈ Z and q ∈ N with (a, q) = 1,

|qβ − a| ≤ 1
10X

−9/4 and q ≤ 1
10X

3/4

(compare Lemma 1 of Vaughan [17]). Applying the latter conclusion with

β = αp3 and X = P/p, we find that whenever |f(αp3;P/p)| ≥ Q3/4+η, then

there exist a ∈ Z and q ∈ N with (a, q) = 1,

|αp3q − a| ≤ Q−9/4 and q ≤ Q3/4.

But p3q ≤ 8Y 3Q3/4 < PY 3 and Q9/4 ≥ P 2Y −3, so that α 6∈ m. Hence,

uniformly for α ∈ m we have

∑

p

|f(αp3;P/p)|2 � Y Q3/2+ε.(5.10)

On applying Cauchy’s inequality to (5.7), we therefore deduce that

J2 ≤
∫

m

(

∑

p

|f(αp3;P/p)|2
)2(∑

p

|h(αp3)|2
)2
dα

� Y Q3/2+ε

∫ 1

0

(

∑

p

|f(αp3;P/p)|2
)(

∑

p

|h(αp3)|2
)2
dα.

A second application of Cauchy’s inequality now yields the estimate

J2 � Y 2Q3/2+ε

∫ 1

0

(

∑

p1

|f(αp3
1;P/p1)|2

)(

∑

p2

|h(αp3
2)|4
)

dα.(5.11)

On considering the underlying diophantine equation, Lemma 3 shows that

the integral on the right hand side of (5.11) is O(Y Q3+ξ+ε), so that on

combining (5.9) and (5.11), we arrive at the estimate

I(Y ) � Y
5

2P
3

2
+εQ

9

4
+ ξ

2 � P 4Q−1/8.

A modest calculation reveals that this estimate is stronger than that claimed

in the conclusion of Theorem 3 in the range P 1/8 ≤ Y ≤ P 1/7 under

consideration.
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Suppose next that I2 ≤ I1. Then in view of (2.8) and (5.3), by applying

Cauchy’s inequality to (5.4) we obtain the estimate

I(Y ) ≤ 2I(Y )1/2
(

∫

m

∣

∣

∣

∑

p

fp(α)h(αp3)
∣

∣

∣

2
|g(α)|3dα

)1/2
.(5.12)

But as a consequence of Hölder’s inequality,

∣

∣

∣

∑

p

fp(α)h(αp3)
∣

∣

∣

2
≤ Y

(

∑

p

|fp(α)2h(αp3)5|
)2/5(∑

p

|fp(α)|2
)3/5

,

whence by a second application of Hölder’s inequality, we deduce from (5.12)

that

I(Y ) � Y I
2/5
3 I

3/5
4 ,(5.13)

where

I3 =
∑

p

∫

m

|fp(α)2h(αp3)5|dα and I4 =
∑

p

∫

m

|fp(α)2g(α)5|dα.(5.14)

Note that I3 is the integral estimated in (4.10) above, and hence we may

concentrate on estimating I4. The latter integral strongly resembles I(Y ),

but the exponential sum fp(α) occurs in place of f(α). One expects that

the additional implicit coprimality condition does not significantly alter the

magnitude of the integral, and hence one should have that I4 � Y I(Y ).

Unfortunately, the respective integrals are restricted to the minor arcs m,

and so the required estimates are not immediate from a consideration of

the underlying diophantine equations. However, we can invert the process

used at the beginning of this proof in order to circumvent such difficulties.

Thus, by (5.1) we have

|fp(α)|2 ≤ 2
(

|f(α)|2 + |f(αp3;P/p)|2
)

,

and so by (5.14) and (2.8) we have

I4 � Y I(Y ) + I5,(5.15)

where

I5 =

∫

m

∑

p

|f(αp3;P/p)2g(α)5|dα.(5.16)
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In circumstances where I5 ≤ Y I(Y ), it follows from (5.13), (5.15) and

(4.10) that

I(Y ) � Y 4I3 � Y
3

2P
3

2Q
5

2
+γ+ε,

whence the conclusion of Theorem 3 is immediate. We may therefore sup-

pose that I5 > Y I(Y ), and then one obtains from (5.13), (5.15) and (4.10)

the estimate

I(Y ) � P
3

5Q1+ 2

5
γ+εI

3

5

5 .(5.17)

But in view of (5.10), an application of Schwarz’s inequality to (5.16) yields

I5 � Y Q3/2+ε
(

∫ 1

0
|g(α)|4dα

)1/2(
∫ 1

0
|g(α)|6dα

)1/2
.(5.18)

On applying Hua’s Lemma (see Lemma 2.5 of Vaughan [20]) to estimate

the first integral on the right hand side of (5.18), and (5.8) to bound the

second, we find that

I5 � Y Q3/2+ε(P 2+ε)1/2(P 3+εY 2)1/2 � P 4+εY 1/2.

Thus we deduce from (5.17) that

I(Y ) � P 3Q1+ 2

5
γ+εY

3

10 ,

and again a modest computation shows that this estimate is stronger than

that claimed in the conclusion of Theorem 3 in the range P 1/8 ≤ Y ≤ P 1/7

under consideration. This completes the proof of Theorem 3.

II. Three Cubes and a Sixth Power

§6. An outline

The main objective of this chapter is the proof of Theorem 1. We begin

by examining another mean value which relates to a diophantine equation

involving two cubes and ten sixth powers, such forming the subject of §7.

We are then in a position to describe the generating function fundamental

to our proof of Theorem 1, this being the theme of §8, where we also prepare

for an application of the Hardy-Littlewood method. A rather thin and nar-

row choice of major arcs is made in §8, and we are able to provide a lower

bound for the contribution from these arcs immediately. This turns out to

be routine, even though the singular series causes some mild complications.
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There remains the problem of handling the minor arcs. If the latter were as

thin as those occurring in the statement of Theorem 3, then their contribu-

tion would be easily controlled by combining the conclusions of Theorem 3

and Lemma 5 below through the medium of Schwarz’s inequality. However,

the sizes of the major and minor arcs are not immediately compatible, and

thus we are left with some intermediate arcs of which to dispose in §9. Here

we work a little harder than is necessary for the application at hand, this

treatment being of some independent interest (part V of Brüdern, Kawada

and Wooley [7]). Theorem 1 is an immediate consequence of the conclusion

of §8 combined with the main result (Theorem 4) of §9.

§7. Another auxiliary equation

In this section we apply an iterative method to estimate a mean value

corresponding to two cubes and ten sixth powers. By and large we continue

to use the notation introduced in the previous chapter. In this context, we

recall the definition of f(α) = f(α;P ) from (2.1), and when B ⊆ [1,
√
P ]∩Z

we define the exponential sum b(α) = b(α;B) by

b(α;B) =
∑

y∈B
e(αy6).(7.1)

Finally, we define the mean value K = K(P ;B) by

K(P ;B) =

∫ 1

0
|f(α;P )2b(α;B)10|dα.(7.2)

We may now formulate the main result of this section.

Lemma 5. There is a positive number η0 such that whenever R ≤ P η0

and B ⊆ A(
√
P ,R), one has

K(P ;B) � P 4.191218.

Proof. We make use of the “new iterative method”, the framework

provided by Wooley [23] being a suitable version for sums of mixed powers.

Let K0 denote the number of integral solutions of the equation

x3
1 − x3

2 =

5
∑

j=1

(y6
j − z6

j ),(7.3)
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with 1 ≤ xi ≤ 2P (i = 1, 2) and yj, zj ∈ A(P 1/13, R) (1 ≤ j ≤ 5). Also,

define the mean value K1 by

K1 =

∫ 1

0
|F (α;P )2b(α;B)8|dα.(7.4)

Finally, let K2 denote the number of integral solutions of the equation

x3
1 − x3

2 = m6
5
∑

j=1

(y6
j − z6

j ),(7.5)

with

1 ≤ xi ≤ 2P (i = 1, 2), P 1/13 < m ≤ P 1/13R, x1 ≡ x2 (mod m6),(7.6)

yj, zj ∈ A(Z,R) (1 ≤ j ≤ 5),(7.7)

where for the sake of concision we write Z = P 11/26. Then on applying

Lemma 2.2 of Wooley [23] with k = 6, s = 5, θ = 1
13 , Q =

√
P , we deduce

from (7.2) by considering the underlying diophantine equations that

K � K0 + P
15

26
+εK1 + P

9

13
+εR9K2.(7.8)

One may boundK0 easily by observing that there are at mostO(P 10/13)

available choices for yj, zj (1 ≤ j ≤ 5), and O(P ) choices permissible for x2.

Fixing any one of these choices for the latter variables, the equation (7.3)

fixes x1. Consequently, we have

K0 � P 2.(7.9)

Before embarking on the analysis of K1, it is convenient to record some

mean value estimates contained in the appendix of Vaughan and Wooley

[22]. Thus, when s = 5, 6 or 8, it follows from [22] that whenever η is a

sufficiently small positive number, then one has

∫ 1

0

∣

∣

∣

∑

z∈A(X,Xη)

e(αz6)
∣

∣

∣

2s
dα� Xλs ,(7.10)

where

λ5 = 5.724697, λ6 = 7.231564, λ8 = 10.560413.(7.11)
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On considering the underlying diophantine equations, it follows from (7.10)

that
∫ 1

0
|b(α)|12dα� P

1

2
λ6 .

Moreover, on applying Schwarz’s inequality in combination with Hua’s

lemma (see Lemma 2.5 of Vaughan [20]), one obtains

∫ 1

0
|F (α)|6dα ≤

(

∫ 1

0
|F (α)|4dα

)1/2(
∫ 1

0
|F (α)|8dα

)1/2
� P

7

2
+ε.

Consequently, by Hölder’s inequality it follows from (7.4) that

K1 ≤
(

∫ 1

0
|F (α)|6dα

)1/3(
∫ 1

0
|b(α)|12dα

)2/3
� P

7

6
+ 1

3
λ6+ε.

In view of (7.11), we may therefore conclude in this case that

P
15

26
+εK1 � P 4.16.(7.12)

Finally, we estimate K2. This is more elaborate, and entails another

application of the Hardy-Littlewood method. When

P 1/13 ≤M ≤ P 1/13R,(7.13)

we take T (M) to be the number of solutions m,x,y, z of (7.5) counted by

K2 in which M < m ≤ 2M . Then a dyadic dissection argument yields the

upper bound

K2 � (logP )T (M),(7.14)

for some M satisfying (7.13). Given a solution m,x,y, z of (7.5) counted

by T (M), we write

h = (x1 − x2)m
−6 and z = x1 + x2.(7.15)

Then in view of (7.6) one has that h is an integer satisfying |h| ≤ H, where

H now denotes 2PM−6. Write

F1(α) =
∑

1≤h≤H

∑

M<m≤2M

∑

1≤z≤4P

e(αh(3z2 + h2m12))(7.16)

and

t(α) =
∑

y∈A(Z,R)

e(αy6).(7.17)
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On substituting from (7.15) into (7.5), isolating the diagonal contribution,

and considering the underlying diophantine equation, we obtain the esti-

mate

T (M) � PM

∫ 1

0
|t(4α)|10dα+

∫ 1

0
|F1(α)t(4α)10|dα.(7.18)

We now apply the Hardy-Littlewood method to estimate the second

integral on the right hand side of (7.18). Let K denote the union of the

major arcs

K(q, a) = {α ∈ [0, 1] : |qα− a| ≤ (HP )−1}(7.19)

with 0 ≤ a ≤ q ≤ P and (a, q) = 1, and let k = [0, 1] \ K. Bounds for F1(α)

are obtained through the use of Cauchy’s inequality in the form

|F1(α)|2 ≤ D(α)E(α),(7.20)

where

D(α) =
∑

1≤h≤H

∣

∣

∣

∑

1≤z≤4P

e(3αhz2)
∣

∣

∣

2

and

E(α) =
∑

1≤h≤H

∣

∣

∣

∑

M<m≤2M

e(αh3m12)
∣

∣

∣

2
.

As in Lemma 3.1 of Vaughan [19], one has

sup
α∈k

D(α) � HP 1+ε,(7.21)

and also, when α ∈ K(q, a) ⊆ K,

D(α) � HP 2+ε(q +HP 2|qα− a|)−1.(7.22)

In order to estimate E(α) we may argue as in the proof of Lemma 3.4 of

Vaughan [19]. For M ≤ P 1/12 one finds, mutatis mutandis, that whenever

a ∈ Z and q ∈ N satisfy

|qα− a| ≤ (H3M6)−1 and 1 ≤ q ≤ H3M6,

then one has

E(α) � P εHM + P εHM2(q +HP 2|qα− a|)−1/6(7.23)
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(this estimate occurs also as a special case of Ford [9, (3.10)]). On recalling

(7.13), we deduce from (7.20)–(7.23) that

sup
α∈k

|F1(α)| � (HP 1+ε)1/2(P εHM)1/2 � P ε(PM)1/2H.

Consequently, it follows from (7.18) and (7.10) that

T (M) � P 1+εMZλ5 +

∫

K

|F1(α)t(4α)10|dα.(7.24)

We estimate the integral remaining in (7.24) through the use of the

auxiliary mean value J0, which we define by

J0 =

∫

K

|F1(α)2t(4α)4|dα.(7.25)

Plainly, by (7.17) one has

|t(4α)|4 =
∑

l∈Z

ψ(l)e(lα),

where ψ(l) denotes the number of solutions of the equation

4(z6
1 + z6

2 − z6
3 − z6

4) = l,

with zi ∈ A(Z,R) (1 ≤ i ≤ 4). Observe that by Hua’s Lemma (see Lemma

2.5 of Vaughan [20]) and an elementary counting argument, one has

ψ(0) � Z2+ε and
∑

l∈Z

ψ(l) = t(0)4 � Z4.(7.26)

Next let L denote the union of the major arcs K(q, a) (defined in (7.19))

with 0 ≤ a ≤ q ≤M6 and (a, q) = 1. Then by (7.23) we have

sup
α∈K\L

E(α) � P εHM,

whence by (7.20) and (7.22), whenever α ∈ K(q, a) ⊆ K \ L, one has

|F1(α)|2 � P 2+εH2M(q +HP 2|qα− a|)−1.(7.27)

By employing (7.26) and (7.27) within Lemma 2 of Brüdern [3], we obtain

the estimate
∫

K\L

|F1(α)2t(4α)4|dα� P εMH(PZ2+ε + Z4) � P 1+εMHZ2.(7.28)
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When α ∈ K(q, a) ⊆ K, we may use the trivial bound E(α) � HM2 in

combination with (7.22) to deduce that

|F1(α)|2 � P ε(PHM)2(q +HP 2|qα− a|)−1.

Thus, again by Lemma 2 of Brüdern [3], we have
∫

L

|F1(α)2t(4α)4|dα� P εHM2(M6Z2+ε + Z4) � P εHM2Z4.(7.29)

Finally, on collecting together (7.25), (7.28) and (7.29), we obtain the upper

bound

J0 � P 1+εMHZ2.(7.30)

Equipped with the above bound for J0, we now apply Schwarz’s in-

equality to the integral on the right hand side of (7.24), so that by (7.10),

(7.11) and (7.30) we have
∫

K

|F1(α)t(4α)10|dα� J
1/2
0

(

∫ 1

0
|t(α)|16dα

)1/2

� P ε(PMH)1/2Z1+ 1

2
λ8 � P 1−τMZλ5 ,

where τ > 0.03. It therefore follows from (7.11), (7.14) and (7.24) that

P
9

13
+εR9K2 � P

23

13
+ 11

26
λ5+εR10 � P 4.191218,(7.31)

whenever η0 is a sufficiently small positive number. On substituting (7.9),

(7.12) and (7.31) into (7.8), the proof of the lemma is completed.

§8. The proof of Theorem 1: the generating function

We now prepare the final components of the machinery required in our

proof of Theorem 1. Let N be a large real number, and write

P = [(1
4N)1/3] and τ = 10−20.(8.1)

Also, define the set Y by

Y = {Y ∈ [P 1/8, P 1/8+τ ] : Y = 2lP 1/8 and l ∈ N}.(8.2)

We note for future reference that card(Y) � logP . Let η be a positive

number sufficiently small in the context of Theorem 3 and Lemma 5, and

write R = P η. Recalling (2.1), (2.7) and (7.1), we then write

f(α) = f(α;P ), g(α;Y ) = g(α;Y ; C(P/Y,R)), b(α) = b(α; C(
√
P ,R)).

(8.3)
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Also, we define the exponential sum G(α) by

G(α) =
∑

Y ∈Y
g(α;Y ).(8.4)

Finally, define

ν(n) =

∫ 1

0
f(α)G(α)2b(α)e(−nα)dα.(8.5)

Thus, by orthogonality it is apparent that ν(n) is a lower bound for the

number of integral solutions of the equation

n = x3 + (p1y1)
3 + (p2y2)

3 + z6,

with

P < x ≤ 2P, z ∈ C(
√
P ,R),

P 1/8 ≤ pi ≤ 2P 1/8+τ , yi ∈ C(2P/pi, R) (i = 1, 2).

On recalling the definition of ν6(n) from the introduction, it follows in

particular that ν6(n) ≥ ν(n). In order to establish Theorem 1, it therefore

suffices to show that there is a positive number σ such that for all but

O(N1−σ) of the integers n ∈ [N, 2N ], one has ν(n) � S(n)
√
P , the desired

conclusion following by summing over dyadic intervals.

We analyse the integral in (8.5) by means of the Hardy-Littlewood

method. Write W = R1/50, and let P denote the union of the major arcs

P(q, a) = {α ∈ [0, 1] : |α− a/q| ≤WP−3}

with 0 ≤ a ≤ q ≤ W and (a, q) = 1, and let p = [0, 1] \ P. We require an

asymptotic formula for the integrand in (8.5), at least when α ∈ P. In this

context, when k = 3 or 6, we define

Sk(q, a) =

q
∑

r=1

e(ark/q) and wk(β;L) =

∫ 2L

L
e(βγk)dγ.(8.6)

We then define

v(β) = w3(β;P ),(8.7)

u(β) =

K
∑

k=0

∑

Y ∈Y

∑

Y <p≤2Y
p≡2 (mod 3)

∑

m∈A∗(2kP/(Y
√

R),R)

w3((mp)
3β; 2−1−k

√
R),(8.8)
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w(β) =
K
∑

k=0

∑

m∈A∗(2k
√

P/
√

R,R)

w6(m
6β; 2−1−k

√
R),(8.9)

in which we write K = [14 logR].

By Theorem 4.1 of Vaughan [20], it follows that whenever β ∈ R, a ∈ Z

and q ∈ N satisfy (a, q) = 1, then one has

f(β + a/q) − q−1S3(q, a)v(β) � q
1

2
+ε(1 + P 3|β|) 1

2 .

Consequently, when α ∈ P(q, a) ⊆ P, one has the estimate

f(α) = q−1S3(q, a)v(α − a/q) +O(W 1+ε).(8.10)

Observe next that whenever h = mp with Y < p ≤ 2Y for some Y ∈ Y,

and m ∈ A∗(2kP/(Y
√
R), R), then each of the prime divisors of h exceed

R1/4 > W . Then whenever α ∈ P(q, a) ⊆ P, one has (q, h) = 1, and

a change of variables reveals that S3(q, ah
3) = S3(q, a). Thus, in view of

(8.3), (8.4) and (8.8), we deduce from Theorem 4.1 of Vaughan [20] that

whenever α ∈ P(q, a) ⊆ P,

G(α) =
∑

k,Y,p,m

∑

2−1−k
√

R<l≤2−k
√

R

e(α(pml)3)

is equal to

∑

k,Y,p,m

(

q−1S3(q, a(pm)3)w3((pm)3(α− a/q); 2−1−k
√
R) +O(W 1+ε)

)

,

where the summations are over 0 ≤ k ≤ K, Y ∈ Y, Y < p ≤ 2Y with

p ≡ 2 (mod 3), and m ∈ A∗(2kP/(Y
√
R), R). Consequently,

G(α) = q−1S3(q, a)u(α − a/q) +O(PW−4).(8.11)

Similarly, though more simply, it follows from (8.9) that whenever α ∈
P(q, a) ⊆ P, one has

b(α) = q−1S6(q, a)w(α − a/q) +O(
√
PW−4).(8.12)

Since the measure of P is plainly O(W 3P−3), it follows from (8.10)–(8.12)

by means of a modest calculation that
∫

P

f(α)G(α)2b(α)e(−nα)dα = J0(n)
∑

1≤q≤W

A(q, n) +O(
√
PW−1),(8.13)
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where

J0(n) =

∫ WP−3

−WP−3

v(β)u(β)2w(β)e(−nβ)dβ,(8.14)

A(q, n) = q−4
q
∑

a=1
(a,q)=1

S3(q, a)
3S6(q, a)e(−na/q).(8.15)

On recalling (8.6), a partial integration shows that for each β ∈ R one

has

wk(β;L) � L(1 + Lk|β|)−1.

Consequently, for each β ∈ R,

v(β) � P (1 + P 3|β|)−1.(8.16)

By analogy, one would routinely expect that one also has

u(β) � P (1 + P 3|β|)−1/3,(8.17)

but a verification of this bound requires some care. By Theorem 3 on p.400

of Tenenbaum [16], one has the bound

card(A∗(Q,R)) � Q(logR)−1

uniformly for Q ≥
√
R ≥ 2. But for 0 < Q <

√
R, the set A∗(Q,R) is empty,

and therefore the aforementioned bound remains valid for all Q > 0. For

θ > 0 and Q ≥ T ≥ 1, we now estimate the sum

U0(θ) =
∑

m∈A∗(Q/T,R)

T

1 + T 3m3θ
.

When θ ≤ Q−3, we have

U0(θ) ≤ T card(A∗(Q/T,R)) � Q(logR)−1.

When θ > Q−3, meanwhile, we find that

U0(θ) ≤ T card(A∗(M0, R)) +
∑

m∈A∗(Q/T,R)
m>M0

T−2θ−1m−3,
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where M0 = T−1θ−1/3. But whenever M0 < M < Q/T , we have

∑

m∈A∗(Q/T,R)
M<m≤2M

m−3 �M−3 card(A∗(2M,R)).

Now take M = 2lM0 and sum over l to conclude that for each θ > 0, we

have

U0(θ) � Q(logR)−1(1 +Q3θ)−1/3.

Recalling (8.8) together with the routine bound for w3(β;L) recorded

above, we now observe that

u(β) �
∑

Y ∈Y

∑

Y <p≤2Y

K
∑

k=0

∑

m∈A∗(Q/Tk,R)

Tk

1 + T 3
km

3p3|β| ,

where Q = P/Y and Tk = 2−k
√
R. With the bound for U0(p

3|β|) just

obtained, and recalling that K � logR, we finally deduce that

u(β) �
∑

Y ∈Y

∑

Y <p≤2Y

Q(1 +Q3p3|β|)−1/3.

The expected upper bound (8.17) follows by an elementary summation. A

similar argument yields

w(β) �
√
P (1 + P 3|β|)−1/6.(8.18)

Write

J(n) =

∫ ∞

−∞
v(β)u(β)2w(β)e(−βn)dβ.(8.19)

Then by substituting (8.16)–(8.18) into (8.14), we find that the integral

J(n) is absolutely convergent, and moreover that

J0(n) − J(n) �
∫ ∞

WP−3

P 7/2(1 + P 3β)−11/6dβ �
√
PW−5/6.(8.20)

Furthermore, in like manner,

J(n) �
√
P .(8.21)

In order to bound from below the singular integral J(n), we require an

estimate for the cardinality of the set A∗(Q,R). Here we make use of the
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work of Friedlander [10] (more recent work of Saias [15] is also available).

Suppose that A, B and C are fixed real numbers with B > A ≥ 1 and

C > 0. Let Q and R be large real numbers satisfying RA ≤ Q ≤ RB . Then

as an immediate consequence of Theorem 1 of Friedlander [10], one has the

bounds

CQ

logR
�A,B card (A∗((1 + C)Q,R))−card (A∗(Q,R)) �A,B

CQ

logR
.(8.22)

Next we observe that by making a change of variable in (8.6), for each

positive number ζ one has

wk(ζ
kβ;L) = ζ−1

∫ 2ζL

ζL
e(βγk)dγ.

Define J∗(n) = J∗(n;Z) by

J∗(n;Z) =

∫ ∞

−∞

∫

B(Z)
e(β(γ3

1 + γ3
2 + γ3

3 + γ6
4 − n))dγdβ,

where

B(Z) = [Z0, 2Z0] × [Z1, 2Z1] × [Z2, 2Z2] × [Z3, 2Z3].

Then with Z = Z(m,p,k) defined by

Z0 = P, Zi = 2−1−kimipi

√
R (i = 1, 2), Z3 = 2−1−k3m3

√
R,

one finds from (8.19) and (8.7)–(8.9) that

J(n) =
∑

k,Y,p,m

(m1m2m3p1p2)
−1J∗(n;Z),

where the summation is over

0 ≤ ki ≤ K (1 ≤ i ≤ 3), Y1, Y2 ∈ Y, m3 ∈ A∗(2k3

√
P/

√
R,R),(8.23)

Yj < pj ≤ 2Yj , pj ≡ 2 (mod 3),

mj ∈ A∗(2kjP/(Yj

√
R), R) (j = 1, 2).

(8.24)

Whenever

21/2Yi ≤ pi ≤ 23/4Yi (i = 1, 2),(8.25)

mj ≥ 2kj− 1

4P/(Yj

√
R) (j = 1, 2) and m3 ≥ 2k3− 1

4

√
P/

√
R,(8.26)
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one has that

[P, 2P ] × [2−1/4P, 21/4P ]2 × [2−2/3
√
P , 2−1/3

√
P ] ⊆ B(Z).

Thus an application of Fourier’s integral formula rapidly establishes that

J(n) �
∑

k,Y,p,m

(m1m2m3p1p2)
−1

√
P,

where the summations are subject to (8.23)–(8.26). In view of (8.22) and an

elementary prime number estimate, therefore, one obtains the lower bound

J(n) �
√
P
∑

k,Y

(logR)−3(log Y1)
−1(log Y2)

−1 �
√
P .

In combination with (8.21), we thus conclude that

√
P � J(n) �

√
P .(8.27)

It remains to complete the singular series. As this is not quite as

straightforward as one might expect, we provide a moderate level of detail.

We begin with a simple observation. Suppose that t is a natural number

with (t, q) = 1. Then when k = 3 or 6, one may make a change of vari-

able in (8.6) to deduce that Sk(q, at
k) = Sk(q, a). On making use of this

observation within (8.15), we deduce that

A(q, n) =
1

φ(q)

q
∑

t=1
(t,q)=1

q−4
q
∑

a=1
(a,q)=1

S3(q, a)
3S6(q, a)e(−at6n/q)(8.28)

=
1

q4φ(q)

q
∑

a=1
(a,q)=1

S3(q, a)
3S6(q, a)S

∗
6 (q,−an),

where we write

S∗
6(q, b) =

q
∑

t=1
(t,q)=1

e(bt6/q).

But by Lemma 1.2 of Hua [11], whenever (b, q) = 1 one has S∗
6(q, b) �

q1/2+ε, whence by the multiplicativity of the latter exponential sum, when

(a, q) = 1 one has

S∗
6(q,−an) � q1/2+ε(q, n)1/2.(8.29)
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Also, when (a, q) = 1, Lemmata 4.3-4.5 of Vaughan [20] yield the estimate

q−1Sk(q, a) � κk(q),(8.30)

where κk(q) is a multiplicative function defined on prime powers by

κk(p
lk+1) = kp−l− 1

2 , κk(p
lk+j) = p−l−1 (l ≥ 0, 2 ≤ j ≤ k).(8.31)

On combining (8.28)–(8.30), it follows that

A(q, n) � q1/2+εκ3(q)
3κ6(q)(q, n)1/2.(8.32)

Recalling (8.31) and making use of the multiplicativity of the underlying

generating functions, it is readily confirmed that the series

∞
∑

q=1

q7/12κ3(q)
3κ6(q)(8.33)

converges absolutely. Since (q, n) ≤ n, we deduce from (8.32) that the sin-

gular series

S(n) =

∞
∑

q=1

A(q, n)

also converges absolutely for every natural number n. Next write

ωp(n) =

∞
∑

h=0

A(ph, n).(8.34)

Then by (8.31) and (8.32), it follows that for each prime p one has

ωp(n) − 1 � pε−3/2(p, n)1/2.(8.35)

Since A(q, n) is multiplicative, we may rewrite S(n) as a product,

S(n) =
∏

p

ωp(n),

and by (8.35) this product is again absolutely convergent. Next we observe

that the argument underlying the proof of Lemma 2.12 of Vaughan [20]

shows that when h ≥ 1, one has

h
∑

l=0

A(pl, n) = p−3hΩ(ph, n),
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where Ω(ph, n) denotes the number of incongruent solutions of the congru-

ence

x3
1 + x3

2 + x3
3 + y6 ≡ n (mod ph).(8.36)

In particular, therefore, it follows from (8.34) that ωp(n) is real and non-

negative. When p 6= 3 and h = 1, it follows from the Cauchy-Davenport

Theorem (see Lemma 2.14 of Vaughan [20]) that the congruence (8.36) is

soluble with p - x1. A modest computation reveals that when ph = 9 and

n 6≡ 5 (mod 9), then the congruence (8.36) is again soluble with 3 - x1. The

methods of §2.6 of Vaughan [20], in combination with (8.35), therefore show

that for any sufficiently large but fixed positive number C, one has

S(n) �
∏

p|n
p>C

ωp(n).(8.37)

We now refine (8.35) in those cases where p|n. A careful use of (8.32)

shows that in the latter circumstances, one has

ωp(n) = 1 +A(p, n) +A(p3, n) +A(p6, n) +O(pε−3/2).

By (8.32), we also have A(p6, n) � pε−3/2 unless p6|n, and similarly, one

has A(p3, n) � pε−3/2 unless p3|n. But in the exceptional cases, we observe

that when k = 3 or 6, it follows from Lemma 4.4 of Vaughan [20] that

whenever p - a, p > 3 and 2 ≤ l ≤ k, one has Sk(p
l, a) = pl−1. Then we

deduce from (8.28) that whenever p3|n one has

A(p3, n) = (p3)−4φ(p3)(p2)4 =
1

p
− 1

p2
,

and similarly that whenever p6|n, one has

A(p6, n) = (p6)−4φ(p6)(p4)3p5 =
1

p
− 1

p2
.

Thus, in all cases where A(p3, n) or A(p6, n) cannot be absorbed into the

error term, these numbers are real and positive. Since 1 + A(p, n) is also

real, we infer that the inequality

ωp(n) ≥ 1 +A(p, n) +O(pε−3/2)
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holds for all primes p|n. From (8.37) we now deduce that

S(n) �
∏

p|n
p>C

(1 +A(p, n)).(8.38)

Furthermore, when p|n, a multiplicative change of variables shows that

given a quadratic non-residue ν modulo p, one has

A(p, n) = p−4
p−1
∑

a=1

S3(p, aν
3)3S6(p, aν

3)(8.39)

= p−4
p−1
∑

a=1

S3(p, a)
3S6(p, aν

3).

But writing
(

·
p

)

for the quadratic residue symbol modulo p, one has

S6(p, a) =

p
∑

s=1

(

1 +

(

s

p

))

e

(

as3

p

)

(8.40)

and thus

S6(p, aν
3) =

p
∑

s=1

(

1 +

(

s

p

))

e

(

a(νs)3

p

)

(8.41)

=

p
∑

t=1

(

1 +

(

νt

p

))

e

(

at3

p

)

=

p
∑

t=1

(

1 −
(

t

p

))

e

(

at3

p

)

.

An inspection of the conjugate reveals that S3(p, a) is always real, and thus

it follows from (8.39)–(8.41) that

A(p, n) =
1

2

(

p−4
p−1
∑

a=1

S3(p, a)
3S6(p, a) + p−4

p−1
∑

a=1

S3(p, a)
3S6(p, aν

3)
)

(8.42)

= p−4
p−1
∑

a=1

S3(p, a)
4 = p−4

p−1
∑

a=1

|S3(p, a)|4 ≥ 0.
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At last, on substituting (8.42) into (8.38), we conclude that

S(n) � 1(8.43)

uniformly in n 6≡ 5 (mod 9), as claimed in the introduction.

In order to complete our discussion of the major arc contribution, we

return to the estimate (8.13). Using d(q) to denote the number of divisors

of q, and recalling the absolute convergence of the sum (8.33), we deduce

from (8.32) that

∑

N≤n≤2N

∑

q>W

|A(q, n)| � N
∑

q>W

d(q)q
1

2
+εκ3(q)

3κ6(q) � NW−1/15.

It follows that the number of integers n with N ≤ n ≤ 2N for which

∑

q>W

|A(q, n)| > W−τ

is O(NW−1/20). On recalling (8.43), we therefore find that for all but

O(NW−1/20) of the integers n 6≡ 5 (mod 9) with N ≤ n ≤ 2N , we have

∑

1≤q≤W

A(q, n) � S(n) � 1.

Combining the latter conclusion with (8.13), (8.20) and (8.27), we may

summarise the conclusions of this section as follows.

Lemma 6. For all but O(NR−1/1000) of the integers n with n 6≡ 5

(mod 9) and N ≤ n ≤ 2N , one has

∫

P

f(α)G(α)2b(α)e(−nα)dα � S(n)
√
P .

Moreover, the singular series satisfies S(n)�1 uniformly in n 6≡ 5 (mod 9).

§9. A minor arc estimate

In this section we complement the lower bound recorded in Lemma 6

with an upper bound for the contribution arising from the minor arcs. As

a by-product we obtain a mean square estimate which has already found

application in our recent joint work with Kawada [7]. We therefore highlight

this result as another theorem. In stating this, we continue to use notation
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familiar from previous sections, but modify the notation defined in (8.3) by

writing

g(α;Y ;B) = g(α;Y ;B(P/Y,R)), b(α;B) = b(α;B(
√
P ,R)),

where it is understood that B denotes one of A and C, and by writing,

further,

G(α;B) =
∑

Y ∈Y
g(α;Y ;B).(9.1)

Theorem 4. Let X be a real number with 1 ≤ X ≤ P 10/7, and write

m(X) for the set of real numbers α ∈ [0, 1] such that whenever q is a natural

number with ‖qα‖ ≤ XP−3, one has q > X. Then with τ = 10−20, and with

B equal to either A or C, we have
∫

m(X)
|f(α)G(α;B)2b(α;B)|2dα� P 4X−τ .(9.2)

Before proving Theorem 4, we pause to knock off the proof of Theorem

1, which at this stage is easily accomplished. We take B = C, and suppress

explicit mention of this set in the exponential sums, for the sake of concision.

Then by appealing to (9.2) with X = R1/50 and observing that p ⊆ m(X),

we deduce from Bessel’s inequality that

∑

n∈N

∣

∣

∣

∫

p

f(α)G(α)2b(α)e(−nα)dα
∣

∣

∣

2
≤
∫

m(X)
|f(α)G(α)2b(α)|2dα

� P 4X−τ .

We deduce that there are at most O(P 3X−τ/2) integers n for which the

inequality
∣

∣

∣

∫

p

f(α)G(α)2b(α)e(−nα)dα
∣

∣

∣
>

√
PX−τ/4

holds. On recalling (8.5) and applying Lemma 6, we find that for all but

O(NR− τ
100 ) of the integers n with n 6≡ 5 (mod 9) and N ≤ n ≤ 2N , one

has

ν(n) =

∫

P

f(α)G(α)2b(α)e(−nα)dα +

∫

p

f(α)G(α)2b(α)e(−nα)dα

� S(n)
√
P +O(

√
PX−τ/4) � S(n)n1/6.

The conclusion of Theorem 1 follows immediately on summing over dyadic

intervals.
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The proof of Theorem 4. Write X0 = P
11

8
+3τ , and again suppress ex-

plicit mention of sets in exponential sums. Then in view of (8.2), for any

Y ∈ Y one has m(X0) ⊆ m, where m is the set of minor arcs defined in the

statement of Theorem 3. Then by (9.1), Hölder’s inequality and (2.9), one

has the upper bound

∫

m(X0)
|f(α)2G(α)5|dα� (logP )4

∑

Y ∈Y
I(Y ) � P 3.95211.

With a second appeal to Hölder’s inequality, we infer from Lemma 5 that

∫

m(X0)
|f(α)G(α)2b(α)|2dα(9.3)

≤
(

∫

m(X0)
|f(α)2G(α)5|dα

)4/5(
∫ 1

0
|f(α)2b(α)10|dα

)1/5

� P 4−2τ ,

since
4
5(3.95211) + 1

5(4.191218) < 3.99994.

When X ≥ X0, the proof of Theorem 4 is complete.

Suppose next that X < X0. Denote by M(Ξ) the union of the intervals

M(q, a; Ξ) = {α ∈ [0, 1] : |qα− a| ≤ ΞP−3}

with 0 ≤ a ≤ q ≤ Ξ and (a, q) = 1, and then write

M0 = M(X0), M1 = M(P 15/16), M2 = M(P 14τ ).

We dispose of the contribution of the arcs M0 \M1 by combining Theorem

4.1 and the methods of Lemma 6.3 of Vaughan [20] to establish the estimate

sup
α∈M0\M1

|f(α)| � P (P
15

16 )−
1

3 +X
1

2
+ε

0 � P
11

16
+2τ .(9.4)

By (9.1) and Hölder’s inequality, we deduce from Lemma 2 that

∫ 1

0
|f(α)2G(α)4|dα � P

13

4
+3τ ,(9.5)
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and on considering the underlying diophantine equations, this estimate also

yields
∫ 1

0
|G(α)|6dα� P

13

4
+3τ .(9.6)

On combining (9.4)–(9.6) with Lemma 5 by means of yet another applica-

tion of Hölder’s inequality, we discover that
∫

M0\M1

|f(α)G(α)2b(α)|2dα(9.7)

�
(

sup
α∈M0\M1

|f(α)|
)

4

5

(

∫ 1

0
|f(α)2G(α)4|dα

)
2

5

×
(

∫ 1

0
|G(α)|6dα

)
2

5

(

∫ 1

0
|f(α)2b(α)10|dα

)
1

5

� (P
11

16
+2τ )

4

5 (P
13

4
+3τ )

4

5 (P 4.191218)
1

5 � P 3.99.

Another pruning procedure, which is applicable for X ≤ P 15/16, has

been made available only very recently in work of the authors [8]. We note

that by (8.31) one has κ3(q) ≥ q−1/2 for all natural numbers q. Then by

Theorem 4.1 and the methods of Lemma 6.2 of Vaughan [20], together with

the estimate (8.30) above, whenever α ∈ M(q, a;X) ⊆ M1 one has

|f(α)| � κ3(q)P
(

1 + P 3 |α− a/q|
)−1/2

.

Since we may write

G(α) =
∑

x∈S
e(αx3),

where S is some subset of [1, 2P ], it follows from Lemma 3.1 of Brüdern

and Wooley [8] that for 1 ≤ Ξ ≤ P 15/16 one has
∫

M(Ξ)
|f(α)G(α)|2dα� PΞε.(9.8)

It is now straightforward to complete the proof. When B = A and

Ξ ≤ P 15/16, the estimate

sup
α∈m(Ξ)

|b(α)|2 � P 1−3τ + PΞε− 1

6(9.9)

is an immediate consequence of Lemmata 7.2 and 8.5 of Vaughan and Woo-

ley [21]. When B = C and 1 ≤ Ξ ≤ R1/50, the estimate (9.9) follows by

https://doi.org/10.1017/S0027763000007893 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007893


WARING’S PROBLEM 51

combining (8.12), (8.18), (8.30) and (8.31). Meanwhile, when B = C and

R1/50 < Ξ ≤ P 15/16, one may apply the method of the proof of Lemma

7.2 of Vaughan and Wooley [21] to again deduce that (9.9) holds. One has

merely to note that in the proof of [21, Lemma 7.2], the fact that the expo-

nential sum is over the full set A(P,R) is irrelevant, and indeed the method

is equally applicable when A(P,R) is replaced by any subset thereof. Since

C(Q,R) ⊆ A(Q,R), it is apparent that such is the case in the present ap-

plication, and thus our earlier assertion is justified. On combining (9.8) and

(9.9) with the trivial estimate G(α) = O(P ), we deduce that

∫

M1\M2

|f(α)G(α)2b(α)|2dα(9.10)

� P 2
(

sup
α∈m(P14τ )

|b(α)|2
)

∫

M1

|f(α)G(α)|2dα

� P 4−2τ .

When X ≥ P 14τ , the proof of the theorem is completed by collecting to-

gether (9.3), (9.7) and (9.10). When X ≤ P 14τ we may argue similarly. For

X ≤ Ξ ≤ P 14τ , it follows from (9.8) and (9.9) that

∫

M(2Ξ)\M(Ξ)
|f(α)G(α)2b(α)|2dα(9.11)

� P 2
(

sup
α∈m(Ξ)

|b(α)|2
)

∫

M(2Ξ)
|f(α)G(α)|2dα

� P 4−2τ + P 4Ξ−1/7,

and thus the proof of Theorem 4 is readily completed by summing over

dyadic intervals.
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