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Abstract

Dynamic latent variable models generally link units’ positions on a latent dimension over time via random
walks. Theoretically, these trajectories are often expected to resemble a mixture of periods of stability
interrupted by moments of change. In these cases, a prior distribution such as the regularized horseshoe—
that allows for both stasis and change—can prove a better theoretical and empirical fit for the underlying
construct than other priors. Replicating Reuning, Kenwick, and Fariss (2019), we find that the regularized
horseshoe performs better than the standard normal and the Student’s t-distribution when modeling
dynamic latent variable models. Overall, the use of the regularized horseshoe results in more accurate
and precise estimates. More broadly, the regularized horseshoe is a promising prior for many similar
applications.
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1. Introduction

When modeling dynamic trends in latent variable models, researchers typically use random walks to
link observations from one time-period to the next: tomorrow’s position on a latent dimension is today’s
position plus a random effect (see, e.g., Caughey and Warshaw 2015; König, Marbach, and Osnabrügge
2013; Martin and Quinn 2002; Schnakenberg and Fariss 2014). Often, the expected trajectory of the
political constructs modeled in such a manner (such as countries’ democracy scores) is a mixture of
stasis and change: periods of stability are interrupted by moments of rupture (see also Reuning et al.
2019, 504).

In this letter, we suggest the use of the regularized horseshoe (RHS; Piironen and Vehtari 2017)
as a prior distribution for dynamic latent variable models. Stemming from the Bayesian literature on
sparsity-inducing priors (Carvalho, Polson, and Scott 2010; Polson and Scott 2011), draws from the
regularized horseshoe distribution are shrunk towards 0 (stasis) or allow for deviations from 0 (change).
The correspondence between the prior’s properties and expectations about the construct makes the RHS
an ideal candidate for these applications.

Below, we introduce the regularized horseshoe as a useful addition to the distributions often
employed in political science1 and highlight its utility in the domain of latent variable models. We

1To the best of our knowledge, the RHS has so far not been discussed or used in political science. It’s predecessor—the
horseshoe—was employed by Ratkovic and Tingley (2017) and considered by Park and Yamauchi (2023).
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build on Reuning et al. (2019, from hereon: RKF), who assessed the performance of the standard
normal and the Student’s t-distribution (the two distributions generally used in these applications) in a
similar endeavor. We show that using the RHS leads to better results than using either of the other two
distributions. Model specifications using the RHS produce more accurate and precise estimates, and
better model fit than those using the other distributions.

2. Motivation

The standard normal distribution as well as the Student’s t-distribution are sensible starting points for
the random walks of dynamic models. Both concentrate their probability around 0 (stasis), while also
allowing for deviations from 0 (change). Their empirical density functions are shown in Figure 1. The key
difference between the tails of these two distributions is best visible in panels (b) and (c). As the tails
of the t-distribution are determined via the degrees of freedom (ν), their decay can be more gradual
than those of a standard normal (here, we show draws from StudentT(4,0,1) in line with RKF, where
the parameters of the t-distribution are ν, location, and scale).

While the two distributions differ in their tails, they are similar in their center: a gradual decline
from a peak at 0 assigns a lot of probability to small deviations from the center. Within the Bayesian
literature, distributions such as the horseshoe have been suggested that exhibit a pronounced peak at 0
to induce sparsity in the posterior distributions of parameters (Carvalho et al. 2010; Polson and Scott
2011). Essentially, the horseshoe prior is a continuous mixture of two components with one component
(potentially) shrinking values towards 0 (τ ), and another component allowing for large deviations from
0 (λ).2

More recently, Piironen and Vehtari 2017 proposed a regularized version of the horseshoe (RHS)
to address the heavy tails of the horseshoe prior. By adding a hyperparameter c2 to the horseshoe’s
parameterization, the extent of deviations from 0 can be regularized. Formally, the regularized horse-
shoe distribution for a parameter γ is constructed in the following manner:

γi ∼N(0,τ 2λ̃2
i ), λ̃2

i =
c2λ2

i
c2+τ 2λ2

i
,

τ ∼ StudentT+(1,0,1),
λi ∼ StudentT+(1,0,1) ∀i = 1, . . . ,I,
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Figure 1. Empirical density functions.

2Here, our discussion focuses on the RHS. In the Supplementary Information (SI), we also discuss and assess the original
horseshoe and discrete spike-and-slab priors (George and McCulloch 1993; Mitchell and Beauchamp 1988).
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where i indexes elements of the vector γ. As discussed by Piironen and Vehtari 2017, c2 is given a prior
too:

c2 ∼ InvGamma(α,β), α = ν/2, β = νs2/2,

which corresponds to a StudentT+(ν,0,s2) prior. We set ν = s = 1, so that c2 ∼ InvGamma(0.5,0.5).3 If
c2 is dropped and γi ∼N(0,τ 2λ2

i ), the prior corresponds to the original horseshoe.
The distribution of the RHS is also shown in Figure 1. More probability is assigned to values at

or around 0, with a far steeper decline from the spike at the center than the more gradual descent
of the other distributions. Simultaneously, the tails of the RHS are fatter, exhibiting similar, and then
lower decay rates than those of the t-distribution (visible in panel (c)). These two attributes of this
distribution—a spike at 0 combined with fat tails—make the RHS an ideal a priori candidate to model
the theoretically expected mixture of stasis and change in latent constructs over time. Its use should
result in a posterior distribution that is both more accurate (as it better reflects the expected trajectory)
and precise (as its probability is more concentrated) than the other two distributions. Both aspects
are important in applications, especially if estimates are used in subsequent models that propagate
measurement uncertainty (rather than focusing on point estimates only; see Tai, Hu, and Solt 2024).

3. Model Specification

All subsequent empirical analyses are based on the model specifications and priors described in this
section (unless mentioned otherwise). In line with RKF, we use Bayesian inference implemented in
Stan (Carpenter et al. 2017) to approximate the posterior distribution of our model.

Following RKF, the likelihood for a unidimensional binary item response theory (IRT) model for
units i = 1, . . . ,I, items k = 1, . . . ,K, and time-points t = 1, . . . ,T is

L =
I,T
∏
i,t=1

K
∏
k=1

Λ(αk−βkθi,t)
yikt(1−Λ(αk−βkθi,t)

1−yikt),

where θi,t is a unit’s ideal point on a latent dimension at a given time-point, αk and βk are an item’s
difficulty and discrimination parameters, and Λ is the logistic function. yikt is an observed binary
outcome for a unit × item × time-point combination. The latent model is identified by constraining the
discrimination parameters to be positive (rotational invariance), and by fixing the mean and standard
deviation of the ideal points to 0 and 1 (local and scalar invariance; see Bafumi et al. 2005). We assign
standard (half) normal distributions to the vectors α⃗ and β⃗ of length K, and to the vector θ⃗t=1 of length
I: α⃗ ∼N(0,1), β⃗ ∼N+(0,1), and θ⃗t=1 ∼N(0,1).

The dynamic nature of the model is ensured by specifying yesterday’s θi,t−1 as the expectation of
today’s θi,t , so that:

θi,t = θi,t−1+γi,tσ ∀i = 1, . . . ,I & ∀t = 2, . . . ,T,

where γi,t are the random effects over time and σ is a smoothing hyperparameter that governs how
much the past informs the present with a standard half normal prior: σ ∼N+(0,1).4

The primary difference in the model comparisons below are the priors used for γi,t .5 We compare the
results from models using three different prior distributions for γi,t : (i) a specification using the standard

3Both ν and s could be set to other values. We chose these values so that τ , λi, and c2 have the same Student’s t prior
(equivalent to a Cauchy distribution), and to thereby allow for large deviations from 0 across all three parameters via their
prior. Future research could explore the results’ sensitivity to these choices.

4RKF assign (half) normal distributions with a standard deviation of 3 to α, β, and σ, while we assign a standard deviation
of 1. This difference does not matter within this comparison.

5We omit σ when using the RHS because τ performs a similar function in the RHS prior and its inclusion would lead to
identification issues.
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normal distribution (N(0,1)), (ii) one using the Student’s t-distribution (with ν = 4; StudentT(4,0,1)),
and (iii) our suggested specification with the regularized horseshoe (as detailed in Section 2 above).

4. Results

In this section, we replicate the simulation study of RKF and their re-analysis of Pemstein, Meserve,
and Melton 2010, who estimated the trajectories of countries’ democracy scores—a construct likely
to exhibit stasis and change across time.6 We limit ourselves to a selection of quantities of interest
here (focusing on the accuracy and precision of estimates as well as model fit). We present more
background and quantities of interest in the SI (Section B focuses on the simulation study, Section C on
the application). The results there corroborate the results here.

4.1. Simulation Study
RKF simulate data according to the model specification in Section 3. θi,t is either θi,t−1 + γi,tσ (and
γi,t ∼ N(0,1)) or θi,t is a new draw from N(0,1). This induces breaks in the otherwise more gradual
trajectory of θ over time. RKF vary the extent of smoothing over time (viaσ) as well as the probability
of a break, set I = T = 50, and K = 5, and generate 25 datasets per condition. This results in a total of 225
datasets.

The main results are shown in Figure 2. We focus on four quantities of interest: the correlation
between θ̂ and θ (using Pearson’s ρ), the root mean squared error of θ̂, the size of the standard
errors around θ̂, and the expected log pointwise predictive density (ELPD) based on leave-one-out
cross-validation (LOO-CV) as a measure of model fit (Vehtari et al. 2017). We set the RHS as the
reference distribution, subtract the values of the other two specifications (indicated along the vertical
axis), and calculate the median relative improvement of the RHS (shown alongside the median line).
Correlation and model fit using the RHS are larger, while RMSE and standard errors are smaller. The
relative improvements in RMSE and SE are larger (between 2.3%–7.3%) than in correlation or model fit
(between 0.2%–2.3%). The improvements are larger when the probability of a shock is larger and σ is
smaller (see Figures 8 and 9 in the SI). The RHS outperforms both the standard normal and the Student’s
t-distribution in the simulation study.
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Figure 2. Simulation results. Differences shown along the vertical axis, relative improvement alongside the median lines. For example,

the correlation estimated via the RHS is 1% larger than via the standard normal. Note that the difference for the ELPD is positive

although the relative improvement is smaller than 100% because ELPD is measured on a negative scale.

6We omit RKF’s replication of Martin and Quinn 2002 for brevity and because the lack of shared items from one time-
period to the next (as Supreme Court Justices are faced with new cases every session) necessitates a series of rigid constraints
on parameters.
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4.2. Revisiting Pemstein et al. 2010
RKF estimate a dynamic model of countries’ democracy scores based on the static model of Pemstein
et al. 2010 (via an ordered logit specification). Here, we first focus on model fit via the ELPD (based on
LOO-CV). The differences between specifications are large and statistically significant. The specification
using the RHS performs better than the one using the t-distribution by 1781 units (SE: 58), and better
than the one using the normal distribution by 6023 (SE: 125). Using the RHS results in a better model
fit than using either of the other two distributions. Second, we turn to predictive accuracy: how often do
predictions equal the observed values of democracy indicators? Here, too, the RHS performs better than
the other specifications. Overall, the predictive accuracy using the RHS is 62.9% (95% credible interval:
62.6%–63.2%). It is 61.7% (95% ci: 61.4%–62%) for the t-distribution and 58.5% (95% ci: 58.2%–58.8%)
for the standard normal distribution. A breakdown by indicator is provided in Figure 11 in the SI. Using
the RHS results in a higher predictive accuracy than using the other two priors.

Third, we revisit the two countries discussed by RKF: the Philippines and Afghanistan (Figure 3).
The countries exhibit longer periods of stasis (e.g., after the Marcos regime in the Philippines) as well as
rapid change (e.g., the Saur Revolution in Afghanistan). Both the RHS and the t-distribution more aptly
recover abrupt large changes in latent democracy scores than the normal distribution does. In addition,
the RHS appears to have narrower credible intervals than the t-distribution does in some periods of
stability (e.g., before and after the Marcos regime).

What if we consider the results of all country-year observations rather than this selection? We turn
to this in Figure 4 in which we compare the magnitude of year-over-year changes in countries’ mean
democracy scores and the credible intervals of their scores between models. We subtract the values
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Figure 3. Trajectories of the Philippines and Afghanistan (1946–2008; mean and 95% ci).
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Figure 4. Year-over-year changes and credible intervals by model.

from the standard normal and t-distribution specifications from those based on the RHS. There is little
systematic difference in the year-over-year changes across models (panel (a)). In contrast, the credible
intervals of the RHS are systematically smaller than those of either other distribution (panel (b)). On
average, the intervals of the RHS are 44% the size of those using the standard normal distribution, and
73% of those based on the Student’s t-distribution. If researchers use estimates from similar models in
further explanatory models and take measurement uncertainty into account (as suggested by Tai et al.
2024), then the RHS will produce less variance and more precision to begin with.

5. Conclusion

In this letter, we introduce the regularized horseshoe as a prior to political science, and discuss its
theoretical and empirical utility in the domain of dynamic latent variable models where periods of stasis
can be interrupted by moments of rapid change. In our replication of RKF, the RHS prior performed
better than either the standard normal or the Student’s t-distribution. The use of the RHS leads to more
accurate and precise estimates as well as better model fit.

Our substantive focus has been on modeling countries’ democracy scores over time. It is likely that
the RHS prior would perform similarly well in other areas where dynamic processes are characterized
by a punctuated equilibrium such as, e.g., the trajectories of party positions, public opinion, or
budgetary allocations. In addition, due to its sparsity-inducing nature, the RHS could be a candidate
for applications where researchers wish to find a balance between a model’s flexibility and rigidity via a
prior distribution, such as in the case of differential item functioning (see, e.g., Binding, Koedam, and
Steenbergen 2024).
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