DEGREES OF VERTICES IN A FRIENDSHIP GRAPH

BY
ANTON KOTZIG

Abstract

A friendship graph is a graph in which every two distinct vertices have exactly one common adjacent vertex (called a neighbour). Finite friendship graphs have been characterized by Erdós, Rényi and Sós [2]: Each finite friendship graph F_{n} which consists of n edge disjoint triangles such that all $n>1$ triangles have one vertex in common (F_{1} is a triangle i.e. the complete graph with three vertices). Thus F_{n} has $2 n+1$ vertices, $2 n$ of them being of degree two and the remaining one (the common vertex of n triangles if $n>1$) being of degree $2 n$.

Infinite friendship graphs have been constructed by Chvátal, Kotzig, Rosenberg and Roy O. Davies [1]. The purpose of this paper is to prove the following theorem on degrees of vertices in an infinite friendship graph G :

Theorem. Let G be a friendship graph. Then either G contains a vertex which is adjacent to each other vertex of G and then each other vertex of G is of degree two or G does not contain any such vertex and then each vertex of G is of infinite degree.

The graphs considered in this paper are undirected, without loops or multiple edges and we use throughout this paper the following notation: If G is a graph and u and v are vertices in G, then we denote by $V(G)$ (or $E(G)$, respectively) the vertex-set (or edge-set, resp.) of G, by $d_{G}(u)$ the degree of u in G and by $\delta_{G}(u, v)$ the distance between u and v in G. If u is a vertex of $V(G)$ then N_{u} denotes the neighbourhood of u, i.e. the subgraph of G such that $V\left(N_{u}\right)=\left\{x \mid \delta_{G}(u, x)=1\right\}$ and $E\left(N_{u}\right)$ contains all the edges and only edges $[x, y]$ of $E(G)$ with the property that $\{x, y\} \subset V\left(N_{u}\right)$. (If an edge $e \in E(G)$ is incident to the vertices x and y then we put $e=[x, y]$). In a friendship graph any two vertices $u \neq v$ have exactly one common neighbour which will be denoted by $c_{u, v}$. One can easily show the following trivial consequences of the definition of a friendship graph:

Lemma 1. The smallest friendship graph is isomorphic to a triangle. Let G be a friendship graph with $|V(G)|>3$. Then (i) G is of diameter two; (ii) G does not contain any circuit of length four; (iii) each edge of G belongs to exactly one triangle. (= circuit of length three).

[^0]Corollary 1. A friendship graph G is uniquely decomposible into triangles. If G contains a vertex v of finite degree, then $d_{G}(v) \equiv 0(\bmod 2)$.

Corollary 2. The neighbourhood $N_{v}=F$ of each vertex v of a friendship graph G is a 1-regular graph (in sense of Harary [3], because we have for each $w \in V(F)$ that the vertices v and w have exactly $d_{F}(w)$ common neighbours in G; thus $d_{F}(w)=1$ for each w of $V(F)$).

Lemma 2. If G is an infinite friendship graph and x a vertex of G with $2<d_{G}(x)=$ $2 n<\infty$, then each neighbour of x is of infinite degree.

Proof. Clearly (see corollary 1) x belongs to exactly n edge disjoint triangles $T_{1}, T_{2}, \ldots, T_{n}$. Denote by $2 i-1$ and $2 i(i=1,2, \ldots, n)$ the vertices of T_{i} different from x. If we put $X_{k}=\left\{u \mid \delta_{G}(u, x)=k\right\}$ then we easily obtain: $X_{0}=\{x\} ; X_{1}=$ $\{1,2, \ldots, 2 n\} ; X_{0} \cup X_{1} \cup X_{2}=V(G)$ (remember that G is of diameter two-see Lemma 1 , (i)); $\Rightarrow\left|X_{2}\right|=\infty$. Each vertex w of X_{2} has exactly one neighbour $c_{x, w}$ in common with x and clearly $c_{x, w}$ belongs to X_{1}. Denote by $W_{i}(i=1,2, \ldots 2 n)$ the set of all vertices in X_{2} adjacent to the vertex i of X_{1}. Then obviously $W_{1} \cup$ $W_{2} \cup \ldots \cup W_{2 n}=X_{2}$ and $W_{i} \cap W_{j}=\varnothing$ if $i \neq j$ (because G does not contain any circuit of length four-see Lemma 1, (ii)). From $\left|X_{2}\right|=\infty$ we obtain: At least one set W_{i} is infinite. Without loss of generality we can suppose that W_{1} is an infinite set $\left(\Rightarrow d_{G}(1)=\infty\right)$. Let a, b and y be vertices of G such that $\{a \neq b\} \subset W_{1}$ and $y \in\{3,4, \ldots, 2 n\}$. Then $c_{a, y} \neq c_{b, y}$ (because otherwise a and b have, in addition to 1 , a common neighbour $c_{a, i}=c_{b, y}$, which is not possible in G). This implies: W_{y} is infinite for each $y \in\{3,4, \ldots, 2 n\}$ and by the same argument (considering another infinite set W_{y}, say W_{3}, instead of W_{1}) we obtain as well $\left|W_{2}\right|=\infty$. Thus each one of the sets $W_{1}, W_{2}, \ldots, W_{2 n}$ is infinite and $d_{n}(i)=\infty$ for each $i \in$ $\{1,2, \ldots, 2 n\}$, Q.E.D.

Lemma 3. Let x and v be two adjacent vertices both of infinite degree in a friendship graph G. Then each neighbour of x (or of v, respectively) is of infinite degree.

Proof. If we put $X_{k}=\left\{u \mid \delta_{G}(u, x)=k\right\}$ (as in the proof of Lemma 1) then again $X_{0} \cup X_{1} \cup X_{2}=V(G) ; X_{0}=\{x\}$ but in this case X_{1} as a infinite set. Denote by u the third vertex of the triangle which contains the edge $[x, v]$. Then $\{u, v\} \subset X_{1}$ and if we denote by W_{t} the subset of the set X_{2} containing all the vertices of X_{2} adjacent to $t \in X_{1}$ we obtain (by the same argument as in the proof of Lemma 2): [W_{v} is a infinite set] $\Rightarrow\left[W_{t}\right.$ is a infinite set for each $t \in X_{1}$ with only one eventual exception $t \neq u] \Rightarrow$ (if we replace v by $t \in\{u, v\} t \in X_{1}$) [also W_{u} is infinite set].

Thus: each neighbour of x is of infinite degree and (by the same argument) each neighbour of v is of infinite degree. This proves the lemma.

Corollary 3. A vertex of an infinite friendship graph is either of degree two or of infinite degree. SIf we suppose that the vertex x of an infinite friendship graph is
of degree $2<d_{G}(x)<\infty$, then we have $d_{G}(u)=\infty=d_{G}(v)$ for each edge $[u, v]$ belonging to a triangle which contains x, where $u \neq x \neq v$ (see Lemma 2). But then (according to Lemma 3) x must be of infinite degree, which is a contradiction of our supposition. Thus x cannot be of a finite degree greater than two .

The proof of the Theorem. The theorem is clearly true for finite friendship graphs. Therefore we may suppose that G is infinite. Let $\{u, v, w\}$ be the vertex-set of a triangle of G. Then according to Corollary 3-we have: $d_{G}(x) \in\{2, \infty\}$ for each $x \in\{u, v, w\}$ and $d_{G}(u)+d_{G}(v)+d_{G}(w)=\infty$ (because G is connected and has more than three vertices). According to Lemma 3 we easily obtain: $\left[d_{G}(u)=d_{G}(v)=\right.$ $\infty]=>\left[d_{G}(w)=\infty\right]$ and therefore the number of vertices of infinite degree in the triangle must be odd. If exactly one vertex of $\{u, v, w\}$ (say v) is of infinite degree then each neighbour of v is of degree two (otherwise u and w must be of infinite degree according to Lemma 3, which contradicts our assumption). Then v is the common vertex of an infinite set of edge disjoint triangles and G is the union of them.

This proves the theorem if there exists a triangle $\{u, v, w\}$ in which exactly one vertex of every triangle has infinite degree and it is nothing to prove.

If conversely G contains a vertex x adjacent to any other, then the validity of the theorem for this case follows from Corollary 2.

References

1. V. Chvátal, A. Kotzig, I. G. Rosenberg and Roy O. Davies, There are $2^{N} \propto$ friendship graphs of cardinal $2^{\mathbb{N}} \propto$ (submitted to Canadian Mathematical Bulletin, September 1974).
2. P. Erdös, A. Rényi and V. T. Sós, On a problem of graph theory, Studia Math. Hungar. 1 (1966), 215-235.
3. F. Harary, Graph theory, Addison-Wesley, Reading, 1969.

Centre de Recherches Mathématiques,
Université de Montréal, Québec, Canada

[^0]: Received by the editors November 13, 1974 and, in revised form February 17, 1975. Research supported by Grant DGES-FCAC-74.

