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DEGREES OF VERTICES IN A FRIENDSHIP 
GRAPH 

BY 
ANTON KOTZIG 

ABSTRACT. A friendship graph is a graph in which every two 
distinct vertices have exactly one common adjacent vertex (called a 
neighbour). Finite friendship graphs have been characterized by 
Erdôs, Rényi and Sôs [2]: Each finite friendship graph Fn which 
consists of « edge disjoint triangles such that all n>\ triangles have 
one vertex in common (Fx is a triangle i.e. the complete graph 
with three vertices). Thus Fn has 2«+1 vertices, 2« of them being of 
degree two and the remaining one (the common vertex of n triangles 
if n>\) being of degree 2n. 

Infinite friendship graphs have been constructed by Chvâtal, Kotzig, Rosenberg 
and Roy O. Davies [1]. The purpose of this paper is to prove the following theorem 
on degrees of vertices in an infinite friendship graph G: 

THEOREM. Let G be a friendship graph. Then either G contains a vertex which 
is adjacent to each other vertex of G and then each other vertex of G is of degree 
two or G does not contain any such vertex and then each vertex of G is of infinite 
degree. 

The graphs considered in this paper are undirected, without loops or multiple 
edges and we use throughout this paper the following notation: If G is a graph 
and u and v are vertices in G, then we denote by V(G) (or E(G), respectively) 
the vertex-set (or edge-set, resp.) of G, by dQ(u) the degree of u in G and by ôG(u, v) 
the distance between u and v in G. If u is a vertex of V(G) then Nu denotes the 
neighbourhood of w, i.e. the subgraph of G such that V(Nu)={x\ô0(u, x ) = l } 
and E(NU) contains all the edges and only edges [x, y] of E(G) with the property 
that {x9 y) <= V(NU). (If an edge e e E{G) is incident to the vertices x and y then 
we put e=[x,y]). In a friendship graph any two vertices u^v have exactly one 
common neighbour which will be denoted by cUiV. One can easily show the fol
lowing trivial consequences of the definition of a friendship graph: 

LEMMA 1. The smallest friendship graph is isomorphic to a triangle. Let G be a 
friendship graph with \V(G)\>3. Then (i) G is of diameter two; (//) G does not 
contain any circuit of length four; (iii) each edge of G belongs to exactly one tri-
angle. (=circuit of length three). 
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COROLLARY 1. A friendship graph G is uniquely decomposible into triangles. 
If G contains a vertex v of finite degree, then dG(v)=0(mod2). 

COROLLARY 2. The neighbourhood NV=F of each vertex v of a friendship graph 
G is a l-regular graph (in sense of Horary [3], because we have for each w e V(F) 
that the vertices v and w have exactly dF(w) common neighbours in G; thus dF(w)=\ 

for each w of V(F)). 

LEMMA 2. If G is an infinite friendship graph and x a vertex of G with 2<dG(x) = 
2#< oo, then each neighbour of x is of infinite degree. 

Proof. Clearly (see corollary 1) x belongs to exactly n edge disjoint triangles 
Tl9 T2,. . . , Tn. Denote by 2/-1 and 2/ ( / = 1 , 2 , . . . , « ) the vertices of Ti different 
from x. If we put Xk={u\ôG(u, x)=k} then we easily obtain: X0={x}; X1= 
{1 ,2 , . . . , 2n}; X0 U Xx U X2=V(G) (remember that G is of diameter two-see 
Lemma 1, (/)); =>|X2| = oo. Each vertex w of X2 has exactly one neighbour cxw 

in common with x and clearly cXtW belongs to Xx. Denote by Wi(i=l929. . . 2n) 
the set of all vertices in X2 adjacent to the vertex / of Xx. Then obviously Wl U 
W2 U . . . U W2n=X2 and Wt n W~0 if ij£j (because G does not contain any 
circuit of length four-see Lemma 1, (#)). From |Z2 | = oo we obtain: At least one 
set W{ is infinite. Without loss of generality we can suppose that W1 is an infinite 
set (=>dG(l)=co). Let a, b and y be vertices of G such that {a^fy^Wx and 
y e {3,4,. . . , 2ri). Then cay^chiV (because otherwise a and b have, in addition to 
1, a common neighbour catX=cby, which is not possible in G). This implies: Wy 

is infinite for each y e {3,4, . . . , 2n} and by the same argument (considering 
another infinite set Wy9 say Wz, instead of W-Ù we obtain as well \W2\ = oo. Thus 
each one of the sets Wu W2, . • • , W2n is infinite and dn(i)= oo for each ie 
{1,2, . . . ,2/2},Q.E.D. 

LEMMA 3. Let x and v be two adjacent vertices both of infinite degree in a friend
ship graph G. Then each neighbour ofx (or ofv, respectively) is of infinite degree. 

Proof. If we put Xk={u\ôG(u, x)=k} (as in the proof of Lemma 1) then again 
X0 U Xx U X2=V(G); X0={x} but in this case X1 as a infinite set. Denote by u 
the third vertex of the triangle which contains the edge [x, v]. Then {u, v}(^X1 

and if we denote by Wt the subset of the set X2 containing all the vertices of X2 

adjacent to t e Xx we obtain (by the same argument as in the proof of Lemma 2) : 
[Wv is a infinite set]=>[^ is a infinite set for each t eX1 with only one eventual 
exception ^w]=>(if we replace v by t e {u, v} t G XJ [also Wu is infinite set]. 

Thus: each neighbour of x is of infinite degree and (by the same argument) 
each neighbour of v is of infinite degree. This proves the lemma. 

COROLLARY 3. A vertex of an infinite friendship graph is either of degree two or 
of infinite degree. {If we suppose that the vertex x of an infinite friendship graph is 
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of degree 2<dG(x)<co, then we have dG(u)=co=dG(v) for each edge [u,v] be
longing to a triangle which contains x, where u^x^v (see Lemma 2). But then 
(according to Lemma 3) x must be of infinite degree, which is a contradiction of 
our supposition. Thus x cannot be of a finite degree greater than two}. 

The proof of the Theorem. The theorem is clearly true for finite friendship graphs. 
Therefore we may suppose that G is infinite. Let {«, v9 w} be the vertex-set of a 
triangle of G. Then according to Corollary 3—we have: dG(x) e {2,oo} for each 
x e {u, v, w} and d0(u)+dG(v)+dG(w)= oo (because G is connected and has more 
than three vertices). According to Lemma 3 we easily obtain: [dG(u)=dG(v)= 
c°] = > [rf(j(iv)=oo] and therefore the number of vertices of infinite degree in the 
triangle must be odd. If exactly one vertex of {u, v, w} (say v) is of infinite degree 
then each neighbour of v is of degree two (otherwise u and w must be of infinite 
degree according to Lemma 3, which contradicts our assumption). Then v is the 
common vertex of an infinite set of edge disjoint triangles and G is the union of 
them. 

This proves the theorem if there exists a triangle {u, v9 w} in which exactly one 
vertex of every triangle has infinite degree and it is nothing to prove. 

If conversely G contains a vertex x adjacent to any other, then the validity of 
the theorem for this case follows from Corollary 2. 
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