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Abstract

We give a sharp lower bound for the first eigenvalue of the Dirichlet eigenvalue problem on a
domain of a complex submanifold of a Kaehler manifold with curvature bounded from above.
The bound on the first eigenvalue is given as a function of the extrinsic outer radius and the bounds
on the curvature, and it is attained only on geodesic spheres of a space of constant holomorphic
sectional curvature embedded in the Kaehler manifold as a totally geodesic submanifold.

1991 Mathematics subject classification (Amer. Math. Soc): primary 58 G 20; secondary 58 G
30,53 C 21.53C 55.

1. Introduction

Given a compact connected n -dimensional Riemannian manifold V with bound-
ary 8V, let Xi(V) be the first eigenvalue of the Dirichlet eigenvalue problem

A / = Xf on V and / = 0 on dV.

For V a domain in a Riemannian manifold, many interesting comparison
theorems for Ai(V) have been proved in the last years. Many of them can be
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found in [2], where many references are given. In [5] a comparison theorem
has been given for domains in Kaehler manifolds. In [3, Corollary 3], and [12,
Corollary C], Cheng, Li, and Yau, and Markvorsen, get a comparison theorem
for X.\(V), where V is a domain in a minimal submanifold of a manifold with
sectional curvature bounded from above. We prove here a similar result by
restricting the family of pairs (manifold, submanifold), and getting a greater
lower bound for A.) (V).

Let M be a Kaehler manifold of real dimension In, with Riemannian metric
( , ), and almost complex structure J, and let p be a point of M. Let y(t)
be a geodesic starting from p, parametrized with respect to its arc length. We
shall consider, on the orthogonal complement {y'(0}x of y ' (0 in Ty^M, the
operators 5 (0 , the Weingarten map of a geodesic sphere of centre p and radius r,
and R(t), the curvature operator along y (t), as in [6, page 37]. Let us denote by
Sx(t) and R),(t) the corresponding operators on the complex space form K"(X)
of constant holomorphic sectional curvature 4A. (IK" (A.) = CP"(X) if A. > 0 and
DC"(A.) = €H"(X) if X < 0). Let us denote also by 5(0 , R(t), 5x(0, RdO the
symmetric bilinear forms associated to these operators and the metrics on M or
DC" (A.).

Given two quadratic forms, A and B, we shall say that A > B if A — B is
positive semidefinite.

Let P be a complex submanifold of M of real dimension 2q, £2 a compact
domain in P, p e Q, and let rp : P -*• R be the extrinsic distance to p
(jrp(x) — d(p,x), where d is the distance function in M). The extrinsic outer
radius of Q at p is defined by

a — sup{rp(z), z e Q}.

The extrinsic ball of centre p and radius a is defined by Br{p) = [m e P |
fp(m) 5: a)- Obviously, £2 c Ba(p). B^q will denote a geodesic ball of radius
a in DC*(A.).

In this paper we shall prove the following theorem:

THEOREM 1.1. Let M, P, Q, p and a be as above. Let us assume that on
every geodesic y(t) of M starting from p, R(t) < Rk(t)- Ifcut(p) (1 Ba(p) = 0
(and a < 7r/(2VX) ifX > 0), then

(1.1) #

Moreover, if the equality holds Q is holomorphically isometric to a geodesic
ball of radius a in K*(A). If the hypothesis R(t) < /?x(0 holds for every p e Q,
then the equality in (1.1) implies also that Q is totally geodesic in M.
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REMARK. This result is also valid if we take as a the infimum of the extrinsic
outer radii at p, p e Q, and the hypothesis R(t) < Rx (t) holds for every p e Q.

Similar results for intrinsic balls are easier to prove. However, since the
extrinsic outer radius is always less than the intrinsic one, the bounds obtained
are worse.

After stating the result an immediate question arises: does there exist a
Kaehler manifold M satisfying R(t) < R>,(t) and such that the supremum of
the sectional curvature of M is greater than X? In Section 4 we shall give a few
examples of such manifolds for A. > 0.

2. Preliminary results

LEMMA 2.1. Let M be a Kaehler manifold of real dimension 2n, p 6 M, and
y(t), R(t), S(t), Rk(t), Sk(t) as in Section 1. If R(t) < Rk(t), then

(2.1.1) S(t) < 5,(0

for every t € (0, conj Am)), where conjy(/w) is the first t e 0&+ such that y(t) is
a conjugate point ofm along y.

Moreover, the equality in (2.1.1) for t e (0, r), r < cut(m), implies the
existence of a holomorphic isometry between Br{m) and B\n which takes Sr(m)
ontoSx

r
n = 3Br

An.

PROOF. The inequality (2.1.1) is a consequence of [13, Theorem 5]. The
characterization of the equality follows from [11, Theorem 8] or [4, Proposi-
tion 2.5].

LEMMA 2.2. ([9] or [7]) Hessrp(X,Y) = ^ ^ ( X , Y) = -(S(rp)X,Y),
where V is the covariant derivative in M and Hess is the Hessian acting on
functions.

LEMMA 2.3. ([8]) Let P and M be as above, g : M ->• Ra smooth function,
f = g\P the restriction ofgtoP, and a the second fundamental form of P in M
(with the sign convention given in [10] and [6]). IfV is the covariant derivative
in P and V the covariant derivative in M, then

V2/(X, Y) = V g(X, Y) + (grad g, a(X, Y)),

where grad means the gradient in M.
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From Lemmas 2.2 and 2.3 and the fact that P is a complex submanifold, we
get _
(2.4) Arp = Arp

where A (respectively A) is the Laplacian in P (respectively the trace in T P of

PROPOSITION 2.5. Assume that R(t) < Rx(t) and that s : K+ -»• R+ is a
monotone increasing function. Then, denoting rp by r,

(2.5.1) A(s o r) < | grad rT\ (-s"(r) - (2/x - v)s'(r)) + 2q^(r)s\r),

where

-v
/Xcot(VXr) ifk > 0

-N/lXIcoth(x/jX|'-) ifk < 0 '

-2N/Icot(2VXr) ifX > 0

ifk < 0

and grad rT w the component of the vector grad r tangent to P.

PROOF. First let us recall ([6, page 138]) that

(2.5.2) Sx(r)X = /x(X - {X, Jdr)Jdr) + v(X, Jdr)Jdr.

Given a point p e P, let {E, }*1, be a set of unit vectors such that V£. Ej (p) —
0 and {Ei(p), • ••, E^ip)} is a 7-orthonormal basis of TpP. Then, from (2.2),
(2.3) and the fact that P is a complex submanifold, we get

2q _ ^ _
- £ (V£,grad (5 o r), £,-) (p) = - J ] (V£/3r, £,) (p)

2?

JS 2,

(2.5.3) = - ^ " ^ ( g r a d r, £,-) + 5 ' ^ (S(r)£/t £,) (p).

I JI ,=1 ,=1 J

where grad means the gradient in P. But from (2.1) and (2.5.2),
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2-7

S(r)(Et - (£,, dr)dr), Ei) + (E,, dr)(S(r)dr, Ei)](p)

1 = 1

(Ei - (Eit dr)dr - (Et, Jdr)Jdr)

2q

(2.5.4) < J^ (ji(r)\Ei - (Ei, 3r)3r - (E,, Jdr)Jdr\\p)
1=1

+ v(r)\(Ei,Jdr)\
2(p))

lq 2q

= J2 (1 " (Ei, dr? ~ (JEi, dr)
2)(p)ix(r) + ^(JE,, dr)

2(p)v(r)
1=1 1=1

lq 2q

f f= 2qii(r) - 2 J2 (g?ad" r, E,f n(r) + J^ (§^d r, Etf v(r)

And the result follows from (2.5.3) and (2.5.4) and the hypothesis s' > 0.

Now, if the function s satisfies

(2.6) s" + (2/i - v)s' = 0,

then (2.5.1) simplifies to become

(2.7) A(s o r) < 2qfi(r)s'(r).

3. Proof of Theorem 1.1

Since Q C Ba(p), we have ([2, page 18]) that Xi(Q) > ki(Ba(p)), and the
equality implies that £2 = Ba(p). Then, it is enough to prove the theorem for

n = *a(p).
Let 0 be the eigenfunction of (1.1) corresponding to ki(B^q). It is well

known ([ 1 ]) that it is a radial function, and that we can take it positive. Then we
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can write (f>(y) = (f>(d(x, y)), and define 0 on £2 by <p(m) = <p{rp{m)). Now,
using the inverse function of s, we can consider 0 as a function of s as well
as a function of rp. By a computation similar to (2.5.3), and denoting by " the
derivative with respect to s and by ' the derivative with respect to r, we get:

\ I J L ' AA0(s o rp (y)) = - 0 " J2(grad r, £,) + 0'Ar

= —<j>sa YJ (grad r, Ej) + 0 I —5" YJ (grad r, £,) + 5'Ar
»=i \ »=i y

= — 0V2 /_, (grad r, £,) + 0A5
1=1

If
(3.1) 0 > O and 0 < 0,

and (2.6) holds, then

(3.2) >-0V2-

where we have used (2.7) in the second inequality.
A solution of (2.6) is

s =

-tam%/Ir)

- tanh(y/\k\r)

- p log cos(Vkr) if A > 0

•= log cosh(y/\X\r) if X <0.
2sfX

(3.3)
The second inequality in (3.1) follows, since

(3.4) 0 = 0 ' - < 0,
s'

for s' > 0 and 0' < 0 (cf. [1]). If we prove the first, we have (3.2), and then, by
Barta's lemma ([2, page 70]), we get X i(Ba(p)) > infn(A0)/0 > A,(B^?) = X\
if 0 is strictly positive in the interior of Ba(p), which is true by [1]. Then it is
sufficient to prove that 0 > 0.

By differentiating (3.4), taking account of (2.6), we get

(3.5)
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On the other hand, from (2.5.3) and the expression of S(r) in K?(A) we get

(3.6) - <j>" + ((2q - 2)fi + v)(t>' = AM</> = Xtf.

Then

(3.7) 4> = \(-Xc
l(t> + 2qtx<p').

Since (/> is radial, we must have (see also [1])

(3.8) (/>'(0) = 0.

Let us first consider the case A > 0. From (3.6) it follows that

VA lim 1 -

whence

(3.9) </>"(0) = - ^ - 0 ( 0 ) < 0.

By differentiating (3.6) we get

1 0 ) ^ W | ^2(^-l)cos2(VAr) + l A / R 2< ?cos(VAr)-l „
— <p +A — ——</> — VA — -=—0 — kxq).

sin2(v Ar) cos2(v Xr) sin(VA/") cos(v Ar)
Let us define

(3.11)
tan(Vkr)'

By computing limits for r —> 0, using l'Hopital rule and (3.9), we get

r
g(0) = A^(0) + 2^VA lim1 ^ o

m =
o VX(l+tan2(VA/"))

(3.12) =

By differentiating (3.11), and using (3.6),
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We now take limits when r ->• 0, and use (3.8) to get

|(0) = -2^(0).

Hence,

(3.13) ^ ( 0 ) = 0.
or

The second derivative of g is

d2g <t>'" <t>"
— = X\<p" -

<t>'

and from this expression, (3.6) and (3.10), we get

2q ) . ^
sm2(*jXr)

Since g(0) = 0 and dg/dr(0) = 0 we get, by l'Hopital rule,

0(0) = X#"(0) - 2^N/XA^"( 0

whence

(3.14) 0(0)

and from (3.5), using l'H6pital rule again,

A similar computation gives 0(0) > 0 for X < 0.
Let 50 be the first positive zero of 4>. Since 0(0) > 0, <p{s) > 0 for 5 < s0,

(p has either a maximum or a inflexion point at s0- On the other hand, by
differentiating (3.2), we get

X\<}> = -$sa + 24>(-s" + fiqs').

Then, from (2.11) and the fact that <f>' < 0, we have

0,
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which implies that <p has a minimum at s0, in contradiction with the foregoing
assertion. Then (/)(s) > 0 for every s. This completes the proof of (3.1).

If A.!(£2) = kiiBj;'''), then </> must be a A.i(£2)-eigenfunction ([3, page 1057])
and (3.2) must be an equality, which implies that grad r is tangent to P (that
is, all the geodesic segments of M starting from P and reaching a point m in £2
are in P) and S(r), restricted to the intersection of the geodesic sphere dBr(p)
of centre p and radius r in M and P, is equal to 5x,9(r), the Weingarten map
of a geodesic sphere in DC (A.). Moreover, if Sp(r) is the Weingarten map of
8Br(p) fl P in P and N is the unit normal vector to dBr(p) n P in P, we have

(Sp(r)X, Y) = (VXY, N) = (VXY - a(X, Y), N) = (S(r)X, Y),

because a(X, Y) is orthogonal to P and N is tangent to P. Then, Sp(r) =
S\,q(r), which implies ([11], [4]) that £2 — Ba(p) is holomorphically isometric
to 'f i^.

Now, from Gauss equation, if Rp is the curvature tensor of P,

Ry'Xy'X = RyXyX + <<*(*, / ) , «(X, / )> - <«(/ , / ) , «(X, X))

(3.15) = / ? ; , x / x + <a(X, y'),

But /?(0 < Rk(t) and, from the equality, R(t) = Rx(t) - Rp(t). Then,
a(X, y') = 0 for every X, that is, (L^X, y') = 0, for every f orthogonal to
P, and every X tangent to P. If the hypothesis R(t) < /?x(0 holds for every
p € Q, then, from (3.15) and the fact that Rp(t) = Rx(0, we get R(t) — Rk(t)
and a(X, y') — 0 for every p in £2, and then a = 0 on £2.

4. Bounds for the sectional curvatures of Km(v) x Kr(v)

Within this paragraph, k > 0. Let us consider M = Km(v) x Kr(v),
p = (a,b) € DC(v) x Kr(v), and a geodesic y(t), starting from p, with
y'(t) = A(t) + B{t), and Jy'it) = 7iA(0 + / 2 B(0, where A(0 (respectively
B(f)) is tangent to Km(v) (respectively Kr(v)), Jx (respectively J2) being the
complex structure on Km(v) (respectively Kr(v)). Let X be a unit vector field
along y, orthogonal to y', and let us write X = X\ + X2, where X\ (respectively
X2) is tangent to Km{v) (respectively Kr(v)). Then Xx = iiiJ^A + Yx and
X2 — iijJiB + Yi, with Y\ (respectively Y2) orthogonal to J\A (respectively
J2A), and

(R(t)X,X) = (R(.t)(Xi + X2), Xt + X2) = RAXlAXl + RBXlBXl

= RAHIJIAAIUJIA + RAY^AYI + R B mhB B inhB + RBY2BY2
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<4v (/i2|A|4 + nl\B\4) + v(\Yl\
2 + \Y2\

2) = f,

since \y'\ — 1 and |X| = 1 imply that |A|,|fl|, 1̂ 1 and \Y2\ are less than or
equal to 1. Similarly,

+ H2\B\2)2 + k(\Y,\2 + \Y2\
2) = g.

Then we have to study the values of v < k for which g — f > 0, but

g-f>h = k ^ 4 2 4 2 2

then it will be enough to prove that h > 0 for those values of v.
Since y' and X are unit vectors, we have

H2
X\A\2 + n\\B\2 < 1 and |A|2 + |fl|2 = 1.

If we put \A\ = cosw, \B\ — sinu,fii\A\ — a,fx2\B\ = fi,h will be nonnegative
if the infimum of the function

h(a, P,u) = k + (3k - 4v)(a2 cos2 u + 01 sin2 u) + 6ka cosufi sinu

on the domain

D = {(a, B, u)/a2 + p2 < 1 and u e [0, 2TT]}

is nonnegative.
Let w and <p be the functions defined by

w(x, y) = k+(3k-4v)(x2+y2)+6kxy and 4>(a, ft, u) = (a cos a,

then
inf h = inf w,

D
and

</>(D) = {(r COSMCOSU, rsinu sinv)/r e [0, 1], u, v e [0, 27r]}

= {(* , ;y )e l ] | 2 / l* l + b ' l < l } .

If 2v ^ 3A, the function w has only a critical point in 4>(D), which is a maximum.
Then the minimum of w is attained on the boundary of <f>(D). If we evaluate
w on this boundary, we see that the minimum of w is attained at the points
( -1/2 , 1/2) and (1/2, -1 /2 ) , and its value is k — 2v, then it is nonnegative for
v < k/2. Then
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PROPOSITION 4.1. The manifolds Km(v) x Kr(v), with m+r = n and A./4 <
v < X/2 satisfy the condition R(t) < Rx(t) and the maximum value of their
sectional curvatures is 4v > A.
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