PERFECT CODES IN THE GRAPHS O_k AND $L(O_k)$

by D. H. SMITH

(Received 26 April, 1979)

In [6] the question of the existence of perfect e-codes in the infinite family of distance-transitive graphs O_k was considered. It was pointed out that it is difficult to rule out completely any particular value of e because of the difficulty of working with the sphere packing condition. For e = 1, 2, 3 it can be seen from the results of [6] that the condition given by the generalisation of Lloyd's theorem is satisfied for infinitely many values of k. We shall show that this is not the case for e = 4 and we shall prove that there are no perfect 4-codes in O_k .

Hammond [5] has constructed perfect 1-codes in the line graphs $L(O_k)$. In fact $L(O_k)$ contains 2k-1 perfect 1-codes which form a partition of the vertex set of $L(O_k)$. We show that the codes described by Hammond are unique.

DEFINITION. The graph O_k $(k \ge 2)$ has $\binom{2k-1}{k-1}$ vertices indexed by the (k-1)-subsets of the set $\{1, 2, \ldots, 2k-1\}$. Two vertices are joined by an edge if and only if their indexing sets are disjoint.

DEFINITION. The line graph $L(O_k)$ has vertices which correspond to the edges of O_k , with two vertices of $L(O_k)$ being adjacent whenever the corresponding edges of O_k are incident.

DEFINITION. A perfect e-code in a graph Γ is a subset C of the vertices of Γ with minimum distance 2e+1 such that any vertex of Γ is at distance at most e from some vertex of C. We consider only nontrivial codes (|C|>2).

DEFINITION. Define the sequence of polynomials $\{v_i(\lambda)\}$ by $v_0(\lambda) = 1$, $v_1(\lambda) = \lambda$, $c_{i+1}v_{i+1}(\lambda) - \lambda v_i(\lambda) + b_{i-1}v_{i-1}(\lambda) = 0$ where $c_i = \lfloor \frac{1}{2}(i+1) \rfloor$ and $b_i = k - \lfloor \frac{1}{2}(i+1) \rfloor$ (i = 1, 2, ..., d-1). Let

$$x_j(\lambda) = \sum_{i=0}^j v_i(\lambda).$$

The following lemma is the generalisation of Lloyd's theorem.

LEMMA 1. [4], [6]. If O_k contains a perfect e-code, then the roots of $x_e(\lambda)$ are members of the set $\{-(k-1), (k-2), -(k-3), \ldots, (-1)^{k+1}\}$.

LEMMA 2 [6]. If O_k contains a nontrivial perfect e-code, then $k \ge (e^2 + 4e + 2)/2$ (e even) and $k \ge (e^2 + 4e + 3)/2$ (e odd).

LEMMA 3 [6]. If $\alpha \neq -1$ is a root of $x_e(\lambda)$, then so is $-\alpha - 1$. If e is odd, -1 is a root of $x_e(\lambda)$.

Glasgow Math. J. 21 (1980) 169-172.

D. H. SMITH

Now let $\bar{x}_e(\lambda) = cx_e(\lambda)$ (c constant) be a monic polynomial and consider $\bar{x}_e(-\frac{1}{2})$ which is a polynomial in k of degree [e/2]. (The use of the polynomial $\bar{x}_e(-\frac{1}{2})$ was suggested by E. Bannai.)

Consider the case e = 4. Suppose the roots of $x_4(\lambda)$ are $\alpha_1, \alpha_2, -\alpha_1 - 1, -\alpha_2 - 1$.

$$\bar{x}_4(-\frac{1}{2}) = (-\frac{1}{2} - \alpha_1)(-\frac{1}{2} - \alpha_2)(-\frac{1}{2} + \alpha_1 + 1)(-\frac{1}{2} + \alpha_2 + 1)$$

and so we have

$$16\bar{x}_4(-\frac{1}{2}) = (2\alpha_1 + 1)^2(2\alpha_2 + 1)^2 = w^2.$$
⁽¹⁾

Straightforward calculation reveals that

$$x_4(\lambda) = [\lambda^4 + 2\lambda^3 + \lambda^2(7 - 4k) + \lambda(6 - 4k) + 2(k - 1)(k - 2)]/4$$

and so the equation (1) becomes

$$32k^2 - 80k + 41 = y^2.$$
 (2)

Also since

$$7-4k = \alpha_1(-\alpha_1-1) + \alpha_1\alpha_2 + \alpha_1(-\alpha_2-1) + (-\alpha_1-1)\alpha_2 + (-\alpha_1-1)(-\alpha_2-1) + \alpha_2(-\alpha_2-1) = -\alpha_1(\alpha_1+1) - \alpha_2(\alpha_2+1) + 1,$$

we have

$$4k - 6 = \alpha_1(\alpha_1 + 1) + \alpha_2(\alpha_2 + 1)$$

and

$$2(k-1)(k-2) = \alpha_1(\alpha_1+1)\alpha_2(\alpha_2+1).$$

Hence $\alpha_1(\alpha_1+1) = 2k - 3 \pm \sqrt{(2k^2 - 6k + 5)}$. Since α_1 is an integer, $2k^2 - 6k + 5$ is a perfect square and so

$$32k^2 - 96k + 80 = z^2. \tag{3}$$

Hence if a perfect 4-code exists in O_k , equations (2) and (3) have a simultaneous integer solution and from Lemma 2, $k \ge 17$. From (2) and (3) we have $16k - 39 = y^2 - z^2$. Write $z = \gamma k > 0$. Then $(\gamma k)^2 = 32k^2 - 96k + 80$ gives $\gamma < 4\sqrt{2} < 6$ and $k \ge 17$ gives $(\gamma k)^2 > 25k^2$ so $\gamma > 5$. If we write $y = \gamma k + i$ (where *i* is a positive integer) we have $16k - 39 = 2\gamma ki + i^2$, so

$$10ki + i^2 < 16k - 39 < 12ki + i^2$$

The first inequality gives i < 2 and the second excludes i = 1. Hence we have:

THEOREM 1. There is no nontrivial perfect 4-code in O_k .

NOTE. It seems possible that a similar method would work for e = 5. The equations replacing (2) and (3) can be written

$$6(8k-11)^2-114=p^2,$$
 $3(k-2)^2+1=q^2.$

170

It is possible that the method of Baker and Davenport [1] will extend to this case, but the calculation is formidable.

Now consider the case of perfect 1-codes in $L(O_k)$. Let $X = \{1, 2, ..., 2k-1\}$ and let e-f be the edge of O_k joining vertices e and f. For any $x \in X$ let $\overline{C}_x = \{c-d \mid \{c \cup d\} = X \setminus x\}$ and C_x be the corresponding set of vertices in $L(O_k)$. Hammond [5] has shown that for each $x \in X$ the code C_x is a perfect 1-code.

THEOREM 2. The codes $C_x(x \in X)$ are the only perfect 1-codes in $L(O_k)$.

Proof. The case k = 3 is easily dealt with directly. Suppose k > 3. Let D be a code in $L(O_k)$ not isomorphic to any C_x and let \overline{D} be the corresponding set of edges in O_k . D contains vertices of C_x and C_y for some $x, y \in X, x \neq y$. Choose $x, y, p \in C_x, q \in C_y$ with $p, q \in D$ in such a way that p and q are as close as possible with $x \neq y$. Let C'_x consist of those vertices in $L(O_k)$ adjacent to vertices of C_x . Let $p, a_1, a_2, \ldots, a_n, q$ be a path of minimum length joining p and q. Clearly $a_1 \in C'_x$, $a_n \in C'_y$ but all possibilities for a_2 contradict the choice of p and q unless n = 2.

Since O_k has girth 6 (k > 3) we have two cases:

 $(a - b \in \overline{D} \text{ corresponds to } p, f - g \in \overline{D} \text{ corresponds to } q).$

Either c-e is in \overline{D} or c-e is adjacent to an edge of \overline{D} . In either case the minimum distance of D would be 2. This is a contradiction.

Case 2

 $(a-b \in \overline{D} \text{ corresponds to } p, e-f \in \overline{D} \text{ corresponds to } q).$

Then, rearranging X if necessary, we can write without loss of generality

 $a = (1 \ 2 \dots k - 1) \qquad b = (k \ k + 1 \dots 2k - 2)$ $d = (2 \ 3 \dots k - 1; 2k - 1) \qquad c = (k + 1 \ k + 2 \dots 2k - 1).$

Then it is easy to see that $f = (1; k+1 k+2 \dots 2k-2)$, $e = (2 3 \dots k)$. Then $e \cup f = \{X \setminus (2k-1)\} = a \cup b$ contradicting the fact that a-b corresponds to p and e-f corresponds to q.

D. H. SMITH

NOTE. Theorem 1 together with Theorem 2 of [6] show that there are no nontrivial perfect 4-codes in the graphs 2. O_k [6]. The modifications required to the proof of Theorem 2 for the case of perfect 1-codes in the graphs $L(2, O_k)$ are straightforward.

REFERENCES

1. A. Baker and H. Davenport, The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$, Quart. J. Math. Oxford (2), **20** (1969), 129-137.

2. N. L. Biggs, Algebraic Graph Theory Cambridge Math. Tracts No. 67, (Cambridge University Press, London, 1974).

3. N. L. Biggs, Perfect codes and distance-transitive graphs, in "Combinatorics" (Proceedings of the British Combinatorial Conference, 1973) (Cambridge University Press, London/New York 1974), 1-8.

4. N. L. Biggs, Perfect codes in graphs, J. Combinatorial Theory, Ser. B 15 (1973), 289-296.

5. P. Hammond, q-coverings, codes and line graphs (to appear).

6. P. Hammond and D. H. Smith, Perfect codes in the graphs O_k . J. Combinatorial Theory, Ser. B 19 (1975), 239-255.

POLYTECHNIC OF WALES, PONTYPRIDD, WALES