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Abstract

We will show the existence, uniqueness and regularity of global solutions for the Cauchy problem for
nonlinear evolution equations with the damping term

u"(t) + M(\A 1/2u(t)\2)Au(t) + Su'(t) = f (t) (8>0).

As an application of our results, we give the global solvability and regularity of the mixed problem with
Dirichlet boundary conditions:

u"(x, t) + (-\)kM ( £ |V*w(jt, 0l2dxj Aku(x, t) + Su\x, t) =f(x, t),

2000 Mathematics subject classification: primary 35A05, 35L70.
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1. Introduction

We consider abstract Cauchy initial value problems in a Hilbert space H for nonlinear
evolution equations of the form

[ «(0) = M0, "'(0) = «„

where the operator A and the function M(-), which satisfy convenient assumptions,
are given, and 8 > 0 is a constant.
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The problem (CP) has attracted the attention of several researchers (see [1-4,6-
10,12] and references therein) because of its intimate connection with mathematical
physics. In fact, we consider the following nonlinear partial integro-differential
equation

(1.1) u"(x,t)- (a + p ( \Du(x,t)\2dx\D2u(x,t) + Su'(x,t)=f(x,t),

for x 6 (0, 1) and t > 0, subject to the boundary conditions

(1.2) ii(0, r) = «(1, 0 = 0, t>0,

with initial conditions

(1.3) u(x, 0) = iioOO. «'(*- 0) = KiOO, x € (0, 1),

where D = d/dx, D2 = d2/dx2 and or, fi, S are positive constants.
Then it is well known that the problem (1.1)—(1.3) describes the damped small

amplitude vibrations of an elastic and stretched string (see [1,4]). Actually, the
problem (1.1)—(1.3) can be written abstractly as the problem (CP) and hence solutions
u{t) to the problem (CP) can be regarded as solutions to the problem (1.1)—(1.3) by
considering pointwise evaluation of solutions, (u(t))(x) = u{x, t).

When <5 = 0, Dickey [2] and Pohozaev [10] have shown the existence and unique-
ness of local solutions to the problem (CP) with A — —A and Ak = (—A)* by using
a Galerkin procedure, respectively (see also [6]). In case of A = —A in L2(R"), Ya-
mada [12] has shown the existence of global solutions to the problem (CP) with small
data by using an iteration procedure. Later, Ikehata and Okazawa [4] have obtained
global solutions to the problem (CP) by using the Yosida approximation method under
compactness argument and the special small initial data. We note that in this paper,
the Yosida approximation of A plays a central role in deriving some a priori estimates
of solutions to the problem (CP).

The purpose of this paper is to show the existence and uniqueness of global solutions
to the problem (CP) under the presence of the damping term Su'(t)(8 > 0). We will
study the regularity of solutions. Moreover, as a general result of Pohozaev [10],
considering an operator Ak instead of A in (CP), we will also show the existence
and the regularity of solutions. The proof of the solvability of the problem (CP) is
carried out by the Yosida approximation method. Note that result of this paper is a
relative generalization of [1] and [10,12] with A = — A in L2(£2) as a special operator.
Furthermore our study may be extended to more general situations. For example, we
can apply our methods to the generalized damped extensible beam equation of the
form:

u"(t) + A2u(t) + M(\Al/2u(t)\2)Au(t) + Su'(t) = / (f).
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The content of this paper is as follows. In Section 2, we give the abstract setting and
main results. In Section 3, we mention some useful facts about Yosida approximation
of a nonnegative selfadjoint operator. Section 4 and Section 5 are devoted to the proof
of our main results and an application for our abstract results.

2. Abstract setting and results

Let H be a real Hilbert space with an inner product (•, •) and a norm | • |. Suppose A
is a densely defined nonnegative selfadjoint linear operator in H. Then the powers of
degree y > 0 of A, Ay, may be computed via the elementary spectral calculus and are
known to be nonnegative selfadjoint operators themselves. In fact, Ay is defined by

f°°
(2.1) Ay = / XydE(k) with domain D(Ay),~i
which means that (Ayu, v) = /0°° Xy(dE(X)u, v) holds for all u e D(Ay) and v € // ,
where [E(X) : 0 < X < oo} is the resolution of the identity associated with A (for
details, see [11]).

Note that in this case, the resolution of the identity {£(X)}x>o is uniquely determined
so that Ay can be represented as (2.1) and also it is well known that D(Ay) is a real
Hilbert space with the graph norm |v|o(/U) = |v|2 + \Arv\ and for 0 < yx < y2,

(2.2) D(An) c

Now we shall consider nonlinear evolution equations of the form

(2.3) u"(t) + M(\Al/2u(t)\2)Au(t) + Su'(t) = f (t) in H,
(2.4) u{t) e D(A) for any t e [0, oo),

(2.5) H(0) = U0€ D(A), M'(0) = M, e D(Al/2).

Throughout what follows we will use the notation V := D{A) and Wt := D(A'/2),
respectively. In particular, we let W\ := W and Wo := H.

We assume the following about A, M(t), and / (r):

(A.I) A is a nonnegative selfadjoint operator and the injection from W into H is
compact.
(A.2) M (r) is a C1 [0, oo) class function satisfying M (t) > mo(mo > 0 is a constant).
(A.3) / 6 L'(0, oo; W) D L°°(0, oo; / / ) .

For the later use, we set

(2.6) M(r)= f M(s)ds, E{t) =l-[\u'{t)\2 + M (\A"2u{t)\2)].
Jo l

https://doi.org/10.1017/S144678870000313X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000313X


72 Jong Yeoul Park, II Hyo Jung and Yong Han Kang [4]

Note that E(t) may be regarded as the total energy of the problem (2.3)-(2.5) at
time t and by assumption (A.2),

(2.7) A7(r) > mor on [0, oo).

DEFINITION 2.1. A function u(t) : [0, T) -+ H is called a solution for the problem
(2.3)-(2.5) on [0, T) (T may be oo) if

(i) u € L°°(0, T; V) D BC([0, T); W), u' e L°°(0, T; W) n BC([0, T);H),
u" e L°°(0, T\H)\

(ii) u satisfies (2.3) on [0, T)\
(iii) w(0) = M0 and u'(0) = u\.

Here B C([0, T)\H) denotes the set of all //-valued bounded continuous functions on
[0, T).

Weput£>(y) := {(«0, «i,/); |«olv < YAu,\w < y, /0°° \f (t)\wdt < y). We
now state the main result.

THEOREM 2.1. Let all assumptions (A. 1)-(A.3) be satisfied and (u0, uuf)e V x
W x L'(0, oo; W). Then there exists y0 (yb > 0) satisfying the following. If

(2.8) {uo,uuf)e D(y0),

then there exists a unique solution u(t) on [0, oo) to the problem (2.3)-(2.5).

REMARK 2.1. (i) When M{t) > a + fit (a > 0, B > 0) and/(r) = 0, our
result coincides with that of [1]. Thus this may be a generalization of the result in [1].

(ii) As a special condition on D(y), Ikehata and Okazawa [4] showed that if

then there exists a unique global solution u{t) to the problem (2.3)-(2.5). Here

(2.9) Bo = V2E(0y<2 + f |/ (s)\ds,
Jo

(2.10) 5, = max {\M'(s)\ : 0 < s < B^

For the regularity of solutions to the problem (2.3)-(2.5), we have:

THEOREM 2.2. Let I e N be arbitrary and fixed. If in addition to the hypothesis of
Theorem 2.1, (u0, uuf) e WM x Wt x (L'(0, oo; W,) fl L°°(0, oo; W,_,)), then the
solution u(t) to the problem (2.3M2.5) has the following properties:
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(i) u e L°°(0, oo; WM) n BC([0, oo); W,).
(ii) «' 6 L°°(0, oo; W,) n BC([0, oo); W,_,).

(hi) u" € L°°(0, oo; ty_,).

As a direct result of Theorem 2.2, if/ is continuous on [0, oo), then we obtain the
following.

COROLLARY 2.1. Let u0 e W,+i and ux e W;. / / in addition to the hypothesis of
Theorem 2.2, / € C([0, oo); H), then the solution u(t) to the problem (2.3)-(2.5)
satisfies u e C([0, oo); W/+1) n C'([0, oo); U7,) n C2([0, oo); W;_,), (/ > 1).

REMARK 2.2. In Corollary 2.1, when / = 1, we immediately obtain the solution

u(t) such that u e C([0, oo); V) n C'([0, oo); WO n C2([0, oo); 7/).

Generalizing the above results, we can consider the following nonlinear evolution

equations of the form (see [8])

(2.11) u"(t) + M(\Ak/2u(t)\2)Aku(t) + 8u'(t) = / ( / ) i n / / ;

(2.12) u(t) e Vk(:= D(Ak)) for any t e [0, oo);

(2.13) ii(0) = uo € D(A*), ii'(0) = in € Wk(:= D(Ak'2)).

W e l e t D t ( y ) := {(«o, « i , / ) ; l«ok < y,l«iln4 < Y, J™ \f {t)\wtdt < y}. The
following results (Theorem 2.3 and Theorem 2.4) may be obtained using a similar
approach as in the proof of Theorem 2.1 and Theorem 2.2.

THEOREM 2.3. Let assumptions (A.I ) and (A.2) be satisfied, and (u0, uitf) e

Vk x Wk x ( (L ' (0 , oo; Wk) n L°°(0, oo; H7*-,)). Then there exists y0 (> 0) satisfying

the following. If (u0, U\,f) € Dk(y0), then there exists a unique solution u(t) on

[0, oo) to the problem (2.11)-(2.13) such that

(i) u e L°°(0, oo; VA)nflC([0, oo); Wk), u' e L°°(0, oo; Wk)DBC([0, oo); W7^,),
M" e L°°(0, oo; Wt_,);

(ii) M satisfies (2.3) on [0, oo);
(iii) M(0) = M0 and M'(0) — u\.

THEOREM 2.4. Lef I e M be arbitrary and fixed. If in addition to the hypothesis
of Theorem 2.3, u0 e Wk(l+lh w, € Wkh andf € L'(0, oo; Wu) D L°°(0, oo; V^^, ,) ,
then the solution u(t)to the problem (2.11)—(2.13) has the following properties:

(i) u € L°°(0, <x>; yyt(/+1)) n BC([0, OO); WU).
(ii) «' e L°°(0, oo; Wu) n BC([0, oo); W^).

(iii) «" 6 L°°(0, oo; WV,, ) .

//ere Vo = Wo = H.
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3. Preliminaries

In this section we state some useful facts about Yosida approximations of nonneg-
ative selfadjoint operators.

Define the Yosida approximation Ak of A by Ak = k~l(I — Jk) = AJkfor k > 0,
where Jk — (I + A.A)"' and / is the identity on H. Then it is well known that
\\Ak\\ < \/k (k > 0), Jk - • / strongly as k -+ 0 and so Aku -+ Au (k -* 0) for
u e D(A). Next we consider the power of degree 1/2 of Ak:

(3.1) A{/2

where Jk
l/2 = (I + kA)~l/2 and A1/2 is the power of degree 1/2 of A (see [11]). We

obtain several basic properties of the operators Jk
2 and A}/2.

LEMMA 3.1. Let k e N be a fixed number and k > 0. Then for I <j < k,

(i) II^/2H < 1 anJ |A{/ 2M| < \AJ'2u\for u 6 D(A^2);
(ii) ||A{/2|| < A-^2;

(iii) | M - J[/2U\ < J ' A 1 / 2 | A 1 / 2 « | , ue H.

Moreover,
(iv) | M - j[u\ <jk\Au\, u 6 H.

Here A[ « the power of degree y of Ak.

PROOF. Since (i) can be easily shown by the definition of j[/2 and A{/2, we will
only prove (ii), (iii), and (iv).

Let M 6 D(Ai/2) for 1 < j < k. Then we have

which implies (ii).
Now we shall prove (iii). Note that (iv) can be proved similarly (use \u — Jku\ =

k\Aku\, u e H). First, note that

(3.2) |u - Jk
/2u\ < kl/2\Ak

/2u\, ue H (see [4]).

From (i) and (3.2), we obtain for 1 < j < k,

\u-JJ
k
/2u\<j\u-Jk

l/2u\<jk1/2\Al/2u\,

which completes our proof. •

Next we introduce the Bihari-type inequality without proof (see [5]).

LEMMA 3.2. Let F and G be nonnegative continuous functions on [0, T], (T > 0).
/ / [F{t)f < C + /0' F(s)G(s)ds on [0, T], then F(t) < C1/2 + \ /„' G{s)ds on
[0, T], where C is a positive constant.
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4. Proof of theorems

4.1. Proof of Theorem 2.1 (Existence and Uniqueness). In this section we shall
prove Theorem 2.1 using the Yosida approximation. Throughout this section we let
A. > 0 be any number and Ak be the Yosida approximation of A.

First we consider the approximate problem of the following differential equation
by applying the Yosida approximation

(4.1) u"k(t) + M(\Al
k
/2uk(t)\

2)Akuk(t) + Su'k(t) = / ( r ) ,

(4.2) uk(0) = uoeV, u'k(0) = «, € W.

Using the mean value theorem for M(t), we can easily show that the mapping u —>
M{\Ak

l2u\2)Aku is locally Lipschitz continuous for each X. Then it is well known that
the problem (4.1)-(4.2) has a unique local approximate solution uk e C'([0, Tx); H)
on some interval [0, 7̂ ) and moreover, u[(t) is absolutely continuous and (4.1) holds
cue. on [0, Tk) (see [4]).

Now we shall see that uk(t) can be extended to [0, oo). To see this, we need a
priori estimates for the solution uk(t).

A priori estimates

PROPOSITION 4.1. Ifu0 e V and ux e W, then there exists a positive constant M\,
which does not depend on k such that

(4-3) IK*(f)| < Mx on [0, 71).

We need the following lemma in order to prove this result. In fact, this lemma is
shown by applying energy methods to the problem (4.1M4.2).

LEMMA 4.1. Letu0 e Vandux e W. Then thefollowing inequality holds on[0, Tk)

(4.4) sup \\u'k(t)\
2,m0\Al/2uk(t)\

2,2S I \u'k(s)\2ds\ < B0
2,

where Bo is given by (2.9) and m0 is the constant given in assumption (A.2).

PROOF. If we multiply (4.1) by 2«^(0, then we obtain a.e. on [0, Tk),

(4.5) d W ^ + M{\A[l2uk{t)\2)jt\A]!2uk{t)\2 + 25|«l(0|2 = 2(f(t), u'k(t)).

Integrating (4.5) on (0, 0, t 6 [0, Tk) and using (2.6), and (2.7) we have

(4.6) \u'k(t)\
2+m0\A

l
k
/2uk(t)\

2+2S I \u'k(s)\2ds < 2E(0)+2 [ \f (t)\\u'k(s)\ds.
Jo Jo
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If we set

/ 2

then (4.6) implies

(4.7) [F(t)]2 < 2£(0) + 2 f \f (s)\F(s)ds.
Jo

Therefore, the desired result follows by applying Lemma 3.2 to (4.7). •

PROOF OF PROPOSITION 4.1. If we multiply (4.1) by wx(r), then we have a.e. on
[0, 71),

(4.8) ^ - « ( 0 , ux(t)) - I«1WI2 + M(\Al/2u,(t)\2)\A[/2udt)\2 + ~ | M 0 l 2

at 2 at

= ( / (0 , ^ ( r e -

integrating (4.8) on (0, i), t e [0, 71) and using the Schwarz inequality, we obtain

(4.9) ^ |

Jo Jo

| |M X ( / ) | 2 + }l«I(0l2Using the inequality \u'x(t)\\ux(t)\ < | |M X ( / ) | 2 + }l«I(0l2. we obtain from (4.9)

e c

Tl«A(OI2<rl
4 2

I l « l (OI 2 + / \u[(s)\2ds+ / \f(s)\\u,(s)\ds.
o Jo Jo

From the last inequality and (4.4), we can see that

o Jo
\f(s)\\uds)\ds,

where Mx{8) := 2|«0|2 + (4/*) |MO| l«il + 6B2/S2. Therefore (4.3) follows from
Lemma 3.2. •

From Proposition 4.1, it follows that uk(t) is uniformly bounded, hence can be
extended to [0, oo).

Now we prove that ux(f) and u[(t) are uniformly bounded in V and W, respectively.

PROPOSITION 4.2. Let (M0, «i) e V x W. Then there exists y0 > 0 such that if
(2.8) is satisfied, then there exists a positive constant M2, which does not depend on
Yo such that sup,6[0oo) {\Axuk(t)\, \A[/2u[(t)\} < M2.
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PROOF. If we multiply (4.1) by 2Axu!k(t), then we obtain a.e. on \0, oo)

(4.10) j t j|A|/2«l(r)|2 + M( |A | / 2
M X (OI 2 ) |AX«, (OI 2 j + 2S\A[/2u'k(t)\

2

+ 2\A,uk(t)\
2M'(\Al/2uk{t)\2(A[/2ukU), A

Integrating (4.10) on (0, t), t e [0, oo), we have

(4.11) \Al
k
/2u'k(t)\

2 + M(\Ak
/2ux(t)\

2)\Akux(t)\
2 + 28 f \A[/2u',(s)\2ds

Jo

= |A1/2
Ml|

2 + M(|A1/2«o|2)|A«o|2 + 2 / (Al/2f(s),Al/2u'k(s))ds
Jo

+ 2 f M'{\Al/2u,(s)\2)(Al/2u'x(s), Al/2ux(s))\A,uk(s)\2 ds.
Jo

Using the Schwarz inequality, the assumption (A.2), (4.4) and (4.11), we get

(4.12) \A[/2u'k(t)\
2 + mQ\Akuk(t)\

2 + 2S f \Al
x
/2u[(s)\2ds

Jo

< \Ai/2ul\
2 + B2\Au0\

2 + 2 f \Al/2f(s)\\A[/2u'k(s)\ds
Jo

+ 2 M i f \A[/2u'x(s)\\Akuk(s)\2ds,
Vmo Jo

where Bh i = 0, 1, are the constants given by (2.9) and (2.10), respectively and B2 is
given by

(4.13) B2 := max{|M(j)| : 0 < s < B2/m0).

If we multiply (4.1) by Akuk(t), then we have a.e. in [0, oo)

A K
(4.14) -{(Al/2u[(t), A[/2uk(t)) + -\Al/2uk(t)\

2} + MQAl/2uk(t)\
2)\Akuk(t)\

2

dt 2

= \A[/2u[(t)\2 + (A[/2f (r), A[/2ux(t)).

Integrating (4.14) on (0, t), t e [0, oo) and then using (A.2), we obtain

(4.15) - \A[/2u[(t)\\Al
k
/2ux(t)\ + ^\A[/2ux(t)\

2 + m0 f \Akux(s)\2ds
*• Jo

2ds

f
Jo

f'\Al/2u'k(s)\2

Jo

https://doi.org/10.1017/S144678870000313X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000313X


78 Jong Yeoul Park, II Hyo Jung and Yong Han Rang [10]

We now assume that the data (M0, « I , / ) € D(y).
Multiplying (4.15) by 8 and adding it to (4.12), we obtain

(4.16) -\A[/2ux(t)\
2 + -(\Al/2u[(t)\ - 8\A[/2udt)\)2 + 8 I \Ax

k'
2 uk{s)\2 ds

2 2 Jo
C' / R R \

+ mo\Akuk(t)\
2 + / (mo8-2-^\A[/2u'k(s)\)\Akuk(s)\2ds

Jo V vOTo /

< \Al/2ut\
2 + B2\Au0\

2 + 5|A1/2«ij | A 1 / 2 M 0 | H \Al/2u0\
2

2

+ 2 f \A['2f (s)\\Al'2u'k(s)\ds + - ^ I \Al'2f(s)\ds
Jo \/mo Jo

<L(y) + 2 I \Al
k
/2f(s)\\A[/2u[(s)\ds,

Jo

where L(y) := y2(l + B2 + 8 + 82/2) + (8B0/^/m^)y. Once if we assume that the
inequality

(4.17) mo8 - 2^p^r \A[/2u[(t)\ > 0 on [0, oo),

holds, then we can obtain using (4.16) and Lemma 3.2

(4.18) \Ax
k
12 u'k(t)\

2 + 2mo|A;^(O|2 < V2L(y)1'2 + 2 [ \A[/2f (s)\ds

<~Uy) ( :=

Noting that L(-) is an increasing function of y and L(0) = 0, we can choose y0 > 0
such that y/L(y0) < ml/28/(2B0Bi). Hence it says that \Ak

/2u[(t)\ < y/L(y0) <
m3

0
/28/(2B0B1), that is, (4.17) is satisfied. Consequently, for (u0, uuf) 6 D(y0),

(4.17) is verified, which completes our proof. •

PROPOSITION 4.3. Let u0 e V and u\ e W. If (2.8) is satisfied, then there exists a
positive constant A/3, which does not depend on X such that \u'k'(t)\ < M-$ on [0, 00).

PROOF. If we multiply (4.1) by u'{(t), then we have a.e. on [0, 00)

K « | 2 + {M(Wk
l2uk{t)\2)Akuk{t) + 8u[(t) - f (/), <(/)) = 0.

Using the Schwarz inequality and Proposition 4.2, we obtain by (4.13) and (4.4),

K ( 0 l ^ B2M2+ 8B0 + esssup{\f(s)\ : 0 < s < 00},

where B, (/ = 0, 2) and A/2 are constants given by (2.9), (4.13) and in Proposition 4.2,
respectively. This completes our proof. •
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As a direct result of Proposition 4.2 and Proposition 4.3, we have the following:

COROLLARY 4.1. Letu0 € V and ui e W. Assume that (2.8) is satisfied. Then for
anyk > 0, {uk(-)}k, K O k , and {<(-)h are bounded in L°°(0, oo; V), L°°(0, oo; W),
and L°°(0, oo; / / ) , respectively.

Passage to the limit

In this section we establish the uniform convergence of solutions to the problem
(2.3H2.5) on finite intervals of arbitrary length as k -*• 0. In what follows we will let
T > 0 be arbitrary and let [kn]n be a sequence such that kn > 0 (n € N) and kn -> 0
as n —> oo.

LEMMA 4.2. If for any k > 0, M X () W a solution to the problem (4.1)-(4.2), then
there exist a subsequence {ukn(-)]n of[uk()}k and u(-) e BC([0, oo); H) such that

(4.19) ukn(-) -» M(-) in C([0, T]; / / ) a i n ^ oo.

Moreover, if (2.8) w satisfied, then there is a subsequence {«Mn()}n of {uka(-)}n and
«'(•) e fiC([0, oo); //) such that

(4.20) M^(-) ->• «'(•) m C([0, 7]; //) as « -> oo.

//ere r/ie convergence is uniform with respect to t e [0, T].

PROOF. First we show that for any t e [0, oo), {Jx
l^uk(t)}x is precompact in H. In

fact, we have for any t 6 [0, oo),

(4.21) \Jl'2udt)-JxJ2u^t)\w

= \Jx
l/2uk(t) - Jl'2u»{t)\ + \Al/2uk(t) - A^2«M(r)|

< lm(0l + K(t)\ + \Al
x
/2ux(t)\ + \AlJ2

Ull(t)\,

where k > 0 and fi > 0 are arbitrary.
From (4.3), (4.4), and the definition of A1/2, (4.21) implies that for any t e [0, oo),

{Jx
i/2ux(t)}k is bounded in W. Thus we see from the assumption (A.I) that for any

t e [0, oo), {Jk
1/2uk(t)}k is precompact in H. Moreover, from Lemma 3.1 (i) and (4.4),

we easily observe that {Jk
1/2uk(-))k is equicontinuous. Hence, applying the Arzela-

Ascoli theorem to {Jk
l/2uk(-)}k in C([0, T]\ H), we find a subsequence {Jk

2uK{-)}k

and M(-) e flC([0, oo); H) such that

(4.22) A ' / 2 M ) - • « O i n c ( [ ° - H ; / / ) as « -»• oo.

Noting that \ukn(t) - J^2uK(t)\ < A.y2|A^2KX,(OI (see Lemma 3.1 (iii)), we observe
that uK(-) ->• «(•) in C([0, 7 ] ; H) as n-> oo.

Noting that Jk
2u'K(-) and A| / 2«^(-) belong to fiC([0, oo); / / ) , we can also prove

(4.20) in the same way as in the proof of (4.19). •
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LEMMA 4.3. Let «(•), {Xn}n, and {(£„}„ be as in Lemma 4.2. Assume that (2.8) is
satisfied. Then «(•) e L°°(0, oo; V), «'(•) e L°°(0, oo; W) and

(4.23) Au(t) = weak lim AKuK{t) in H,
n-KX>

(4.24) Al/2u'(t) = weak lim AlJ2u' (t) in H.

Moreover, u(-) e BC([0, oo); W) and

(4.25) M ( | A 1 / 2 M ( 0 | 2 ) A M ( 0 = weak lim M(\Al
k
/2ukn(t)\

2)AKukn(t).
n-*oo "

r/ie convergence is uniform with respect to t € [0, 7].

PROOF. We note that A" is weakly closed and D(Aa) is dense in / / (a = 1, 1/2).
From Proposition 4.1 and Proposition 4.2, we observe that AkuK(-) and AMnM^()
belong to flC([0, oo);//).

Thus (4.23) and (4.24) follow from (4.19) and (4.20). We also have

(4.26) \Au(t)\ < lim inf \AKuK(t)\ < M2,
n~*oo

(4.27) \Al/2u'(t)\ < lim inf \AlJ2u' (t)\ < M2.

These imply that w(-) € L°°(0, oo; V) and «'(•) e L°°(0, oo; W). In order to prove
(4.25), we first show that «(•) e BC([0, oo); W) and

(4.28) A[/2uK(-)^ A1/2M(-) in C([0, 7] ; / / ) as n ^ oo.

From the definition of A1/2 and using the Schwarz inequality, we observe that

\Al'\K(t) - All2u{t)\2 = |A{f«Xn(OI2 - 2(Au(t), Jl^ux.it)) + |A1/2«(r)|2

= \Al/2uK(t)\2 - |A1/2«(0|2 + 2(Au(t), u(t) - Jl'n
2uK(t))

< |A^ 2 M, M (0 | 2 - |A1/2«(0|2 + 2\Au(t)\\u(t) - Jl'\K{t)\-

Thus it suffices, by (4.22) and (4.26), to show that

(4.29) (AKuK(t),ukn(t))-> (Au(t),u(t)) in C[0, T] asn->oo.

Indeed, from Lemma 3.1 (iv) and using the Schwarz inequality, we have

\(AKukn(t),ukn(t))-(Au(t),u(t))\

= \(Aknukn(t) - AKu(t), uK(t)) + (Anu(t), AuK{t)) - (A«(r), «(r))|

= \{AKuK(t), ukn(t)-u(t)) + (Au(t), JKu(t)-u{t)) + {AKu{t), uK{t)-u{t))\

< K\Au(t)\2 + (\AKukn(01
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So (4.29) follows from (4.19) and (4.26). Hence we obtain (4.28) and we also have
by (4.4)

(4.30) |A1 / 2M(0I = Km \A[/2ukn(t)\ < B0/^m^,
n-*oo "

where Bo is the constant given by (2.9), that is, M(-) 6 BC([0, oo); W). Finally, by
using the mean value theorem for Af (•), our final assertion immediately follows from
(4.4), (4.23), and (4.29). •

We are now in a position to show that M(), given by Lemma 4.2, is a solution to
the problem (2.3H2.5).

PROPOSITION 4.4. Let «(•) and {^n}n be as in Lemma 4.2. Assume that (2.8) is
satisfied. Then «"(•) e L°°(0, oo; H) and

u"(t) + M(\Al/2u(t)\2)Au(t) + Su'(t) =f{t) a.e. in H.

PROOF. From Proposition 4.3, we can observe that u'{t) is Lipschitz continuous
and so it is absolutely continuous. Hence u"(t) e L°°(0, oo; H) exists a.e. on (0, oo).
We also see from (4.1), (4.20), and (4.25) that

(4.31) / ( / ) - Su'(t) - M(\A1/2u(t)\2)Au(t) = weak lim u1' (/).
n-»oo M"

Put wn(t) := ( M ^ ( 0 - «^n(i))/(r - s) on t e [0, T]. Here s& t) is arbitrary but
fixed on [0, T]. Then clearly, lim,_,,j wn(t) — u'^(s) a.e. on (0, oo) and by virtue
of (4.20), linv+oo wn(t) = (u'{t) - u'(s))/(t - s), uniformly on [0, T]. Hence we
obtain by the continuity of (•,•),

(4.32) lim («" (s), v) = lim (lim wn(t), v) = (u"(s), v), v e H.
n—•oo n—foo t—*s

So, our assertion follows from (4.31) and (4.32). •

Uniqueness

LEMMA 4.4. Let u and v be solutions to the problem (2.3)-(2.5). If w{t) €
C1 ([0, oo), K) is a solution of

(4.33) w"(t) + M(\A1/2u(t)\2)Aw(t) + Sw'(t) = F(u(t), v(r)),

w(0) = 0, w'(0) = 0,

where \F(u(t), v(t))\ < M4\A
i/2w(t)\forall t e [0, oo) and some constant M4 > 0,

then 10 (r) = Ofor t e [0, oo).
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PROOF. If we multiply (4.33) by 2w'(t), we obtain

(4.34) ^-|u/(OI2 + M{\Amu{t)\2)^-\A"2w{t)\2 + 2S\w'(t)\2

at at
= 2(F(«(0,

Integrating (4.34) on (0, /), t e [0, oo) and using the Schwarz inequality, we obtain

\w\t)\2 + M(\Ax'2u(t)\2)\AV2w{t)\2 + 28 [ \w'(s)\2ds
Jo

/

' d f

—M(\Al/2u(s)\2) \A1/2w(s)\2ds + 2 \F(u(s), v(s))\\w'(s)\ds.
dt Jo

From (A.2), (4.27), and (4.30), this inequality yields

\w'(t)\2+mo\A^2w(t)\2< (WWl + J*) f(W(s)\2+mo\A"2w(s)\2)ds.
\ moV^o s/moj Jo

Therefore we obtain w = 0 by the Gronwall inequality (see [5]). •

PROPOSITION 4.5. Assume that (2.8) is satisfied. Then the problem (2.3)-(2.5) has
a unique solution. In fact, u(-) in Lemma 4.2 is the solution of the problem (2.3)—(2.5).

PROOF. Let «(•) be as in Lemma 4.2. Then from Lemma 4.2 and Lemma 4.3,
Proposition 4.4, and Proposition (4.2), clearly M(-) satisfies the problem (2.3)-(2.5).
Thus it remains to show the uniqueness of the solution. Let u and v be two solutions
to the problem (2.3)-(2.5). Then w = u - v satisfies

w"(i) + M(\Al/2u(t)\2)Aw(t) + Sw'(t)

= -{M(\A1/2u(t)\2) - M(\Al/2v(t)\2)}Av(t),

io(O) = 0, io'(O) = 0.

Moreover, by the mean value theorem for M ( ) and (4.30), we have

\{M{\Al'2u{t)\2)-M(\Ax'2v{t)\2))Av{t)\

< Bx{W'2u{t)\ + \AV2v(t)\)\All2w(t)\ \Av{t)\ < ^ ^

So, uniqueness follows from Lemma 4.4. •
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4.2. Proof of Theorem 2.2 (Regularity). We consider the initial value problem

(4.35) u"(t) + M(\Al/2u(t)\2)Au(t) + Su'(t)=f(t) in H,

(4.36) «(0) = M0 € Wl+l, u'(0) = K, e Wh

Here / e N is arbitrary but fixed.
We first note that by (2.2), W,+i C V and W, c W and thus from Theorem 2.1,

there exists a unique global solution u(t) to the problem (4.35)-(4.36) as constructed
in Section 4.1.

Now we shall show that under the assumption of Theorem 2.2, the solution u(t) to
the problem (4.35)-(4.36) satisfies the properties (i), (ii), and (iii) in Theorem 2.2.

LEMMA 4.5. Let I e N. Ifu(t) e W,, then u(t) e W, for j = 1 , . . . , / . Moreover
iff 6 L'(0, oo; Wt), thenf e L'(0, oo; Wj) for 1 < j < I. In fact, f satisfies the
following inequality

f \Aj/2f(s)\ds< f \f(s)\ds+f \Al/2f(s)\ds
Jo Jo Jo

PROOF. Let {£(/*) : 0 < fi < oo} be the resolution of identity associated with A.
Then we obtain by (2.1)

(4.37) \A"2u(t)\2=[
Jo

< f d\E(ix)u(t)\2 + f »<d\E(n)u(t)\2

Jo J\
< \u(t)\2 + \Al/2u(t)\2 a.e. on [0, oo),

which implies that u(t) e Wj, j = 1 , . . . , / . Our second assertion immediately

follows from (4.37) (see also [4]). •

PROPOSITION 4.6. Let u(t) be a unique global solution to the problem (4.35)-
(4.36). If in addition to the hypothesis of Theorem 2.1, u0 e Wi+h ut e Wt, and
f 6 L'(0, oo; Wi), then for j = 1, 2 , . . . , / ,

(4.38) «(•) 6 L°°(0, oo; WJ+i) n 5C([0, oo); Wj),

(4.39) «'(•) e L°°(0, oo; Wj) n 5C([0, oo); M^_,).

In fact, we have on [0, oo),

(4.40)

(4.41) \Aj/2u\t)\ <
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where

Cj (yoj) = (V2(y2 (1 + Bo+S+S2/2)+SBo/^ToYOj)'/2 + 2y0J) "* (yQj > 0).

PROOF. We only prove (4.38) and (4.40). Statements (4.39) and (4.41) can be
proved similarly. Let uk(t) be a unique global solution to the problem (4.1) and (4.2).

Multiplying (4.1) by 2Aj
xu[(t) and A[ux(t) and using Lemma 4.5 and a similar

process as in the proof of Proposition 4.2, we obtain that for j = 1,2,... , I,

(4.42) | A r ) / 2 « | < - ^ on [0, oo).

Moreover, continuing in the same way as in the proof of Lemma 4.3 and using
(4.42) we obtain |A 0 + 1 ) / 2 M(0 I < C, ( y 0 , ) / V ^ and «(•) € BC([0, oo); W,) for
. 7 = 1 , 2 , . . . , / . •

Finally, we shall show that u" e L°°(0, oo; W/_0.

PROPOSITION 4.7. Let u(t) be a unique global solution to the problem (4.35) and
(4.36). If in addition to the hypothesis of Proposition 4.6,

(4.43) / 6 L°°(0, oo; H$_,),

then «"(•) e L°°(0, oo; W/_,).

PROOF. Applying A(/~1)/2 to the both side of (4.35), we have a.e. on (0, oo).

A«-i)/2u"(t) + M ( | A 1 / 2 H ( 0 I 2 M ( ' + 1 ) / 2 « ( 0 + 8A('-1)/2u'(t) = A«-l)<2f (t).

So using (4.40) and (4.41) we have

|A('-1)/2«"(/)| <M5(S) + esssup{|A('-1)/2/(s)| : 0 < J < OO},

where M5(5) = B2Ci(yoi)/*/2m0 + 5C;_i(yo(;-i>)- Hence our assertion immediately
follows from (4.43). •

PROOF OF COROLLARY 2.1. From (i) and (ii) of Theorem 2.2, we can easily check
that

(4.44) u € C([0, oo); W,) n C'([0, oo); W,.,).

Moreover, since / 6 C([0, oo); H), we obtain from (4.35) and (4.44), «"(•) €
C([0, oo); H), which completes our proof. •
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5. Some applications

Let Q be a bounded domain in K" with sufficiently smooth boundary 3 £2. We
consider the initial boundary value problem with Dirichlet boundary conditions of the
form

(5.1) u"(x, t) + {-\)kM ( f |V*M(X, r)|2<**J Aku(x, t) + Su'(x, t)

= f(x,t), x e Q,t 6 [0, oo)

du dk~*u
(5.2) u(x,t) = — = . . = ^ - = 0 , x e da, t e [0, oo)

(5.3) u(x, 0) = iio(ac), u'(x, 0) = «,(*), x 6 £2,

where A and V are the Laplace operator and the gradient in R", respectively, | V*M|2 =
(&k/2u)2 for even k, | V*u|2 = | V(A(*- ' ) / 2M) | 2 for odd k, M(-) is a function satisfying
(A.2) and S > 0 is a constant and n is the outer nomal to the boundary 3£2.

Let // = L2(S2) be the Hilbert space with inner product (, ) and norm || • ||. Define a
linear operator A* in// by Aku = ( - A ) * H with domain D(Ak) = H2k(Q)r\H^-l(^).
Here HY(Q) is the usual Sobolev space of order y and HQ(£1) is the closure of C~
in Hy(£l). Note that in this case we may regard the operator A as —A. It is well
known that A(= — A) is a nonnegative selfadjoint operator with compact resolvent
(I +XA)'1 for all k > 0, D(A'/2) = //o '(^), and ||A1/2«|| = ||V«||, u e D(AX'2).
By pointwise evaluation u(x, t) = (u(t))(x), the problem (5.1)—(5.3) can be written
in an abstract form (2.3)-(2.5).

Form Theorem 2.3 and Theorem 2.4, we obtain the following:

THEOREM 5.1. Let

(HO, m , / ) e ( # * ( « ) n//o2*-1^)) x //o2*-1^)

x (L'(0, oo; //0*(Q)) n L°°(0, oo; / /)) .

77/e/z there exists y0 > 0 satisfying the following. If

(5.4) ||Mo|| < H>, IV2*"1!!,! < yb, I" I ^ ' V O . 0 | | ^ < yo,
./o

/Aere cxw/5 a unique solution u(t) on [0, oo) to the problem (5.1)—(5.3) JMC/I that

u e L°°(0, oo; //"(fi) D H*-1^)) n BC([0, oo); H

u' € L°°(0, oo; / / ^ - ' ( a ) ) n BC([0, oo); H2*"2), M" 6 L°°(0, oo; //2*~2).
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Furthermore, if u0 € D(Ak(l+l)'2), ux e D(Akl/2), and f e L\0, oo; D(Akl/2)) n
L°°(0, oo; D(Akl'-^2)) satisfies (5.4), then the solution u(t) to the problem (5.1)-(5.3)
satisfies

u e L°°(0, oo; D(Ak(l+l)/2)) n BC([0, oo); D(AkI/2)),

u' 6 L°°(0, oo; D(Akl/2)) n 5C([0, oo); D(A*('-1)/2)),
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