
J. Functional Programming 8 (1): 61–81, January 1998. Printed in the United Kingdom

c© 1998 Cambridge University Press

61

The dynamic compilation of lazy functional

programs

DAVID WAKELING
Department of Computer Science, University of Exeter,

Exeter, EX4 4PT, UK

(web: http://www.dcs.exeter.ac.uk/
~
david)

Abstract

Lazy functional languages seem to be unsuitable for programming embedded computers

because their implementations require so much memory for program code and graph. In

this paper we describe a new abstract machine for the implementation of lazy functional

languages on embedded computers called the X-machine. The X-machine has been designed

so that program code can be stored compactly as byte code, yet run quickly using dynamic

compilation. Our first results are promising – programs typically require only 33% of the

code space of an ordinary implementation, but run at 75% of the speed. Future work needs

to concentrate on reducing the size of statically-allocated data and the run-time system, and

on developing a more detailed understanding of throw-away compilation.

Capsule Review

This paper takes an important first step toward making functional programming languages

available and attractive in settings where excessive storage requirements could be problematic.

Despite advantages including ease of program construction, analysis, and verification, lazy

functional languages have not been an option for those who create software for embedded

systems. One reason is that many implementations optimize reduction rules by compiling

them into native code, often at the expense of drastically increasing the code size.

The author proposes a new intermediate representation for lazy functional languages,

called the X-machine. Dynamic compilation is then applied to X-machine code to reduce the

space needed to represent the optimized program, with a modest increase in overhead due to

translation from the compressed representation. Experiments reported in the paper show that

code size is indeed substantially reduced. However, code size is only one factor in considering

a program’s overall storage requirements: functional programs can reference a run-time heap

and static data.

From the experiments, the paper concludes that future work must address these factors to

bring a functional program’s storage requirements truly within reach of embedded systems.

1 Introduction

Today computers lurk everywhere, heavily disguised as digital diaries, mobile tele-

phones, video cameras and countless other electronic devices. Whilst it is most

unlikely that any of these embedded computers was programmed with a functional

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

62 D. Wakeling

language, two characteristics of the market lead us to believe that functional lan-

guages may one day be used to program consumer electronics products. First, it is

vital that these products should be delivered on time – the pace of the market is

such that a delay of six months can make the difference between high sales with big

profits, and low sales with big losses. Secondly, it is vital that these products should

be delivered to specification – any careless oversight can result in the expense and

embarrassment of recalling many thousands of units. There are strong arguments

that functional programs can be written more quickly and proved correct more

easily than imperative ones (Turner, 1982; Hudak and Jones, 1994).

Unfortunately, the lazy functional programs with which we work often require

large amounts of memory. They consist of an expression to be evaluated, which

is represented by a graph , and some functions, which are represented by reduction

rules for the graph. A program is executed by reducing the graph to normal form,

printing the result as it becomes available. To make programs run fast, many

implementations compile the reduction rules into machine code, even though this

may produce a lot of code. Suppose, for example, that we are using the popular

Chalmers HBC/LML compiler (Augustsson and Johnsson, 1989) and an SGI 02

computer with an R5000 processor. At one extreme, consider the 120-line calendar

program from Bird and Wadler (1988). This program compiles into 288 kbytes of

code (of which 34 kbytes are for statically-allocated data and 70 kbytes are for

run-time support); only an additional 30 kbytes are needed for the graph. At the

other extreme, consider the 25,000-line HBC/LML compiler itself. This program

compiles into 3 800 kbytes of code (of which 708 kbytes are for statically-allocated

data and 70 kbytes are for run-time support); an additional 4 000 kbytes for the

graph are enough to compile most modules. These figures show that code size can

be a real problem, and they are quite unacceptable in an industry where economic

and physical constraints severely limit the amount of memory available. Think of

an electric shaver which may contain one or two kilobytes, or a television which

may contain a few hundred.

In recent years, we have shown that the program graph can often be made much

smaller with careful reprogramming informed by the results of heap profiling . In

this paper we show that the program code can also be made much smaller, without

running much more slowly, by using dynamic compilation . This work leaves the run-

time system (a fixed 70 kbytes) and statically-allocated data (typically, 25% of the

remaining code size) untouched. Further work needs to be done to reduce the size

of both of these. Nonetheless, our results give us real hope that functional programs

can indeed be used to program embedded computers.

This paper is organised as follows. Section 2 outlines two traditional interpretive

techniques that have been used to implement functional languages on small per-

sonal computers. Section 3 explains why interpreters cannot exploit some important

features of modern computer architecture in the way that compilers can. Section 4

describes a new abstract machine designed so that programs can be stored with

the compactness of an interpreter, yet run with the efficiency of a compiler. Sec-

tion 5 gives details of how this abstract machine’s programs are represented and

executed. Section 6 notes some difficulties in incorporating the abstract machine

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 63

into a test-bed implementation. Section 7 provides some performance figures for

this implementation. Section 8 considers some possible future work, section 9 some

closely related work, and section 10 concludes.

A certain familiarity with the implementation of functional languages and the

basics of computer architecture is assumed throughout this paper. Those without

such familiarity may occasionally need to consult the textbooks by Peyton Jones

(1987) and Patterson and Hennessy (1994).

2 Interpretation

One way to program embedded systems using a functional language is to fur-

ther cut down an implementation designed for a small personal computer. Such

implementations save code space by using either byte code or threaded code in-

terpretation (Röjemo, 1995; Leroy, 1990). This section briefly reviews these two

techniques.

2.1 Byte code interpretation

A byte code interpreter works as follows. At compile-time, the program is translated

into a simple abstract machine code, conventionally called byte code because each

instruction is represented by a one-byte opcode followed by further bytes for any

operands. At run-time, an interpreter executes the byte code instructions. This works

particularly well when the abstract machine is a stack machine. Most instructions

load their arguments from the stack and store their result there. They can be

represented by a single opcode byte, giving a byte code with a high instruction

densityã which is easy to interpret. However, for simple stack operations there is a

large interpretive overhead – around 30% of the total execution time can be spent

dispatching on the opcode (Röjemo, 1995).

2.2 Threaded code interpretation

The interpretive overhead can be reduced considerably by using a threaded code

interpreter. The opcode byte of each instruction is replaced by the address of the

code that implements the instruction. An instruction is executed by making a call

to the opcode. In this case, dispatching on the opcode takes place at compile-time

rather than run-time and the interpretive overhead can be halved (Leroy, 1990). But

the instruction density is also lower because the opcode is represented by an address

(typically, 4 bytes) instead of a byte.

3 Interpreters and modern computer architecture

A serious drawback of both byte code and threaded code interpreters is that they

cannot exploit some important features of modern computer architecture.

ã A machine that uses a small number of bits to encode a program is said to have a high
instruction density (Hennessy and Patterson, 1990)

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

64 D. Wakeling

• Modern computers are general purpose register machines: they provide plenty

of registers (typically 32 or more) that can be accessed more quickly than main

memory, and good performance depends on making full use of them. Unfor-

tunately, though, an interpreter deals with one abstract machine instruction at

a time, and it is difficult for it to make serious use of machine registers.

• Modern computers have instruction pipelines: while one instruction is being

executed, the next is being decoded, and the next-but-one is being fetched.

Unfortunately, though, an interpreter makes a large number of branches to

addresses which are decided very late. These branches stall the pipeline and

reduce its effectiveness.

• Modern computers cache instructions: they exploit locality of reference by

copying blocks of main memory into cache memory which can be accessed

more quickly. Interpretive loops usually contain a small block of code to

implement each abstract machine instruction. Unfortunately, though, these

blocks do not necessarily enjoy good locality of reference.

Even older processors now have all these features. An implementation that exploits

modern computer architecture better than an interpreter may make it possible to

use a processor with a reduced clock rate, or from the previous generation. This in

turn may substantially improve the competitiveness of a product.

4 An abstract machine

Ideally, we would like a way to store programs that gives a high instruction density,

and a way to execute them that makes good use of the machine’s registers, pipeline

and cache. With this as our goal, we have developed a new abstract machine called

the X-machine. It is the result of some experiments with the Chalmers LML/HBC

compiler (Augustsson and Johnsson, 1989), and is best described in that context.

The Chalmers compiler generates code first for an abstract stack machine called the

G-machine, and then for a less-abstract register machine called the M-machine. As

we shall see, the X-machine lies somewhere between these two.

4.1 The G-machine

The G-machine provides instructions for constructing and manipulating graphs. To

give some idea of its operation, here is the G-machine code for the function dup

defined as dup x = (x,x)

dup: PUSH 0

PUSH 1

CPAIR 0

UPDATE 2

POP 1

RET

Fig. 1 shows how this code is used to perform graph reduction. Execution begins with

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 65

dup 42 dup 42 dup 42

@ @ @

(a) (b) UNWIND (c) Rearrange

dup 42

@

dup 42

@

dup 42

@

@

@

(,)

(d) PUSH 0 (e) PUSH 1 (f) CPAIR 0

(,)(,)(,)

42

@

@ 42

@

@ 42

@

@

(g) UPDATE 2 (h) POP 1 (i) RET

Fig. 1. Graph reduction of dup 42.

a pointer to an initial graph on the pointer stack (Fig. 1(a)). The ‘spine’ of the graph

is then unwound by pushing pointers to the vertebrae (Fig. 1(b)). When the head

of the spine has been reached the stack is rearranged to provide efficient access to

the argument (Fig. 1(c)). The machine code instructions for the dup function shown

above are then executed in sequence to perform one graph reduction (Fig. 1(d)–(i)).

Among the G-machine instructions are PUSH n, which copies a pointer on the

pointer stack; CPAIR m, which takes two pointers from the pointer stack and puts

back one to a pair node tagged with m; UPDATE n, which overwrites one graph

node with another; POP n, which removes n pointers from the pointer stack; and

RET, which returns from a function call and restores the previous abstract machine

state from the dump stack (not shown in Fig. 1).

G-instructions tend to be complex, and G-code converts to a byte code with

a high instruction density. This instruction density can be further increased by

inventing new instructions to replace common sequences. For example, the last four

instructions for dup are of the form

CPAIR m; UPDATE n; POP (n− 1); RET

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

66 D. Wakeling

These could be replaced by

CPAIR RET m n

This instruction is an example of a superoperator as described in Proebsting (1995),

although the ones in the Chalmers LML/HBC compiler were derived manually

rather than automatically.

4.2 The M-machine

The M-machine is an abstract general-purpose register machine. For historical

reasons, it has a CISC-like instruction set, although for modern processors the

Chalmers compiler simplifies programs to use only a RISC-like subset. By way of

example, here is the M-code corresponding to the CPAIR RET m n instruction

above.

move 0(Vp), Sp

move -1(Sp), r0

move $PAIRm, 0(r0)

move p, 1(r0)

move q, 2(r0)

return

This code uses three registers: Sp, Vp and r0. The first two are stack pointers for

the pointer and dump stacks; the last is a return register for function results. The

addressing modes p and q depend on the context in which the M-code is generated.

Note that n is not used because here the node to be updated can be found using Sp

alone.

Since there is such a direct relationship between M-instructions and native code

instructions, M-code converts to a byte code with almost the same instruction density

as native code.

4.3 The X-machine

Our X-machine is a cross between the G-machine and the M-machine. Each X-

instruction is created by studying a G-machine instruction and the corresponding

M-instructions side-by-side. The X-instruction opcode comes from the name of the

G-machine instruction; any variables in the M-instructions appear as X-instruction

operands, with small integers followed by a list of general addressing modes. Some-

times, a little common sense is then used to improve the instruction. So, to continue

with our current example, instead of a single X-instruction of the form

cpair ret m [p, q]

there are six of the form

cpair retm [p, q]

because the peculiar Chalmers implementation of constructed types means that there

are only six possible values of m (0–4, and ‘don’t care’), and these can conveniently

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 67

r register 0 r

$n(r) register relative 1 r n

n(r) register indirect 2 r n

b byte 3 0 b

h half 4 t
. . .

h1 h0

w word 5 t
. . .

w3 w2 w1 w0

f reference number 6 0 n

Fig. 2. Operands and their byte code representation.

be made part of the opcode. The interested reader is referred to Appendix A for a

summary of the full X-machine instruction set, and to Appendix B for two example

functions.

5 Compilation

The X-machine has been designed so that programs can be stored compactly (like

the G-machine) and executed efficiently (like the M-machine).

5.1 Byte code representation

X-instructions are represented by a single-byte opcode followed by further bytes for

any operands. Fig. 2 describes the possible operands and their byte code representa-

tion. The upper three bits of the first byte give the addressing mode, and the lower

five bits give either a register number r or an amount of padding t depending on

the mode. For the register relative and register indirect modes, another byte gives

the offset n (it is up to the compiler to ensure that offsets are small enough). For

the byte, half and word modes, one, two or four more bytes give a constant. On an

aligned machine, t padding bytes (indicated by ellipses) ensure that the constant is

aligned for easy access. A reference number is an index into an array of addresses

of functions and constant applicative forms that is kept with each function for

use by the garbage collector. The compiler uses reference numbers in preference to

addresses because they can be stored more compactly. This operand representation

is the most compact possible for register addressing modes (which we have found

are common), and it is also reasonably compact for constants (which we have found

are less common).

5.2 Dynamic compilation

X-code is designed to be executed using throw-away compilation (Brown, 1976),

one of the oldest forms of dynamic compilation. A throw-away compiler performs

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

68 D. Wakeling

supervisor address

caller identity

offset

Sp -
?

Fig. 3. Stack set up for an indirect return.

both static and dynamic compilation of the program. At what we usually think of

as compile-time, the static compiler divides the source code into suitable units (in

Brown’s case, these were BASIC statements) and produces byte code for each unit.

At what we usually think of as run-time, a supervisor oversees execution of the byte

code program. It hands successive units of byte code to the dynamic compiler which

produces native code for direct execution. Native code is kept in a workspace. When

the native code for a unit is added to the workspace, this is noted by the supervisor

to avoid producing another copy. When the workspace becomes full, it is emptied

by throwing the native code for all units away. Thus, the workspace serves as a

native code cache with a particularly brutish replacement policy that is cheap to

implement.

6 A test bed implementation

Modifying the LML/HBC compiler (Augustsson and Johnsson, 1989) to implement

the ideas above requires little imagination. The static compiler divides the source code

into (lambda-lifted) functions and produces X-code for them. The dynamic compiler

then produces native code from X-code by simple macro expansion, taking the

offsets for jump instructions from the byte code. It is easiest to make the workspace

part of the heap. By doing so, we make best use of the limited available memory

– it would be a shame for a program to fail with no space available for the graph,

but with plenty available for code. All native code is thrown away during garbage

collection. Three points are worth mentioning in more detail: the management of

function return, the compilation of case-expressions and the maintenance of cache

coherency.

6.1 The management of function return

Obviously, every function call must go via the supervisor, which either locates or

generates the function’s native code before transferring control to it. Less obviously,

every function return must also go via the supervisor because throwing native code

away leaves return addresses dangling. A return via the supervisor can be managed

by storing three items on the stack when a function call is made from dynamically

compiled code. These three items replace the usual return address (see Fig. 3).

A return from the callee is directed to the supervisor, which normally just pops

the caller identity and the offset before passing control to the caller’s native code

address plus the offset. But when the caller’s native code has been thrown away,

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 69

the supervisor must get it regenerated before passing control to the new native code

address plus the offset.

6.2 The compilation of case-expressions

There is a dilemma when dynamically compiling case-expressions. On the one

hand, if the function containing the case-expression is applied once then it is a

waste of effort to compile code for every alternative because only one will eventually

be chosen. On the other hand, if the function containing the case-expression is

applied several times then the effort to compile code for every alternative may not

be wasted because all may eventually be chosen. Our solution to this problem is

to bound the effort required to dynamically compile a case-expression by thinning .

A case-expression is thinned if it has more than a few alternatives (we use five),

or if it is nested within several other case-expressions (we use a nesting depth of

two). Thinning involves floating alternatives containing let- or case-expressions

out to the top level as new functions whose arguments are the free variables of the

alternative. The alternatives of the thinned case-expression then become applications

of these new functions to the appropriate variables. Thinning is easily implemented

by modifying the lambda-lifting pass of the compiler.

6.3 The maintenance of cache coherency

As we have already noted, modern computers cache instructions by copying blocks of

main memory into faster cache memory. Often, there are separate on-chip caches for

instructions and data, and the instruction cache does not track memory writes. This

means that a newly-compiled instruction in main memory may not be ‘seen’ until a

previously-compiled one happens to lose its place in the instruction cache. Happily,

many computers provide a cache coherency operation – for example, a system call

to flush a range of addresses from the instruction cache – and so this difficulty can

be overcome. This issue is explored further in the paper by Keppel (1991).

7 Experimental results

To evaluate throw-away compilation, we performed some experiments on an SGI O2

computer. This machine has a 180 MHz R5000 processor and 32 Mb of main

memory. Although the R5000 processor has a 32 kb instruction cache and a 32 kb

data cache, there is no other cache. The machine runs version 6.3 of the IRIX

operating system.

Six of the larger programs from the ‘nofib’ suite (Partain, 1992) were used as

benchmarks. These programs were modified in two ways. First, the input was made

much larger, usually by repeating it, so that the programs would run for a reasonable

length of time. Secondly, the programs were made to print just the last character

of their results, so that output time was negligible. For each program, we measured

two things.

1. The code size. This excludes functions from the standard prelude, which

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

70 D. Wakeling

Table 1. Code sizes for our compiler compiling to byte code

Data segment

Text segment Byte code Other Total
Program (bytes) (bytes) (bytes) (bytes)

parser 9,784 19,357 34,707 63,848
infer 9,216 9,678 23,506 42,400
reptile 10,656 24,491 39,285 74,432
bspt 10,848 18,783 64,465 94,096
prolog 3,936 6,425 12,119 22,480
veritas 33,600 109,972 126,668 270,240

Table 2. Code sizes for our compiler compiling to native code

Text segment Data segment Total
Program (bytes) (bytes) (bytes)

parser 80,520 34,544 115,064
infer 46,352 23,024 69,376
reptile 104,720 38,816 143,536
bspt 89,232 64,384 153,616
prolog 30,376 11,952 42,328
veritas 467,712 125,904 593,616

Table 3. Code sizes for the HBC compiler compiling to native code

Text segment Data segment Total
Program (bytes) (bytes) (bytes)

parser 80,136 38,336 118,472
infer 46,736 24,704 71,440
reptile 106,592 42,640 149,232
bspt 86,400 76,192 162,592
prolog 30,800 13,120 43,920
veritas 450,928 139,520 590,448

are tedious to pick out, and run-time support code, (where the throw-away

compiler – essentially, a large C switch statement – adds 12 kbytes to the

existing 70 kbytes).

2. The execution time. Following Hammond et al. (Hammond et al., 1993), we

made measurements with a large number of heap sizes to investigate whether

using the heap as a native code cache has any strange effects. All measurements

start from a heap size at which the program almost runs out of memory.

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 71

3

4

5

6

7

8

4000 5000 6000 7000 8000 9000 10000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

parser

throw-away
ordinary

6

8

10

12

14

16

6000 8000 10000 12000 14000 16000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

infer

throw-away
ordinary

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

4000 6000 8000 10000 12000 14000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

reptile

throw-away
ordinary

1

2

3

4

5

6

7

1000 1500 2000 2500 3000 3500 4000 4500 5000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

bspt

throw-away
ordinary

6

8

10

12

14

16

1000 1500 2000 2500 3000 3500 4000 4500

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

prolog

throw-away
ordinary

0

5

10

15

20

25

30

35

200 400 600 800 1000 1200 1400 1600 1800 2000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

veritas

throw-away
ordinary

Fig. 4. Execution time vs heap size for our compiler.

Our compiler, which is based on version 0.9999.3 of the Chalmers LML/HBC

compiler, was used to compile the six benchmark programs into byte code and

native code. An ordinary version 0.9999.3 Chalmers LML/HBC compiler was also

used to compile the six benchmark programs into native code. Tables 1, 2 and 3

give the text segment (native code) and data segment (statically-allocated data) sizes

in each case.

Fig. 4 plots execution time vs heap size when all functions (including those in the

standard prelude) are compiled into byte code and native code with our compiler.

Fig. 5 plots execution time vs heap size when all functions (including those in

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

72 D. Wakeling

3

4

5

6

7

8

4000 5000 6000 7000 8000 9000 10000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

parser

throw-away
hbc

6

8

10

12

14

16

6000 8000 10000 12000 14000 16000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

infer

throw-away
hbc

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

4000 6000 8000 10000 12000 14000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

reptile

throw-away
hbc

1

2

3

4

5

6

7

1000 1500 2000 2500 3000 3500 4000 4500 5000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

bspt

throw-away
hbc

6

8

10

12

14

16

1000 1500 2000 2500 3000 3500 4000 4500

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

prolog

throw-away
hbc

0

5

10

15

20

25

30

35

200 400 600 800 1000 1200 1400 1600 1800 2000

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

heap size (kbytes)

veritas

throw-away
hbc

Fig. 5. Execution time vs heap size for our compiler and the HBC compiler.

the standard prelude) are compiled into byte code with our compiler and native

code with the ordinary HBC compiler. The ratio of these execution times vs heap

size is plotted in Fig. 6. As well as execution times, we were interested in the

number of function (re)compilations that take place. Figure 7 plots the number of

(re)compilations vs heap size.

From these results, we observe two things. First, there is practically no difference

between compiling to native code with our compiler and with the ordinary HBC

compiler. This isn’t a great surprise. The two compilers have much in common,

including the same native code generator. Secondly, compiling to byte code makes

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 73

0

0.2

0.4

0.6

0.8

1

4000 5000 6000 7000 8000 9000 10000

r
a
t
i
o

heap size (kbytes)

parser

hbc/throw-away

0

0.2

0.4

0.6

0.8

1

6000 8000 10000 12000 14000 16000

r
a
t
i
o

heap size (kbytes)

infer

hbc/throw-away

0

0.2

0.4

0.6

0.8

1

4000 6000 8000 10000 12000 14000

r
a
t
i
o

heap size (kbytes)

reptile

hbc/throw-away

0

0.2

0.4

0.6

0.8

1

1000 1500 2000 2500 3000 3500 4000 4500 5000

r
a
t
i
o

heap size (kbytes)

bspt

hbc/throw-away

0

0.2

0.4

0.6

0.8

1

1000 1500 2000 2500 3000 3500 4000 4500

r
a
t
i
o

heap size (kbytes)

prolog

hbc/throw-away

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000 1200 1400 1600 1800 2000

r
a
t
i
o

heap size (kbytes)

veritas

hbc/throw-away

Fig. 6. Ratio of execution times vs heap size.

the text segment smaller – the only native code left is the transfer of control to the

supervisor at the start of each function – and the data segment larger – the byte

code adds to the statically-allocated data. The combined size of this residual native

code and byte code for our compiler is typically only 33% of the size of the ordinary

native code produced by our compiler or the HBC compiler. Compiling to byte code

also makes programs run more slowly because thousands of (re)compilations must

take place. Regardless of the heap size, there will always be some supervisor overhead

on function call and return. Programs with throw-away compilation typically run at

75% of the speed of those with ordinary compilation.

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

74 D. Wakeling

1000

1500

2000

2500

3000

3500

4000

4500

4000 5000 6000 7000 8000 9000 10000

(
r
e
)
c
o
m
p
i
l
a
t
i
o
n
s

heap size (kbytes)

parser

throw-away

1000

2000

3000

4000

5000

6000 8000 10000 12000 14000 16000

(
r
e
)
c
o
m
p
i
l
a
t
i
o
n
s

heap size (kbytes)

infer

throw-away

1000

1500

2000

2500

3000

3500

4000

4000 6000 8000 10000 12000 14000

(
r
e
)
c
o
m
p
i
l
a
t
i
o
n
s

heap size (kbytes)

reptile

throw-away

2000

4000

6000

8000

10000

12000

14000

1000 1500 2000 2500 3000 3500 4000 4500 5000

(
r
e
)
c
o
m
p
i
l
a
t
i
o
n
s

heap size (kbytes)

bspt

throw-away

2000

4000

6000

8000

10000

12000

14000

1000 1500 2000 2500 3000 3500 4000 4500

(
r
e
)
c
o
m
p
i
l
a
t
i
o
n
s

heap size (kbytes)

prolog

throw-away

20000

40000

60000

80000

100000

120000

140000

200 400 600 800 1000 1200 1400 1600 1800 2000

(
r
e
)
c
o
m
p
i
l
a
t
i
o
n
s

heap size (kbytes)

veritas

throw-away

Fig. 7. Number of function (re)compilations vs heap size.

8 Future work

Our first experiments have yielded promising results. Unfortunately though, the

large reduction in code size does not yet result in such a large reduction in program

size because of statically-allocated data and run-time support. To reduce the size of

statically-allocated data, it would be necessary to move from the HBC word-based

encoding to a byte-based one. So far we have not done this because compatibility

with the HBC compiler makes development of our own so much easier. Of the

70 kbytes for the run-time system, roughly a third is for input/output, a third for

memory management and a third for miscellaneous small routines written in M-

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 75

code. Perhaps 20% of this code is to support LML rather that Haskell, but again

we have so far avoided removing it because the compiler is written in LML and

bootstrapping is such an important test.

By analogy with Denning’s work on virtual memory (Denning, 1968), we suppose

that a ‘working set’ of functions exists for most functional programs. We plan to

collect data to confirm this supposition, perhaps by separating the storage areas for

the code and the graph so that we can study the behaviour of the code alone. This

may lead us to develop better rules for throwing code away, akin to those found in

operating systems.

Even in its most basic form, throw-away compilation seems to be making good

use of the features of modern computer architecture described in section 3. However,

it would be nice to have numbers for cache misses, pipeline stalls, and so on from a

processor simulator to compare throw-away compilation, ordinary compilation and

interpretive execution. These numbers may lead us to improve the design of the

X-machine and the implementation of throw-away compilation.

It is not clear how well throw-away compilation would work in an application

with demanding with real-time constraints, and this remains to be investigated.

In this paper we have considered only lazy functional languages, such as Haskell.

Although we see no reason why the dynamic compilation approach we have de-

scribed should not work equally well with a strict functional language such as

Standard ML, we need to build an implementation (perhaps based on Leroy’s byte

code interpreter (Leroy, 1990)) to be sure.

At the moment, there is no easy way for the programmer to take advantage of

profiling information. Although functions compiled with ordinary compilation and

those compiled with the throw-away compilation can be freely mixed, each module

must be compiled one way or the other. This is not very flexible. A programmer

who wishes to use profiling information to make the best time/space trade off must

shuffle functions between a pair of modules, one compiled with each scheme. In

future, it is our intention to allow the programmer to annotate each function to

indicate the compilation scheme required.

Our first throw-away compiler ran on a cast-off SUN SPARCstation SLC. After

that machine expired, we ported the compiler to an SGI Indigo, and in doing

so discovered that making the changes necessary to deal with a new instruction

encoding could be a tedious and error-prone business. Upto now, portability has

not been a concern, but in future as we move towards embedded processors we plan

to save work by using something akin to Engler’s VCODE (Engler, 1996).

9 Related work

To our knowledge, no one yet programs embedded computers with lazy functional

languages. The nearest work that we know of is by Wallace and Runciman in

the area of real-time control (Wallace and Runciman, 1995). Ericcson Telecom

use a mostly-functional language Erlang (Armstrong et al., 1993) for programming

telephone switches.

Dynamic compilation is an old idea whose popularity waxes and wanes according

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

76 D. Wakeling

to the fashion in computer architecture. In their 1991 paper, Keppel et al. (1991)

argued that ‘new’ computer architecture made it worthwhile again, and currently

(Autumn 1997) there is a considerable amount of research going on this area. Here,

we concentrate on some of the most recent papers since they provide a good way

into the otherwise scattered literature on dynamic compilation.

Dynamic compilation has long been used to improve the performance of object-

oriented programming languages. Both Deutsch and Schiffman’s (1984) SmallTalk

system and Chambers and Ungar’s (1989) SELF compiler generate native code

from the byte code of an object method when that method is invoked. The native

code is cached and used if the method is invoked again. Should the cache fill up,

some native code is flushed, to be regenerated when needed. SmallTalk was among

the first languages to represent programs as byte code for portability. The work

mentioned here, however, is concerned with increasing execution speed rather than

with decreasing code size.

As part of the Fox Project aimed at improving the design and development

of high-performance system software, Lee and Leone have built a run-time code

generator for a first-order, purely-functional subset of ML (Lee and Leone, 1996).

Here, curried functions take an ‘early’ argument followed by some ‘late’ arguments,

the idea being that ‘early’ computations are performed by statically-generated code,

and ‘late’ computations by dynamically-generated code. Each curried function is

compiled into assembly code, with instructions being annotated as either ‘early’ or

‘late’. The ‘early’ assembly instructions are simply executed, while the ‘late’ ones are

specialised with now-known values and emitted into a dynamic code segment for

immediate execution. There are no code templates to be copied and instantiated,

and so dynamic code generation is cheap (only about six instructions per instruction

generated). Lee and Leone are concerned with making progams faster by taking

advantage of values that only become known at run-time, rather than with making

programs smaller. They reported encouraging results for small programs, but their

prototype implementation had no garbage collector, and so they could not say how

well it would work for larger, more realistic programs.

The paper by Auslander et al. (1996) deals with the dynamic compilation of

general-purpose, imperative, programming languages, such as C. Here, the program

must be annotated to indicate regions where dynamic compilation may be worth-

while. For these regions, a static compiler produces machine code templates with

holes for run-time constant values; the rest of the program is just compiled in the

usual way. As the program is running, a dynamic compiler copies the templates,

filling in the holes with appropriate constants and performing simple peephole op-

timisations. Again, the emphasis is on making programs faster by taking advantage

of values that become known at run-time, rather than on making programs smaller.

Pointers, side-effects and unstructured control-flow present the usual problems for

the authors as they attempt to produce an optimising C compiler. Nonetheless,

they have managed to achieve good speed-ups over a set of ordinarily-compiled C

programs, ranging from 1.2 to 1.8 times as fast.

The Omniware Virtual Machine produced by Adl-Tabatabai et al. (1996) is an

abstract RISC that runs mobile programs sent to it across a network. The Omniware

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 77

Virtual Machine has been designed so that code generation for it by compilers is

easy, and the subsequent translation of this code to that of a modern processor is

fast and efficient. Initially, the aim was to achieve portability without compromising

efficiency. Even when performing safety checks to ensure that the program does not

violate access restrictions, the Omniware Virtual Machine executes programs within

21% as fast as ordinary optimised ones without any such checks. This is claimed to

be an order of magnitude faster than any other mobile code system. More recent

research has concentrated on saving space too by compressing Omniware Virtual

Machine code into a byte code that can either be interpreted directly or compiled

to native code (Ernst et al., 1997).

The Java Virtual Machine (Lindholm and Yellin, 1996) is an abstract stack

machine that also runs mobile programs sent across a network. The byte code

representation is used to achieve portability and save space. Although the original

SUN implementation was a byte code interpreter, many Java implementors, includ-

ing SUN, are now developing ‘just-in-time’ compilers to speed up execution. These

translate the byte code for methods into native code as they are called, and then

run the native code. SUN claim that this can be upto an order of magnitude faster

than interpreting the byte code.

Engler’s (1996) VCODE is a general-purpose system for implementing dynamic

code generation. The VCODE system consists of a set of C macros and functions

for generating machine code. Using them, a VCODE client (for example, a compiler)

can construct machine code at run-time assuming the underlying processor is an

idealied RISC. Chores such as constructing function prologue and epilogue code,

backpatching labels and ensuring cache coherency can all be left to the VCODE

system. As a result, programs that generate code dynamically are both portable and

efficient (between six and ten instructions per instruction generated).

Throw-away compilation was first mentioned in the context of functional program-

ming by Turner (1979), and this was where we got the idea. An earlier version of this

paper, with the same results for small LML programs, appeared as Wakeling (1995).

10 Conclusions

In this paper we have described a new abstract machine for the implementation

of lazy functional languages on embedded computers. It has been designed so that

program code can be stored compactly as byte code, yet run quickly using dynamic

compilation. Our first results are promising – programs typically require only 33% of

the code space of an ordinary implementation, but run at 75% of the speed. Future

work must now concentrate on reducing the size of statically-allocated data and the

run-time system, and on developing a more detailed understanding of throw-away

compilation.

Acknowledgements

Our thanks as usual to Lennart Augustsson and Thomas Johnsson, whose work on

the LML/HBC compiler forms the basis of our own.

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

78 D. Wakeling

Operation Operands Comment

alloc h create 〈HOLE〉 at h(Hp)

add reg [p, q] add integers p and q

addsf reg [p, q] add single floats p and q

adddf reg [p, q] add double floats p and q

cint h [n] create 〈INT, n〉 at h(Hp)

cnil h [n] create 〈TAG0, n〉 at h(Hp)

ctag h n [p] create 〈TAG, n, p〉 at h(Hp)

cap h [p, q] create 〈AP, p, q〉 at h(Hp)

cpair h n [p, q] create 〈PAIRn, p, q〉 at h(Hp)

cvap h ref [p1, p2, . . . pn] create 〈VAP, ref ,p1, p2, . . . pn〉 at h(Hp)

cvek h [p1, p2, . . . pn] create 〈VEK, p1, p2, . . . pn〉 at h(Hp)

cint update n update with 〈INT, n〉
cnil update n update with 〈TAG0, n〉
ctag update n [p] update with 〈TAG, n, p〉
cpair update n [p, q] update with 〈PAIRn, p, q〉
cint ret n update with, and return 〈INT, n〉
cnil ret n update with, and return 〈TAG0, n〉
ctag ret n [p] update with, and return 〈TAG, n, p〉
cpair ret n [p, q] update with, and return 〈PAIRn, p, q〉
jfun n [f] tail call unknown f with n arguments

jglobal ref tail call known ref

jmp n jump to label n

jeq n [p, q] jump to label n if integer p = q

jeqsf n [p, q] jump to label n if single float p = q

jeqdf n [p, q] jump to label n if double float p = q

callfun n [f] call unknown f with n arguments

callglobal n ref call known ref with n arguments

eval [p] evaluate

gettag [p] get tag into tagreg

gettag switch (t1, n1) . . . (tk, nk) [p] get tag ti and jump to label ni
move [p, q] move integer p to q

movesf [p, q] move single float p to q

movedf [p, q] move double float p to q

incsp n increment stack pointer by n

zap n blackhole argument n

garb initiate garbage collection if required

ret [p] return p

update [p, q] update q with p

unwind [p] unwind p

splitpair n copy components to (n+ 1, n+ 2)(Sp)

Fig. 8. Summary of the X-machine instruction set.

Colin Runciman provided some useful comments on earlier versions of this paper,

and encouragement throughout. In addition, we are grateful for the comments of

five anonymous referees.

This work was funded in part by Canon Research Centre Europe, and in part by

the University of Exeter Research Fund.

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 79

Summary of the X-machine instruction set

Fig. 8 gives a summary of the X-machine instruction set. This summary will

make most sense when read in conjunction with the description of the Chalmers

HBC/LML compiler (Augustsson and Johnsson, 1989).

Two example functions

Below, we give two example Haskell functions and their translation into X-code.

Factorial

fact :: Int -> Int
fact n = if n == 0 then 1 else n * fact (n - 1)

funstart fact 1 # --- fact ---
zap 1 # blackhole 1(Sp)
eval [0(Sp)] # eval n
jne L1 [$0,1(r0)] # branch if n /= 0
cint_ret 1 # return <INT,1>

L1:
garb # check for heap exhaustion
alloc 0 # create <HOLE> at 0(Hp)
move [Hp,-1(Sp)] # push address of HOLE
move [0(Sp),r1] # r1 <- <INT,n>
sub r1 [$1,1(r1)] # r1 <- n - 1
bint 3 [r1] # create <INT,n-1> at 3(Hp)
move [$3(Hp),-2(Sp)] # push address of <INT,n-1>
inc_hp 5 # adjust Hp
inc_sp -2 # adjust Sp
callglobal 0 # call fact recursively
move [0(Sp),r1] # r1 <- <INT,n>
mul r1 [1(r0),1(r1)] # r1 <- n * result of call, n’
bint_ret [r1] # return <INT,n*n’>
funend # --- fact ---

Map

map f [] = []
map f (x:xs) = f x : map f xs

funstart map 2 # --- map ---
zap 2 # blackhole 2(Sp)
eval [1(Sp)] # eval xs
move [r0,-1(Sp)] # push xs
inc_sp -1 # adjust Sp
gettag_switch {35 => L1} [r0] # switch on tag(xs)
garb # check for heap exhaustion
move [0(Sp),r1] # r1 <- xs
cvap 0 0 [1(Sp),2(r1)] # create <VAP,f,tl(xs)> at 0(Hp)
cap 4 [1(Sp),1(r1)] # create <AP,f,x> at 4(Hp)
inc_hp 7 # adjust Hp
cpair_ret 1 [$-3(Hp),$-7(Hp)] # return <CONS,AP f x,VAP f,tl(xs)>

L1:
cnil_ret 0 # return <NIL>
funend # --- map ---

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

80 D. Wakeling

References

Adl-Tabatabai, A., Langdale, G., Lucco, S. and Wahbe, R. (1996) Efficient and language

independent mobile programs. Proc. ACM Conf. on Programming Language Design and

Implementation, pp. 127–136.

Armstrong, J. L., Virding, R. and Williams, M. (1993) Concurrent Programming in Erlang.

Prentice-Hall.

Augustsson, L. and Johnsson, T. (1989) The Chalmers Lazy-ML Compiler. Computer J., 32(2):

127–141.

Auslander, J., Philipose, M., Chambers, C., Eggers, S. J. and Bershad, B. N. (1996) Fast,

effective dynamic compilation. Proc. ACM Conf. on Programming Language Design and

Implementation, pp. 149–159.

Bird, R. and Wadler, P. (1988) Introduction to Functional Programming. Prentice-Hall.

Brown, P. J. (1976) Throw-away Compiling. Software—Practice and Experience, 6: 423–434.

Chambers, C. and Ungar, D. (1989) Customization: Optimizing compiler technology for

SELF, a dynamically-typed object-oriented programming language. Proc. ACM Conf. on

Programming Language Design and Implementation, pp. 146–160.

Denning, P. J. (1968) The working set model for program behaviour. Comm. ACM, 11(5):

323–333.

Deutsch, L. P. and Schiffman, A. M. (1984) Efficient implementation of the Smalltalk-80

system. Proc. 11th Annual ACM Symposium on the Principles of Programming Languages,

pp. 297–302.

Ernst, J., Evans, W., Fraser, C. W., Lucco, S. and Proebsting, T. A. (1997) Code compression.

Proc ACM Conf. on Programming Language Design and Implementation, pp. 358–365.

Engler, D. W. (1996) VCODE: A retargetable, extensible, very fast dynamic code generation

system. Proc. ACM Conf. on Programming Language Design and Implementation, pp. 160–

170.

Hammond, K., Burn, G. L. and Howe, D. B. (1993) Spiking your caches. Proc. Glasgow

Workshop on Functional Programming, pp. 58–68. Springer-Verlag.

Hennessy, J. L. and Patterson, D. A. (1990) Computer Architecture: A Quantative Approach.

Morgan Kaufmann.

Hudak, P. and Jones, M. P. (1994) Haskell vs. Ada vs. C++ vs Awk vs. Technical report,

Department of Computer Science, Yale University.

Jones, M. P. (1994) The Implementation of the Gofer Functional Programming System.

Technical report, Department of Computer Science, Yale University.

Keppel, D. (1991) A portable interface for on-the-fly instruction space modification. Proc.

ACM Conf. on Architectural Support for Programming Languages and Operating Systems,

pp. 86–95. (SIGPLAN Notices, 26(4) 1991.)

Keppel, D., Eggers, S. J. and Henry, R. R. (1991) A Case for Runtime Code Generation.

Technical report 91–11–04, Department of Computer Science and Engineering, University

of Washington.

Lee, P. and Leone, M. (1996) Optimizing ML with run-time code generation. Proc. ACM

Conf. on Programming Language Design and Implementation, pp. 137–148.

Leroy, X. (1990) The ZINC Experiment: An Ecomonical Implementation of the ML Lan-

guage. Technical report RT 117, INRIA, France.

Lindholm, T. and Yellin, F. (1996) The Java Virtual Machine. Addison-Wesley.

Partain, W. (1992) The nofib benchmark suite of Haskell programs. Proc. Glasgow Workshop

on Functional Programming, pp. 195–202. Springer-Verlag.

Patterson, D. A. and Hennessy, J. L. (1994) Computer Organization and Design: The Hardware

Software Interface. Morgan Kaufmann.

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

The dynamic compilation of lazy functional programs 81

Peyton Jones, S. L. (1987) The Implementation of Functional Programming Languages. Prentice-

Hall.

Proebsting, T. A. (1995) Optimizing an ANSI C interpreter with superoperators. Proc. ACM

Conf. on Principles of Programming Languages, pp. 322–332.

Röjemo, N. (1995) Highlights from nhc – a space-efficient Haskell compiler. Proc. ACM Conf.

on Functional Programming Languages and Computer Architecture, pp. 282–291.

Turner, D. A. (1979) A new implementation technique for applicative languages. Software—

Practice and Experience, 9(1): 31–50.

Turner, D. A. (1982) Recursion equations as a programming language. In: Darlington, J.,

Henderson, P. and Turner, D. A. (eds.), Functional Programming and its Applications, pp.

1–28. Cambridge University Press.

Wakeling, D. (1995) A throw-away compiler for a lazy functional language. In: Takeuchi, M.

and Ida, T. (eds.), Fuji International Workshop on Functional and Logic Programming, pp.

287–300. World Scientific.

Wallace, M. and Runciman, C. (1995) Lambdas in the liftshaft – functional programming

and an embedded architecture. Proc. ACM Conf. on Functional Programming Languages

and Computer Architecture, pp. 249–258.

https://doi.org/10.1017/S0956796897002955 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002955

