
ANZ1AMJ. 43(2002), 559-566

GROWTH THEOREMS FOR HOMOGENEOUS SECOND-ORDER
DIFFERENCE EQUATIONS
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Abstract

In this paper we investigate the boundedness and asymptotic behaviour of the solutions
of a class of homogeneous second-order difference equations with a single non-constant
coefficient. These equations model, for example, the amplitude of oscillation of the weights
on a discretely weighted vibrating string. We present several growth theorems. Two
examples are also given.

1. Introduction

In this paper we shall study the second-order linear difference equation of the form

xn+i + bnxn + xn_i = 0 , n e N, (1)

where xn is the desired solution and bn is a given real sequence. We shall investigate
the boundedness and asymptotic behaviour of the solution of (1).

This equation models, for example, the amplitude of oscillation of the weights on
a discretely weighted vibrating string [1, pp. 15-17].

Results for similar problems for second-order differential equations can be found
in [3].

If bn = -2, n € N, we have xn+i —2xn+ jcn_t = 0. This equation has a general
solution in the form an + b, where a, b ait arbitrary real numbers and thus has
unbounded solutions. It is well-known that if bn = d e R, n € N, where d > 2
or d < —2, then the equation also has unbounded solutions. This motivates us to
investigate the cases when — 2 < bn < 2, n e N, especially when bn -»• 0 as n -*• oo.
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560 Stevo Stevic [2]

The following "symmetry principle" is very useful in the consideration of (1). If
we make the change yn = (— l)"xn, (1) becomes

(-l)n+l(yn+l-bnyn+yn-l) = 0, n e N,
that is,

vn+i - bnyn + vn_i = 0 , n € N.

Thus it is enough to investigate the cases when — 2 < bn < 0, n e N. For example,
if we show that, under some conditions, when — 2 < bn < 0, n e N, (1) has either
bounded or unbounded solutions, then this also holds for (1) when 0 < f t , < 2 , n e N .

Using the substitution bn = —2/(1 + cn) we may transform the relation of interest
into

xn+l -2xn+ *,,_, + cn{xn+i + *„_,) = 0, n € N, (2)

which is in a more suitable form for the calculations which follow (see also [8]).

2. Preliminaries

For investigation of the boundedness and asymptotic behaviour of the solution xn,
we will need a few auxiliary lemmas. The first of these is a discrete variant of the
Bellman-Gronwall lemma. The continuous case of this lemma can be found in [2]
and [6].

LEMMA 1. Ifxn, cn > 0, c is a positive constant and xn < c + Yl"Ii cix>' n € N,
then xn < cexp (£"", ' c), n e N.

Proof of this lemma and further generalizations can be found in [4] (see also [8]).

LEMMA 2. Let cn, n € N U {0}, be a positive sequence andxn be a solution of the
difference equation (2). Then

n - 1

\ 2 I _ „ 2 I _ _, 2

l.-*n+l — xn)

= (xx — x0)
2 + CIXQ + CQX2 + 2^(c'+i ~ ci-i)x2> n € N. (3)

PROOF. Multiplying (2) by *„+, - xn.x = :cn+1 - xn + xn - xn_i we get

(xn+1 - xn)
2 - (xn - jcn_,)2 + cn(x

2
n+l -x2

n_y) = 0, n € N. (4)
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It follows from (4) that

1=1 1=1

Hence for all n e N we obtain (3).

3. Main results

We are now in a position to formulate and to prove the main results of this paper.
From hereafter we shall exclude the trivial solution from our considerations.

THEOREM 1. Let cn, n e N U {0}, be a positive nonincreasing sequence and xn be
a solution of (2). Then the sequences xn+i — xn and cn-i*2 ore bounded. Further, if
limn_oo cn > 0, then xn is bounded.

PROOF. From (3) we have

fy v \2 j _ . V 2 I 2 -. / \2 • 2 I 2
V-̂ n+1 xn) T t-n-^n+l T" Cn_iAn ^ \X\ AQ) - f M-*o T CQXX

since YH=i(c'+i ~ ci-i)xf ^ 0- From that we have the first part of our theorem. In
particular, cn-\x\ < (xx — x0)

2 + ctx^ + CQX2 = M, for all n e N. Therefore if
lim^oo cn > 0, we have

, M M
xn < < < +oo.

Cn-\ lrnin^oo Cn

Thus the second part of our theorem follows.

THEOREM 2. Let c , , « e N U {0}, be a positive nondecreasing sequence such that
cn > 8 for n > n0 andxn be a solution of (2). Then lim sup,,.^ cnx

2 > 0.

PROOF. Without loss of generality we may suppose that n0 = 1. From (3) we get

(*„+, - xn)
2 + cnx

2
n+x + c- ,x2 > (x, - x0)

2 -

On the other hand (x\ — x0)
2 + c\X^ + CQX2 > 0, since we may suppose that *o and *i

are not both equal to zero at the same time.
By the inequality between the arithmetic and geometric means and since cn > S,

we have

2
(*„+, - xn)

2 < 2(x2
n+l + x2

n) < -(<vt2
+ 1 + cn.iX

2
n), n € N.
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From all of the above we obtain

(l + - J (cnx
2

+l + cn-iX
2) > (x, - x0)

2 + cxx\ + cox2>0, n € N.

Letting n -»• oo in the last inequality we obtain that

2 + - I lim sup cnx
2 > (JC! - x0)

2 + cxxl + CQX\ > 0

O J n-»oo

Thus the theorem follows.

The following theorem was essentially proved in [8]. In order to make this paper
more complete we shall present its proof here.

THEOREM 3. Let cn,n e N U (0), be a sequence such that cn>S>0,neN and

^2t=i lc '+i ~ c ' - i I < ° ° - Then °M tne solutions of (2) are bounded.

PROOF. From (3) we have

n - l

Cn-lX
2

n < (X, - X0)
2 + Cxxl + CQX2 + V * |cl + i - C,_i \x2, « € N

since c, > 0.
Since cn > 5 > 0, n € N, by the Bellman-Gronwall lemma we get

Hence
- x0)

2 + cxxl + Cox2

L*l ^ — ~—r— ^ e x P I 7

Therefore all solutions of (2) are bounded.

THEOREM 4. Let c , , n e N U {0}, be a positive nondecreasing sequence such that
1 < m < cn+l/cn < M < oo, n € N U {0} anrf xn &e a solution of (2). 77ie/i

x\ = ^ (cn
w^+I»-1) flwrf x\ = 0

for each p > 2, p e N.
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PROOF. From (3) we have

cn-\x
2

n < (x, - XQ)2 + cix2, + CQX2 + ^(c , -+i - Ci-i)xJ, n e N

since c, > 0.
The last inequality can be writen in the form

n— 1 . •.

2 •- . V~* VC'+1 ~ Ci-\) 2 /<r\

~ 7 C + I

where C = (xt — x0)
2 + cyx2 + cox2 and p € N is fixed.

Since cn > 0, (5) is equivalent to

n+p — l
2

i=n " ' i=l

that is,

— I C + ^ ——— -c , + p - l X l
C \ <

n-1

By the condition of the theorem and the discrete Bellman-Gronwall lemma we obtain

since ci+l — c,_i > 0.
Let us estimate the sum X^Ii'fo+i - Ci-{)/ci+p^. First, we note that

n-1 n-1 p-2 n-1 p - \
Ci+l — Ci T T Cj+j ^-^ Ci — Ci-i

By the condition of the theorem we have Cj/ci+i < \/m for all i e N. Thus, for
p > 2, we have

n —1 n—1 , n—1 -
C , _ | ^—\ Cf+1 — C/ I ^ - \ C; — C,_ i 1

- ^ Ct+i ^P12 fa 7, ~^FX
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and

On

and

forp = 1,
n — 1

1 = 1

the other hand, we

i+l —

Ci

have

Ci-l <

n-l

ypch

n — 1

Stevo Stevic

y ^ Ci+l — Ci

h Ci+l

,i-Ci < r

Ci+\ JCi

- Ci-i r

M +

c" dx
X

E-

c-' dx

i ~ Ci-l

Ci

[6]

(7)

(8)
* • Ci f X
| = | * vCo

By (6H8), we get

— -i / • r / —
c-. i mP~^ I x tnP~* I x
'-i+p —1 "• J c\ A '"• Jco x

= —-r(lncn - lnc,) + —— (lncn_, - lnc0), for p > 2,

and
n- l

i + i i - i ^ ^ M(lncn - lncO + (lncn_, - lnc0), for p = 1.

c fo

,=i c '

Hence, since cn is nondecreasing, we have

and
n - l

( ) n > p

i=i Ci

From all of the above we get

cn+pWn < Cexp ( M ' ^ ^ J + - I j . ) Incn + cj , for p > 2

and cnx
2 < Cexp (M(M + 1) In cn + C), for p = 1. Thus we have

that is,

•*n — *-Cn+p-l

and cnx
2 < Cc^(M+l), for p = 1. From that the theorem follows readily.
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REMARK 1. Throughout the above proof we used C to denote a positive constant,
the value of which may vary from line to line.

COROLLARY 1. Let cn, n € N, be a positive bounded nondecreasing sequence such
that 1 < m < cn+\/cn < M < oo, n e N. Then all the solutions of (2) are bounded.

REMARK 2. Note that the condition 1 < m < cn+\/cn < M < oo, n e N, implies
that the sequence (cn) in Theorem 1 and Corollary 1 is nondecreasing.

THEOREM 5. Let dn, n G N, be a positive, unbounded, strictly concave sequence.
Then Equation (1) where bn = — (dn+i + dn^i)/dn has unbounded solution and bn ->
—2 as n -> oo.

PROOF. It is obvious that dn is an unbounded solution of (1). Since dn is a strictly
concave sequence, that is, dn+i+dn-i<2dn, neN, we have dn+\—dn<dn—dn^u neN.
Thus the sequence dn+l — dn is decreasing. Therefore there exists Hm^ooCdn+i — dn)
of finite or infinite value (that is, —oo). Let limn_>0O(dn+1 — dn) = d. If d < 0 from
dn = d\ + Yi"=i(di+i — di) we conclude that dn is negative for sufficiently large n.
Then we arrive at a contradiction with the positivity assumption on dn. So we have
d > 0. Hence dn+\ > dn,n € N. Since

lim (dn+i - tU) = lim dn (
d-^- - l) = d < +oo

and lim^oo dn = +oo, we get limn_00(</n+i/dn) = 1. It follows that

hm bn = — lim = - 2 .
n—*oo n—*oo dn

EXAMPLE 1. Consider the difference equation

ln(n + 1) + ln(n - 1) '
xn+i xn+xn-i = 0 , n > 2.

Inn

This equation is of the form of (1) and obviously has solution xn =lnn and dn = In n,
n > 2, satisfying the conditions of Theorem 5.

EXAMPLE 2. Consider the difference equation

(n + 1)° + (n - 1)°
*»+i xn + xn-i = 0 , n e N, a e (0, 1).

This equation is of the form of (1) and obviously it has solution xn = na. It is clear
that dn = n" is a positive, unbounded and strictly concave sequence, since the function
/ (x) = x", a € (0,1), is such a function.
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By the "symmetry principle" we can obtain analogous theorems in the case bn e
(0, 2), n e N.
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