ANZIAM J. 43(2002), 559-566

GROWTH THEOREMS FOR HOMOGENEOUS SECOND-ORDER DIFFERENCE EQUATIONS

STEVO STEVIĆ¹

(Received 15 October 1999; revised 19 June 2000)

Abstract

In this paper we investigate the boundedness and asymptotic behaviour of the solutions of a class of homogeneous second-order difference equations with a single non-constant coefficient. These equations model, for example, the amplitude of oscillation of the weights on a discretely weighted vibrating string. We present several growth theorems. Two examples are also given.

1. Introduction

In this paper we shall study the second-order linear difference equation of the form

$$x_{n+1} + b_n x_n + x_{n-1} = 0, \quad n \in \mathbf{N},$$
(1)

where x_n is the desired solution and b_n is a given real sequence. We shall investigate the boundedness and asymptotic behaviour of the solution of (1).

This equation models, for example, the amplitude of oscillation of the weights on a discretely weighted vibrating string [1, pp. 15–17].

Results for similar problems for second-order differential equations can be found in [3].

If $b_n = -2$, $n \in \mathbb{N}$, we have $x_{n+1} - 2x_n + x_{n-1} = 0$. This equation has a general solution in the form an + b, where a, b are arbitrary real numbers and thus has unbounded solutions. It is well-known that if $b_n = d \in \mathbb{R}$, $n \in \mathbb{N}$, where $d \ge 2$ or $d \le -2$, then the equation also has unbounded solutions. This motivates us to investigate the cases when $-2 < b_n < 2$, $n \in \mathbb{N}$, especially when $b_n \to 0$ as $n \to \infty$.

¹Matematički Fakultet, Studentski Trg 16, 11000 Beograd, Yugoslavia; e-mail: sstevo@matf.bg.ac.yu. © Australian Mathematical Society 2002, Serial-fee code 1446-1811/02

Stevo Stević

The following "symmetry principle" is very useful in the consideration of (1). If we make the change $y_n = (-1)^n x_n$, (1) becomes

$$(-1)^{n+1}(y_{n+1} - b_n y_n + y_{n-1}) = 0, \quad n \in \mathbf{N},$$

that is,

$$y_{n+1} - b_n y_n + y_{n-1} = 0, \quad n \in \mathbb{N}$$

Thus it is enough to investigate the cases when $-2 < b_n < 0$, $n \in \mathbb{N}$. For example, if we show that, under some conditions, when $-2 < b_n < 0$, $n \in \mathbb{N}$, (1) has either bounded or unbounded solutions, then this also holds for (1) when $0 < b_n < 2$, $n \in \mathbb{N}$.

Using the substitution $b_n = -2/(1 + c_n)$ we may transform the relation of interest into

$$x_{n+1} - 2x_n + x_{n-1} + c_n(x_{n+1} + x_{n-1}) = 0, \quad n \in \mathbb{N},$$
(2)

which is in a more suitable form for the calculations which follow (see also [8]).

2. Preliminaries

For investigation of the boundedness and asymptotic behaviour of the solution x_n , we will need a few auxiliary lemmas. The first of these is a discrete variant of the Bellman-Gronwall lemma. The continuous case of this lemma can be found in [2] and [6].

LEMMA 1. If $x_n, c_n \ge 0$, c is a positive constant and $x_n \le c + \sum_{i=1}^{n-1} c_i x_i$, $n \in \mathbb{N}$, then $x_n \le c \exp\left(\sum_{i=1}^{n-1} c_i\right)$, $n \in \mathbb{N}$.

Proof of this lemma and further generalizations can be found in [4] (see also [8]).

LEMMA 2. Let c_n , $n \in \mathbb{N} \cup \{0\}$, be a positive sequence and x_n be a solution of the difference equation (2). Then

$$(x_{n+1} - x_n)^2 + c_n x_{n+1}^2 + c_{n-1} x_n^2$$

= $(x_1 - x_0)^2 + c_1 x_0^2 + c_0 x_1^2 + \sum_{i=1}^{n-1} (c_{i+1} - c_{i-1}) x_i^2, \quad n \in \mathbb{N}.$ (3)

PROOF. Multiplying (2) by $x_{n+1} - x_{n-1} = x_{n+1} - x_n + x_n - x_{n-1}$ we get

$$(x_{n+1}-x_n)^2 - (x_n - x_{n-1})^2 + c_n(x_{n+1}^2 - x_{n-1}^2) = 0, \quad n \in \mathbb{N}.$$
 (4)

It follows from (4) that

$$\sum_{i=1}^{n} [(x_{i+1} - x_i)^2 - (x_i - x_{i-1})^2] + \sum_{i=1}^{n} c_i (x_{i+1}^2 - x_{i-1}^2) = 0.$$

Hence for all $n \in \mathbb{N}$ we obtain (3).

3. Main results

We are now in a position to formulate and to prove the main results of this paper. From hereafter we shall exclude the trivial solution from our considerations.

THEOREM 1. Let c_n , $n \in \mathbb{N} \cup \{0\}$, be a positive nonincreasing sequence and x_n be a solution of (2). Then the sequences $x_{n+1} - x_n$ and $c_{n-1}x_n^2$ are bounded. Further, if $\lim_{n\to\infty} c_n > 0$, then x_n is bounded.

PROOF. From (3) we have

$$(x_{n+1} - x_n)^2 + c_n x_{n+1}^2 + c_{n-1} x_n^2 \le (x_1 - x_0)^2 + c_1 x_0^2 + c_0 x_1^2$$

since $\sum_{i=1}^{n-1} (c_{i+1} - c_{i-1}) x_i^2 \leq 0$. From that we have the first part of our theorem. In particular, $c_{n-1} x_n^2 \leq (x_1 - x_0)^2 + c_1 x_0^2 + c_0 x_1^2 = M$, for all $n \in \mathbb{N}$. Therefore if $\lim_{n \to \infty} c_n > 0$, we have

$$x_n^2 \leq \frac{M}{c_{n-1}} \leq \frac{M}{\lim_{n \to \infty} c_n} < +\infty.$$

Thus the second part of our theorem follows.

THEOREM 2. Let $c_n, n \in \mathbb{N} \cup \{0\}$, be a positive nondecreasing sequence such that $c_n \geq \delta$ for $n \geq n_0$ and x_n be a solution of (2). Then $\limsup_{n \to \infty} c_n x_n^2 > 0$.

PROOF. Without loss of generality we may suppose that $n_0 = 1$. From (3) we get

$$(x_{n+1} - x_n)^2 + c_n x_{n+1}^2 + c_{n-1} x_n^2 \ge (x_1 - x_0)^2 + c_1 x_0^2 + c_0 x_1^2.$$

On the other hand $(x_1 - x_0)^2 + c_1 x_0^2 + c_0 x_1^2 > 0$, since we may suppose that x_0 and x_1 are not both equal to zero at the same time.

By the inequality between the arithmetic and geometric means and since $c_n \ge \delta$, we have

$$(x_{n+1}-x_n)^2 \le 2(x_{n+1}^2+x_n^2) \le \frac{2}{\delta}(c_n x_{n+1}^2+c_{n-1} x_n^2), \quad n \in \mathbb{N}.$$

From all of the above we obtain

$$\left(1+\frac{2}{\delta}\right)(c_nx_{n+1}^2+c_{n-1}x_n^2) \ge (x_1-x_0)^2+c_1x_0^2+c_0x_1^2>0, \quad n \in \mathbb{N}.$$

Letting $n \to \infty$ in the last inequality we obtain that

$$\left(2+\frac{4}{\delta}\right)\limsup_{n\to\infty}c_nx_n^2 \ge (x_1-x_0)^2 + c_1x_0^2 + c_0x_1^2 > 0$$

Thus the theorem follows.

The following theorem was essentially proved in [8]. In order to make this paper more complete we shall present its proof here.

THEOREM 3. Let $c_n, n \in \mathbb{N} \cup \{0\}$, be a sequence such that $c_n \geq \delta > 0$, $n \in \mathbb{N}$ and $\sum_{i=1}^{+\infty} |c_{i+1} - c_{i-1}| < \infty$. Then all the solutions of (2) are bounded.

PROOF. From (3) we have

$$c_{n-1}x_n^2 \le (x_1 - x_0)^2 + c_1x_0^2 + c_0x_1^2 + \sum_{i=1}^{n-1} |c_{i+1} - c_{i-1}|x_i^2, \quad n \in \mathbb{N}$$

since $c_i > 0$.

Since $c_n \ge \delta > 0$, $n \in \mathbb{N}$, by the Bellman-Gronwall lemma we get

$$x_n^2 \leq \frac{(x_1 - x_0)^2 + c_1 x_0^2 + c_0 x_1^2}{\delta} \exp\left(\frac{1}{\delta} \sum_{i=1}^{n-1} |c_{i+1} - c_{i-1}|\right).$$

Hence

$$x_n^2 \leq \frac{(x_1 - x_0)^2 + c_1 x_0^2 + c_0 x_1^2}{\delta} \exp\left(\frac{1}{\delta} \sum_{i=1}^{+\infty} |c_{i+1} - c_{i-1}|\right) < +\infty.$$

Therefore all solutions of (2) are bounded.

THEOREM 4. Let c_n , $n \in \mathbb{N} \cup \{0\}$, be a positive nondecreasing sequence such that $1 \le m \le c_{n+1}/c_n \le M < \infty$, $n \in \mathbb{N} \cup \{0\}$ and x_n be a solution of (2). Then

$$x_n^2 = \mathcal{O}(c_n^{M(M+1)-1})$$
 and $x_n^2 = \mathcal{O}(c_n^{M^p/m^{p-2}+M^p/m^{p-1}-1})$

for each $p \ge 2$, $p \in \mathbb{N}$.

PROOF. From (3) we have

$$c_{n-1}x_n^2 \le (x_1 - x_0)^2 + c_1x_0^2 + c_0x_1^2 + \sum_{i=1}^{n-1} (c_{i+1} - c_{i-1})x_i^2, \quad n \in \mathbb{N}$$

since $c_i > 0$.

The last inequality can be writen in the form

$$c_{n-1}x_n^2 \le C + \sum_{i=1}^{n-1} \frac{(c_{i+1} - c_{i-1})}{c_{i+p-1}} c_{i+p-1}x_i^2,$$
(5)

where $C = (x_1 - x_0)^2 + c_1 x_0^2 + c_0 x_1^2$ and $p \in \mathbb{N}$ is fixed.

Since $c_n > 0$, (5) is equivalent to

$$c_{n+p-1}x_n^2\prod_{i=n}^{n+p-1}\frac{c_{i-1}}{c_i}\leq C+\sum_{i=1}^{n-1}\frac{(c_{i+1}-c_{i-1})}{c_{i+p-1}}c_{i+p-1}x_i^2,$$

that is,

$$c_{n+p-1}x_n^2 \leq \prod_{i=n}^{n+p-1} \frac{c_i}{c_{i-1}} \left(C + \sum_{i=1}^{n-1} \frac{(c_{i+1} - c_{i-1})}{c_{i+p-1}} c_{i+p-1}x_i^2 \right)$$
$$\leq M^p \left(C + \sum_{i=1}^{n-1} \frac{(c_{i+1} - c_{i-1})}{c_{i+p-1}} c_{i+p-1}x_i^2 \right).$$

By the condition of the theorem and the discrete Bellman-Gronwall lemma we obtain

$$c_{n+p-1}x_n^2 \leq C \exp\left(M^p \sum_{i=1}^{n-1} \frac{c_{i+1} - c_{i-1}}{c_{i+p-1}}\right)$$

since $c_{i+1} - c_{i-1} \ge 0$.

Let us estimate the sum $\sum_{i=1}^{n-1} (c_{i+1} - c_{i-1})/c_{i+p-1}$. First, we note that

$$\sum_{i=1}^{n-1} \frac{c_{i+1} - c_{i-1}}{c_{i+p-1}} = \sum_{i=1}^{n-1} \frac{c_{i+1} - c_i}{c_{i+1}} \prod_{j=1}^{p-2} \frac{c_{i+j}}{c_{i+j+1}} + \sum_{i=1}^{n-1} \frac{c_i - c_{i-1}}{c_i} \prod_{j=1}^{p-1} \frac{c_{i+j-1}}{c_{i+j}}.$$

By the condition of the theorem we have $c_i/c_{i+1} \leq 1/m$ for all $i \in \mathbb{N}$. Thus, for $p \geq 2$, we have

$$\sum_{i=1}^{n-1} \frac{c_{i+1} - c_{i-1}}{c_{i+p-1}} \le \sum_{i=1}^{n-1} \frac{c_{i+1} - c_i}{c_{i+1}} \frac{1}{m^{p-2}} + \sum_{i=1}^{n-1} \frac{c_i - c_{i-1}}{c_i} \frac{1}{m^{p-1}}$$
(6)

and for p = 1,

$$\sum_{i=1}^{n-1} \frac{c_{i+1}-c_{i-1}}{c_i} \leq \sum_{i=1}^{n-1} \frac{c_{i+1}-c_i}{c_{i+1}} M + \sum_{i=1}^{n-1} \frac{c_i-c_{i-1}}{c_i}.$$

On the other hand, we have

$$\sum_{i=1}^{n-1} \frac{c_{i+1} - c_i}{c_{i+1}} \le \int_{c_1}^{c_n} \frac{dx}{x}$$
(7)

and

$$\sum_{i=1}^{n-1} \frac{c_i - c_{i-1}}{c_i} \le \int_{c_0}^{c_{n-1}} \frac{dx}{x}.$$
 (8)

By (6)-(8), we get

$$\sum_{i=1}^{n-1} \frac{c_{i+1} - c_{i-1}}{c_{i+p-1}} \le \frac{1}{m^{p-2}} \int_{c_1}^{c_n} \frac{dx}{x} + \frac{1}{m^{p-1}} \int_{c_0}^{c_{n-1}} \frac{dx}{x}$$
$$= \frac{1}{m^{p-2}} (\ln c_n - \ln c_1) + \frac{1}{m^{p-1}} (\ln c_{n-1} - \ln c_0), \quad \text{for } p \ge 2,$$

and

$$\sum_{i=1}^{n-1} \frac{c_{i+1} - c_{i-1}}{c_i} \le M(\ln c_n - \ln c_1) + (\ln c_{n-1} - \ln c_0), \quad \text{for } p = 1.$$

Hence, since c_n is nondecreasing, we have

$$\sum_{i=1}^{n-1} \frac{c_{i+1} - c_{i-1}}{c_{i+p-1}} \le \left(\frac{1}{m^{p-2}} + \frac{1}{m^{p-1}}\right) \ln c_n + C, \quad \text{for } p \ge 2$$

and

$$\sum_{i=1}^{n-1} \frac{c_{i+1} - c_{i-1}}{c_i} \le (M+1) \ln c_n + C, \qquad \text{for } p = 1.$$

From all of the above we get

$$c_{n+p-1}x_n^2 \le C \exp\left(M^p\left(\frac{1}{m^{p-2}} + \frac{1}{m^{p-1}}\right)\ln c_n + C\right), \text{ for } p \ge 2$$

and $c_n x_n^2 \leq C \exp(M(M+1) \ln c_n + C)$, for p = 1. Thus we have

$$c_{n+p-1}x_n^2 \leq Cc_n^{M^p/m^{p-2}+M^p/m^{p-1}} \leq Cc_{n+p-1}^{M^p/m^{p-2}+M^p/m^{p-1}}, \text{ for } p \geq 2,$$

that is,

$$x_n^2 \le C c_{n+p-1}^{M^p/m^{p-2} + M^p/m^{p-1} - 1}$$
(9)

and $c_n x_n^2 \leq C c_n^{\mathcal{M}(\mathcal{M}+1)}$, for p = 1. From that the theorem follows readily.

564

REMARK 1. Throughout the above proof we used C to denote a positive constant, the value of which may vary from line to line.

COROLLARY 1. Let c_n , $n \in \mathbb{N}$, be a positive bounded nondecreasing sequence such that $1 \le m \le c_{n+1}/c_n \le M < \infty$, $n \in \mathbb{N}$. Then all the solutions of (2) are bounded.

REMARK 2. Note that the condition $1 \le m \le c_{n+1}/c_n \le M < \infty$, $n \in \mathbb{N}$, implies that the sequence (c_n) in Theorem 1 and Corollary 1 is nondecreasing.

THEOREM 5. Let d_n , $n \in \mathbb{N}$, be a positive, unbounded, strictly concave sequence. Then Equation (1) where $b_n = -(d_{n+1} + d_{n-1})/d_n$ has unbounded solution and $b_n \rightarrow -2$ as $n \rightarrow \infty$.

PROOF. It is obvious that d_n is an unbounded solution of (1). Since d_n is a strictly concave sequence, that is, $d_{n+1}+d_{n-1}<2d_n$, $n \in \mathbb{N}$, we have $d_{n+1}-d_n < d_n-d_{n-1}$, $n \in \mathbb{N}$. Thus the sequence $d_{n+1} - d_n$ is decreasing. Therefore there exists $\lim_{n\to\infty} (d_{n+1} - d_n)$ of finite or infinite value (that is, $-\infty$). Let $\lim_{n\to\infty} (d_{n+1} - d_n) = d$. If d < 0 from $d_n = d_1 + \sum_{i=1}^{n-1} (d_{i+1} - d_i)$ we conclude that d_n is negative for sufficiently large n. Then we arrive at a contradiction with the positivity assumption on d_n . So we have $d \ge 0$. Hence $d_{n+1} \ge d_n$, $n \in \mathbb{N}$. Since

$$\lim_{n\to\infty}(d_{n+1}-d_n)=\lim_{n\to\infty}d_n\left(\frac{d_{n+1}}{d_n}-1\right)=d<+\infty$$

and $\lim_{n\to\infty} d_n = +\infty$, we get $\lim_{n\to\infty} (d_{n+1}/d_n) = 1$. It follows that

$$\lim_{n \to \infty} b_n = -\lim_{n \to \infty} \frac{d_{n+1} + d_{n-1}}{d_n} = -2.$$

EXAMPLE 1. Consider the difference equation

$$x_{n+1} - \frac{\ln(n+1) + \ln(n-1)}{\ln n} x_n + x_{n-1} = 0, \quad n \ge 2.$$

This equation is of the form of (1) and obviously has solution $x_n = \ln n$ and $d_n = \ln n$, $n \ge 2$, satisfying the conditions of Theorem 5.

EXAMPLE 2. Consider the difference equation

$$x_{n+1} - \frac{(n+1)^{\alpha} + (n-1)^{\alpha}}{n^{\alpha}} x_n + x_{n-1} = 0, \quad n \in \mathbb{N}, \ \alpha \in (0, 1).$$

This equation is of the form of (1) and obviously it has solution $x_n = n^{\alpha}$. It is clear that $d_n = n^{\alpha}$ is a positive, unbounded and strictly concave sequence, since the function $f(x) = x^{\alpha}, \alpha \in (0, 1)$, is such a function.

By the "symmetry principle" we can obtain analogous theorems in the case $b_n \in (0, 2), n \in \mathbb{N}$.

References

- [1] F. V. Atkinson, Discrete and Continuous Boundary Problems (Academic Press, 1964).
- [2] R. Bellman, "The stability of solutions of linear differential equations", Duke Math. J. 10 (1943) 643-647.
- [3] R. Bellman, Stability Theory of Differential Equations (McGraw-Hill, New York, 1953).
- [4] F. S. De Blasi and J. Schinas, "On the stability of difference equations in Banach spaces", Analele stintificae ale Universitatii Al. Cuza, lasi Sectia la. Matematica 20 (1974) 65-80.
- [5] T. Fort, Finite Differences and Difference Equations in the Real Domain (Oxford Univ. Press, London, 1948).
- [6] T. Gronwall, "Note on the derivatives with respect to a parameter of the solutions of a system of differential equations", Ann. Math. 20 (2) (1919) 292-296.
- [7] W. G. Kelly and A. C. Petersen, *Difference Equations: An Introduction with Applications* (Academic Press, Boston, 1991).
- [8] E. Kurpinar and G. Sh. Guseinov, "The boundedness of solutions of the second-order difference equations", Indian J. Math. 37 (2) (1995) 113-122.