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ABSTRACT. In an effort to reduce uncertainties in the theoretical radiative opacities a new code 
has been developed at LLNL which removes several of the approximation present in past 
calculations. Results from the new code with comparisons to other available opacity calculations 
are presented as well as experiments. 

1. INTRODUCTION 

The calculation of plasma radiative properties involves detailed knowledge of both atomic and 
plasma physics. As a result, the problem is complex and has been fully addressed by only a few 
groups. However, due to the complexity, approximations have been made in the past which may 
limit the accuracy of the results. Unfortunately, direct experimental measurements of the opacity 
are essentially nonexistent so that the success or failure of theoretical results must be determined 
indirectly. For example, the calculation of period ratios in Cephieds based on stellar models does 
not agree with experimental observations. It has been suggested by Simon[l] and later by 
Andreasen[2] that an arbitrary increase in the Rosseland mean opacity of the metals without 
increasing their abundance can explain the discrepancy. Comparison of observed and predicted p-
mode oscillations in the sun can be improved by increasing the opacity [3]. The solar neutrino rate 
is sensitive to the opacity as well. There are other outstanding problems which could be solved by 
changes in the input opacity calculations. Probably the discrepancies will not all disappear with 
improved opacities, however, it will be easier to find the explanations if uncertainties in the 
opacities were reduced. 

At present there are about ten theoretical efforts throughout the world developing radiative 
opacity codes. Although there is some overlap, the groups vary somewhat in approach and tend to 
emphasize different matter conditions. There are also some experimental efforts trying to measure 
directly the photon absorption[4]. These are difficult experiments and definite results are not 
presently available. Perhaps all this activity coupled to the astrophysical and astronomical 
community, which at present offer the best laboratories (stellar matter), will result in opacity 
calculations being better understood and uncertainties reduced. 

Several reviews have appear in the literature[5] which discuss opacities and is not the 
purpose here to go over this ground, but rather to describe a new opacity effort at LLNL: the OPAL 
code. We shall consider temperatures sufficiently high (a few eV) that molecular absorption is 
negligible and photon energies low enough (less than about lOkeV) that relativistic effects are 
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small. These conditions cover the relevant plasma temperature and photon energy ranges for 
computing opacities inside the sun. Under these circumstances the dominant absorption processes 
are electronic transitions in the field of ions; that is, line transitions (bound-bound), photoionization 
(bound-free), and inverse bremsstrahlung (free-free). At high temperatures nuclei are completely 
striped of any bound electrons and photon scattering from free electrons becomes important 

For conditions of interest here, collisions between the plasma constituents are sufficiently 
frequent that the plasma can be assumed to be in local thermodynamic equilibrium (LTE). Since the 
mean free path of an average photon is small compared to the scale of the matter temperature 
gradients inside a star, the photons are in equilibrium with the matter and have a black body 
spectrum at the material temperature. The transport of photons will then be well desscribed by the 
diffusion approximation with the diffusion constant given by the Rosseland mean opacity, KR, 

1 p 1 3B(u,T) 
-gr- = du - 3=— (1) 

KR Jo K(u) d T 

where the weighting function 

3B(u,T) _ J5_ u V . . 
3T =

4 / ( 1 _ e u ) 2 

peaks at u (=photon energy/T) = 4 with T the matter temperature in units of energy. The extinction 
coefficient is defined by 

K(u) = Kabs(u)(l-e"u) + Ksc(u) (3) 

where Kabs is the absorption coefficient and Ksc is the scattering cross section, 

ijk 

(4) 

Ksc(u) = Ne osc(u). 

Here, Njjk is the number of ions of charge j in electronic level k of element species i, aijk(u) is the 
absorption cross section for photons with energy u by those levels, and Ne the free electron number 
density with Osc(u) the photon scattering cross section. 
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2. THEORY 

2.1 Equation of State (EOS) 

Every opacity calculation begins with the EOS to obtain the occupation numbers, Nyk. Our EOS 
was developed by Rogers[6] and is based on an activity expansion for the grand canonical partition 
function. The approach relies on quantum statistical mechanics and does not require any ad hoc 
cutoffs so familiar in free energy minimization techniques. The well known problem in the latter is 
related to the internal partition function, 

^ g j e x p ^ j - N 3 (5) 
j=0 

where the sum is over bound levels, gj is the level degeneracy, and Ej the level energy. The 
divergence requires a phenomenological argument for truncating the series. 

A proper solution to the problem recognizes that the partition function for the plasma involves a 
trace over all states. The many-body activity expansion developed by Rogers[6] and Ebeling et 
al.[7] not only avoids the ad hoc cutoffs but shows how the divergences are removed by including 
the scattering states. It starts from a description of the system in terms of electrons and nuclei 
interacting through the Coulomb potential and makes no assumptions about the internal states of 
composites (ions and atoms). This fundamental particle activity expansion is then renormalized to 
account for the composites. Ebeling will describe the EOS in another chapter of the present volume 
so that only brief remarks concerning the method will be given here. 

For simplicity assume a plasma in LTE made up of protons and electrons interacting through the 
Coulomb potential. Following quantum statistical mechanics, one can write the pressure, P, in 
terms of an activity expansion and cluster coefficients, 

7 = X z« + S X Z « Z " ' b2,aa' + '-' (6) 

where z a is the activity for species a, bn's are the n-body cluster coefficients, and a is an electron 
or proton. As an example consider the electron-proton cluster coefficientt[8] 

b2,ep- TreP 1 exp \ - -2L - exp 
U 0 \̂ 
Mep (7) 

where Trep is a trace over a complete set of electron-proton states, with Hep and H°ep the electron-
proton Hamiltonian with and without the Coulomb interaction, respectively. The cluster b2 has a 
simple interpretation: It contains two-body interaction corrections to the pressure, the Hep term, but 
one must be careful to subtract the non-interacting two body contributions already included in the 
ideal gas term, subtracted H°ep term. In this form it is easy to see that b2 is not the two body 
partition function and to interpret it as such may lead to confusion. 
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Since the Coulomb interaction depends only on relative coordinates, the center of mass motion 
separates from the relative motion and we find after some manipulations^] 

b2,ep~ X 8jexp(-T) + S ( 2 / + 1 ) { ° d P 
d5,(p) f P2 

o d ~ £ = (8) 
j(bound) / 

where Ej are the bound state eigenvalues of Hep, 8/ (p) are the scattering state phase shifts with 
momentum p, and |X is the reduced mass. At this point it appears that t>2,ep also diverges due to the 
bound state contributions. However, an integration by parts leads to 

b2,ep~ X g j f e x p ^ j - l j + ^ f X c ^ + ^ J / p p e x p ^ j ^ ^ C ^ 

j(bound) ' 

where use has been made of Levinson's theorem[8] 

8; (p) = Jt(number of bound states of quantum number / ) (10) 

We can see in Eq. (9) that the contribution from the scattering states compensates for the leading 
divergence in the bound state contribution. Higher order Levinsons theorems have been proven for 
the Coulomb potential[9] and a second integration by parts yields 

^ e p " X 8j |_exp^-^-J- l+-^ 
j(bound) 

+ ^ X ( 2 ' + i > j > exp(-wlJdp p2 5 < ( p ) ( I D 

and the bound state divergences are now fully compensated by the scattering states. This 
manipulations have redefined the continuum such that weakly bound states are treated with the 
scattering states in many-body perturbation. The sum over bound states in Eq. (11) is the so-
called Plank-Larkin partition function which, of course, is no! a partition function, but rather the 
bound state contribution from two-body bound states to the pressure. 

There are other divergences in the activity expansion of the pressure which do not 
compensate. These are present even in classical Coulomb systems without bound states and are 
associated with the long-ranged Coulomb interaction. Their removal is well understood and 
involves summing certain classes of terms appearing in the expansion. The above procedures and 
their extensions to higher order cluster coefficients has been discussed extensively by Refs. 6 and 7 

Even though the activity expansion provides a formalism for the EOS, it does not 
automatically yield occupation numbers for the plasma radiative properties. A final step described 
by Rogers[6] is necessary where a formal comparison of pressure expressions from the activity 
expansion and the free energy minimization was done. The results show that strongly bound state 
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occupation numbers are described by Boltzman factors while weakly bound states require many-
body corrections. 

2.2. Absorption Cross Sections 

The approach followed for computing the opacity is the so-called detailed configuration method in 
which every electronic configuration and corresponding term structure is considered explicitly. 
Such an approach requires vast amounts of atomic data. One possibility is to create a large data 
base with energy levels and cross sections. The data base, however, will not contain any density 
effects which may be important for high density plasma in stellar interiors. A second possibility, 
and the one chosen here, is to compute the atomic data "on-line". In the past, on-line calculations 
were too slow or not sufficiently accurate. Fortunately, we have developed a parametric potential 
method which is both fast and accurate[10]. The parametrization procedure required reproduction 
of experimental energy level data. Solving the Dirac equation with these parametric potentials 
provides wavefunctions and energies which in turn are used to compute the photon absorption 
cross sections. The parametric potentials have been developed for valence and inner shell electrons 
as well as multiply excited configurations. The accuracy of this method is comparable to single 
configuration, self-consistent-field calculations with relativistic corrections. The method affords 
the possibility of including density effects by suitable modifications of the Coulomb tail by plasma 
screening. It also allows for testing of various atomic physics issues by changing the atomic 
package in the code. Something not easily done with data bases. Finally, it is important to note 
that data bases are not "complete" and that on-line atomic calculations, much simplified over those 
in the data base.would still be necessary to supplement the data base approach. It is possible that a 
hybrid approach would be best where a very accurate, relatively small data base is supplemented 
with fast and reasonably accurate on-line method such as ours. 

Previous opacity calculations have not included this level of accuracy in their atomic data, 
partly due to the limited computer facilities available at the time. Consequently, they have in some 
plasma conditions important for Cephied variables underestimated the opacity of the metals by large 
factors[ll]. 

Below follows a brief description of how the three dominant absorption processes are 
computed in OPAL. It is important to realize that as in most calculations, it is assumed that many-
body physics can be well described by an appropriate single particle representation. 

2.2.1. Bound-Bound Transitions. The accuracy obtained in calculating bound-bound transitions 
depends on the line location and associated oscillator strength. Using the parametric potential we 
can obtain 1% or better accuracy for the configuration averaged energies when compared to 
experiment for ions relevant to the solar interior. In order to match real experiments, it necessary to 
include the configuration term splitting. The angular momentum coupling is done using standard 
perturbation theory methods and includes either Russell-Saunders or intermediate coupling 
depending on the levels and nuclear charge. The term splitting results are not as accurate as the 
configuration averages but are better than 10% when compared to experiment. The strong 
oscillator strengths are also in the order of 10% accuracy, but very little experimental data are 
available. Of course, the comparisons are done for isolated ions and it must be emphasize that little 
is known of how ions behave under the extreme conditions of stellar interiors. Not all transitions 
are computed with term splitting. Transition from lower bound levels with quantum number 
greater than 5 are considered in the configuration average only. If in the future this "switch" is 
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insufficient (perhaps in the much colder regions in the photosphere) it is easily change in the code to 
some higher value. 

In nature spectral lines experience broadening, for example, Doppler effects, collisions, and 
natural lifetimes. In OPAL lines from single electron ions are treated with standard linear Stark 
theory[12]. These line shapes are in good agreement with experiment. In the near future we will 
include similar calculations for Helium-like and Lithium-like ions which have also compared well 
with experiments. For all other transitions we use Voigt profiles where the Gaussian width is due 
to doppler broadening and the lorentz width is due to estimated natural plus electron impact 
collisions. ̂  The latter is computed using second order dipole approximation. These are not scaled 
hydrogenic results but use the same wavefunctions as in the atomic data calculations. 

2.2.2. Bound-Free Cross Sections. These cross sections are computed explicitly for all levels with 
angular momentum quantum number less than 5. For levels with principal quantum number greater 
than 5, the configuration term structure is neglected. The resulting bound-free cross sections have 
compared well with experiments even for neutral atoms[6] except when configuration interaction 
effects are important. Such effects, however, are expected to be very small for solar interior 
calculations. For the remaining levels we use scaled hydrogenic cross sections. 

2.2.3. Free-Free Absorption. Since the parametric potential model provides good results for 
bound-free cross sections where both bound and scattering states are required, we assume that the 
parametric potential method will also be valid for free-free calculations where only scattering states 
are necessary. We compute explicitly the dipole matrix elements except in some limiting regions 
where simpler approximations are valid. For example, for small photon energies elastic scattering 
cross sections are useful and easy to compute. Plasma screening effects are introduced into the 
electron-ion interaction. These effects are described by Rogers [6] and reduce to the Debye-
Huckel[13] result for weakly coupled plasmas. This approach provides two improvements over 
calculations using Coulomb Gaunt factors. The first is corrections due to the plasma screening at 
small photon energies. The second is corrections at large photon energies where the scattering 
electron can penetrate the bound electron orbits and see a higher effective charge. 

2.3 Scattering 

The treatment of photon scattering from free electrons follows Boercker[14]. There, the transport 
cross section is computed including the many electron effects; that is, 

asc(k) = a t I d(cos8) [l+cos2e][l-cos9] S(k) (12) 

where 

S(k) = 1 + hRPA(k) + hx(k) (14) 
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where 8 is the photon scattering angle, X the photon wavelength, with IIRPA and hx are the 
electron-electron correlation functions in the Random Phase Approximation and first order 
exchange, respectively. 

3. Experiments 

As mentioned earlier, absorption experiments are difficult. Firstly, they require LTE conditions 
which are difficult to obtain in laboratory plasmas. Independent measurements of the plasma 
density and temperature are necessary and care is require in order to avoid circular arguments. For 
comparison with theoretical calculations error bars would be quite useful in helping to discriminate 
between various models. Finally, the experiments will be restricted to low densities. 

I 

" 3.0 3.5 4.0 4.5 5.5 6.0 

Wavelength (A) 

Fig. 1. EmissivitiesatNe=1.8xl017electrons/cm3andT=1.0xl04K. 
Dashed line: Wiese et al.[15]. Solid line: OPAL 
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In spite of all the difficulties there are some experiments with hydrogen. In Figures 1 and 2 
we compare our results for the emissivity with experimental data by Wiese et al.[15]. In looking at 
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the comparison one should note that the experiments were not in strict LTE and that the chosen 
plasma conditions were obtained by the experimentalist assuming LTE conditions. Similar 
experiments and comparisons have been done by other researchers[16,17]. 
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Wavelength (A) 

6.0 

Fig. 2. Same as Fig. 1 with Ne= 9.3xl017 electrons/cm3 and T= 1.33X104-

Unfortunately, the Wiese et al.[15] experiment is not a sensitive test for EOS or occupation 
numbers, but rather it is an excellent test for Stark broadening of Hydrogen spectral lines as 
originally intended by the authors. The reason is that Saha-type EOS formulations with principal 
quantum number cutoff above the Inglis-Teller[18] limit will reproduce reasonably well the 
experimental data[16]. The difficulty is in reproducing the line spectra near threshold where a 
careful theory, which is not presently available, would need to Stark mix many states with different 
quantum numbers plus the continuum. What has been done with some success in the past are 
phenomenological methods[16,17] that mimic the line broadening of overlapping lines. These 
methods are in effect "smoothing" procedures which conserve the oscillator strengths. Just as 
important, they restrict the line radiation to the region near threshold while standard line broadening 
theories have unphysical broadening to regions far from line center leaving a spectral window. 
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4. Opacity Results for the Sun 

The Rosseland mean opacities are compared with the results from the Los Alamos Astrophysical 
Library published in Bahcall et al.[19]. The comparisons are presented in Table 1. The assumed 
solar mixture (labelled Ross-Aller'76) was obtained from Table IV of Ref. 19 and the Los Alamos 
Rosseland means from Table VI. We see no significant differences until the matter temperature 
drops below 7x10^ K. As the temperature continues to drop, the opacity difference increases to 
approximately 18% at 1x10^ K. Such increases are significant to Helioseismological data. 

The opacity is also sensitive to uncertainties in the element mixture. For comparison, we 
did our calculations assuming the same temperatures and densities but assumed a more recent 
Aller[20] element abundance (labelled Aller'86). This mixture is richer in both Fe and Ne. In 
Table 1 one can see that near the solar center where Fe is important to the opacity there is a few 
percent increase in the Rosseland mean due to changes in the mixture when using the OPAL code. 
Similarly, near 3x10^ K Ne is important and there is an 8% increase. 

TABLE 1. Comparison of OPAL and Los Alamos[19] Rosselasnd mean opacities 
(cm2/g) where X=0.35 and Z=0.0179. 

T (xlf^K) 

15.7 

12.8 

11.3 

10.0 

7.0 

4.5 

3.0 

1.8 

1.0 

p (g/cm3) 

135.0 

73.4 

50.5 

35.0 

12.0 

3.19 

0.945 

0.204 

0.035 

Ross-Aller'76 

Ref. 19 

1.18 

1.34 

1.45 

1.61 

2.54 

5.85 

13.6 

31.0 

49.9 

OPAL 

1.17 

1.33 

1.44 

1.58 

2.53 

6.23 

14.6 

35.4 

59.3 

Aller'86 

OPAL 

1.21 

1.37 

1.47 

1.60 

2.55 

6.39 

15.8 

36.5 

57.3 

The differences between the results of the two codes are mostly due to the improved atomic physics 
package in OPAL. We have done some comparisons of the occupation numbers, Nyk, but found 
small differences on the most relevant levels. There are also differences in the treatment of line 
broadening since the lorentz widths are not the same in the two codes. The subject of line 
broadening, in particular line wings, remains an open question in opacity calculations. The 
problem of line broadening of spectral lines in multi-electron ions has just begun to be explored. 
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5. Conclusions 

The differences in the numerical results between the two codes may be interpreted as a measure of 
the uncertainties in opacity calculations for solar interior. However, a word of caution is necessary. 
Even though the codes were independently developed and several of the approximations in the 
previous calculations were removed, there are no experiments to guide the theory for such extreme 
temperature and density conditions. In the past, single particle representations of many-body 
problems have been successful, but usually experiments were necessary in order to pinpoint the 
important physics of the particular problem. Perhaps with very accurate astronomical experiments, 
such as the p-mode oscillation measurements, it will be possible to improve our understanding of 
EOS and absorption properties of very hot, dense matter. 
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