
Adaptive Road Candidates Search
Algorithm for Map Matching by

Clustering Road Segments
Ming Ren and Hassan A. Karimi

(Geoinformatics Laboratory, School of Information Sciences,
University of Pittsburgh, USA)
(E-mail: mng_ren@yahoo.com)

Map matching is an important algorithm for any location-based service, especially in
navigation and tracking systems and services. Identifying the relevant road segments
accurately and efficiently, given positioning data, is the first and most important step in any
map matching algorithm. This paper proposes a new approach to searching for road
candidates by clustering and then searching road segments through a constructed hierarchical
clustering tree, rather than using indexing techniques to query segments within a fixed search
window. A binary tree is created based on the hierarchical clustering tree and adaptive
searches are conducted to identify candidate road segments given GPS positions. The
approach was validated using road maps with different scales and various scenarios in which
moving vehicles were located. Both theoretical analysis and experimental results confirm that
the proposed approach can efficiently find candidate road segments for map matching.

KEY WORDS

1. Map matching. 2. Hierarchical clustering tree. 3. Binary tree. 4. Road candidates search.

Submitted: 5 July 2012. Accepted: 15 February 2013.

1. INTRODUCTION. Navigation and tracking systems have been a research
topic for the past several years. Regardless of the underlying geo-positioning sensors
(e.g., Global Positioning System (GPS) or Wireless Fidelity (Wi-Fi)) considered in
these systems, they cannot provide actual locations of moving objects with changes
in time, area, and weather. This is the reason why map matching is needed as the
fundamental task in navigation and tracking systems to estimate moving objects (e.g.,
vehicles) using position data and spatial networks. The first step in a map matching
algorithm involves identification of the correct road segment on which a vehicle is
travelling. Thereafter, estimating the location of a vehicle on that segment is the
second step in a map matching algorithm. Finding the correct road segment requires
the identification of a set of candidate road segments, based on a received GPS posi-
tion, followed by comparison of those candidates to decide the most likely segment.
Therefore, finding the set of candidate road segments is imperative in map matching

THE JOURNAL OF NAVIGATION (2013), 66, 435–447. © The Royal Institute of Navigation 2013
doi:10.1017/S0373463313000076

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

algorithms and involves two types of situation. The first is initializing a search range
when the first position data is received. The other is continuously updating the search
window for new positions. The worst case, from a search standpoint, is that when the
search window covers an entire road network. Searching a large network is time
consuming, which may delay the process of map matching. Identifying the segment on
which a vehicle is moving not only demands correctness, but demands efficiency as
well. For navigation, which processes in real-time, efficiency in finding the correct
segment is especially important.
A common approach to this first step in map matching is initially to reduce the

search range and then to find the correct segment. The correct segment is among those
that are close to the given GPS position. Given this assumption, search time is reduced
by using a small portion (window) of a large network. All links within this window are
treated as candidates for further analysis during the map matching process. A widely
used process for creating search windows is to create a buffer, centred at a given GPS
position, and identify the road segments within it as candidates. How to define the
buffer window and how to quickly search those candidate links within the window has
been a research topic amongst the navigation community.
In this paper, we present a new algorithm to address the problem of efficiently

finding candidate road segments in road networks given the GPS positions of a
moving vehicle. The algorithm is based on a bottom-up approach that builds a road
segment-clustering tree to achieve both adaptability and efficiency in finding candidate
segments.
The main innovations of this paper are: the introduction of a segment-clustering

tree algorithm, which clusters segments by both geometry (distance) and topology
(connectivity) in road networks, and an adaptive technique to create and update
search windows for map matching in navigation systems. The proposed algorithm
avoids the redundant searching that is inherent in conventional spatial indexing
techniques.
The rest of the paper is structured as follows. Section 2 discusses background and

related works. Section 3 introduces road segment-clustering trees and describes their
data representation. Section 4 describes the query and update algorithms used to find
relevant road segment candidates. Section 5 discusses performance analysis and
experimental evaluation. Finally, conclusions and future research are discussed in
Section 6.

2. BACKGROUND AND RELATED WORKS. Current research into
searching for objects in spatial networks mainly uses spatial indexing techniques with
the goal of improving the efficiency of queries (Tele Atlas, 2008; Zhao et al., 2001).
Spatial indexing for spatial and spatio-temporal queries has been an active research
topic over the past decades. Since 1984, when the R-tree was presented by Guttman
(1984), several indexing techniques have been developed for efficient spatial queries.
Basic indexing techniques with variant structures such as the R-tree, quadtree, B-tree,
and grid (Zhao, 1997) have been employed in different experiments focused on spatial
query efficiency (Lin 2008a and 2008b; Chen et al., 2009; Kalashnikov et al., 2002).
We focus on the R-tree as a representative technique and discuss data structures and
query algorithms in indexing and searching spatial objects in spatial databases.

436 MING REN AND HASSAN A. KARIMI VOL. 66

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

R-tree was developed as an index structure for the efficient management of multi-
dimensional and spatial data. Common operations performed on an R-tree include
point location queries, range queries and nearest neighbour queries. For map
matching, road segments, among other object locations, such as buildings, can be
represented as polygon objects and stored on the leaf nodes of an R-tree. Each leaf
node holds two items for each data record: one is the bounding box of the object and
the other is to place the object. Non-leaf nodes of an R-tree can hold two items for
each of its children: a bounding box of the child and a pointer to the child.
A number of bulk loading techniques were developed to build an R-tree (Bercken

and Seeger, 2001). The Top-down Greedy Split (TGS) and the bottom-up approaches
are the two predominant methods in use (Alborzi et al., 2007). A bottom-up approach
builds an R-tree from the leaf nodes level to the upper level until it reaches the root
node. In the lowest level, n data rectangles are sorted according to a predetermined
sort order and m data rectangles are grouped in the upper level. The construction
process is iterative from the bottom to the root of the R-tree. By contrast, a top-down
approach starts with building the higher levels of the R-tree. The data rectangles are
sorted according to a predetermined sort order and then split to build sub-trees for the
children recursively down to the final leaf nodes. An order of objects must be
predetermined in both approaches and stored in the tree. This causes a problem, which
is that the pre-ordered leaf nodes cannot appropriately represent adjacent objects in a
spatial space. There is a lack of efficiency when spatially adjacent objects in an R-tree
are stored in multiple paths and queried as a group.
The first stage of a map matching algorithm involves the selection of candidate

segments by searching a certain area centred on the given GPS position. This search
process is often based on an indexing technique that traverses a tree, like R-tree, down
to its leaf nodes to find those segments within the coverage of the search window. Since
the topology of road networks is very important to match GPS positions onto
road segments, those connected road segments around GPS positions are usually
considered as candidate segments. However, spatial indexing techniques, such as the
R-tree, do not consider the topology of road networks in constructing trees. In spatial
indexing, it is likely that adjacent segments are stored in different sub-trees because the
trees are constructed in a certain order (e.g., Hilbert order to build a Hilbert R-tree).
As a result, the retrieval of candidate road segments in a given network requires
several passes through the R-tree. The search complexity is significantly dependant
upon the distribution patterns of road segments in a road network. Furthermore, the
same road segment may be indexed more than once in the tree, requiring traversal of
multiple paths. As a means of avoiding redundant searching in indexed spatial
databases used for map matching, this paper presents a clustering technique to
develop an adaptive candidate segments selection algorithm.

3. ROAD NETWORK DATA REPRESENTATION.
3.1. Hierarchical Clustering Tree. Unlike spatial indexing techniques, where

objects are organized in a certain order, clustering techniques group objects by their
characteristics. One important characteristic of road networks is the connectivity of
road segments which can be used to cluster roads.
In the family of clustering algorithms for different types of applications, the two

most common branches are the partitioning branch and the hierarchical branch

437ADAPTIVE ROAD CANDIDATES SEARCH ALGORITHMNO. 3

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

(Huang et al., 1998; Kotsiantis and Pintelas, 2004). Partitioning algorithms create a
‘flat’ decomposition of a data set into a set of clusters. Examples of partitioning
algorithms include k-means, k-medoids and density-based algorithms. They generally
need some input parameters which specify, either the number of clusters that a user
intends to find, or a threshold for point density in clusters. However, it is difficult to
determine what parameters are needed and what values they have, as the parameters
may not even exist.
In contrast, hierarchical clustering algorithms do not actually partition a data set

into clusters. Instead, an hierarchical representation of the data set is computed to
reflect the possible hierarchical clustering structure of the data set. Hierarchical
clustering algorithms are more robust and less influenced by cluster shapes; they are
less sensitive to largely differing point densities of clusters, and they can represent
nested clusters (Sander et al., 2003). Since hierarchical clustering algorithms can
partition a data set with no prior knowledge of the number of clusters (e.g.,
distribution of road segments in a road network), they are seen as an alternative to
spatial indexing techniques in this research. Clustering road segments in a hierarchical
clustering tree by using an average-linkage method is described in the next section.

3.2. Clustering Road Segments. In graph theory, a graph is formally represented
by the term <V, E>, where V represents vertices in the graph and E represents edges
in the graph. A general adjacency matrix in graph theory is A={aij}, where aij
represents the weight (e.g., distance) between ith vertex and jth vertex. Consisting of
intersections and segments, a spatial network can be represented as a graph where
intersections are the vertices and segments are the edges. To better perform map
matching for navigation applications, segments are clustered instead of intersections,
because intersections only represent geometric information, whereas segments
represent both geometrical and topological information.
To build the hierarchical clustering tree of a spatial network, a new matrix A′ is

introduced in this algorithm. Generalizing a spatial network as a non-directional
graph clustered by distance, A′ becomes a symmetric matrix. In order to define A′ two
matrices are defined first. One matrix represents the topology of a spatial network,
denoted by T={tij}, where tij is 0 if the ith and the jth vertices are on the same segment
(this occurs when i and j represent the same vertex or i and j are the two vertices of a
segment) and tij is 1 when the ith vertex is not directly connected to the jth vertex. The
other matrix is an adjacency matrix A={aij}, which computes the Euclidian distance
between any two vertices to represent the closeness of the intersections in geometric
space. As a result, a new matrix A′=A*T={aij*tij} is defined to combine the two
factors, geometrical distance and topological relationship from matrices A and T. The
weight of each element in the matrix A′ not only considers the distance between the
vertices (i.e, intersections), but also considers the topology of the spatial network.
A road network can be very large but sparse, since a road link is only connected to

few links in topology. Therefore, topological relationship matrix T is sparse and could
be built in a more compact data format by traversing only physical connected links. In
addition, although real world road networks may contain one way segments, the road
network is treated as a symmetric graph, which can simplify the clustering calculation
and make the matrix A′ compact. A ‘one-way’ attribute can be added in the process of
map matching.
Based on matrix A′, we build a hierarchical clustering tree from the bottom-up.

Segments on the lowest level of this tree, as the smallest units in the structure, are

438 MING REN AND HASSAN A. KARIMI VOL. 66

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

grouped together based on the distances, one from another, and the clustering process
is continued until the root of the tree is reached.
To illuminate the clustering procedure, Figure 1 shows 10 segments, labelled by

their identities from 0 to 9. Every segment has two vertices, so 10 segments have
twenty vertices, from 1 to 20. Matrix A′, therefore, becomes a 20-by-20 matrix. Since it
is symmetrical, only it’s upper or lower triangular (off diagonal) needs to be stored.
The weights in the upper triangular and the lower triangular are all set as 0 s, as shown
in Figure 2.
Given the matrix A′, a hierarchical clustering tree is built using the average-linkage

clustering method. The average linkage clustering is based on measuring the proximity
between two groups of vertices. Here we use the average distance between all pairs of
vertices in cluster r and cluster s as the measurement. Its definition is as follows:

d(r, s) = 1
nrns

∑nr

i=1

∑ns

j=1

dist(xri, xsj) (1)

where nr is the number of vertices in cluster r and ns is the number of vertices in cluster
s, and xri is the i

th vertex in cluster r, and xsj is the j
th vertex in cluster s.

After applying the average-linkage clustering method, Figure 3 shows how the
hierarchical clustering tree is built from the matrix A′ in Figure 2. The clustering
process starts from the bottom where average distances of two vertices on the same
segment as a cluster are set to zero in A′. Segments are grouped together in an order
that clusters those with closer distances until all the clusters are grouped together and
the root is reached. The root of the clustering tree represents the entire spatial network
as one group.

4. ADAPTIVE SEARCHING ALGORITHM. In this section, a binary
tree structure and its corresponding adaptive searching algorithm is discussed. The
search will be conducted on a binary tree corresponding to the clustering tree that has
been built. For map matching, the search starts from the entire road network and
stops when a group of segments is found to meet a given criterion. With the movement
of a user, relevant road segments change with respect to the received GPS positions.

Figure 1. An example of road network.

439ADAPTIVE ROAD CANDIDATES SEARCH ALGORITHMNO. 3

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

Instead of fixing a search window size for candidate road segments, grouped segments
are dynamically obtained from the clustering tree.

4.1. A Binary Tree Structure from the Clustering Tree. Since each group only
joins one of the two members (one of which may be compound) in the clustering tree
shown in Figure 3, the clustering tree can be structured as a binary tree. Therefore, the
map matching process will search a binary tree to identify candidate segments.
Considering that road segments each have a different position, length and orientation,
Minimum Bounding Rectangles (MBR) are used to delineate cluster boundaries. Each
MBR in upper levels of the tree represents a group of segments where sibling nodes
may cover overlapping areas. Construction of the binary tree is from bottom to top, so
in the end, the root node represents a MBR covering the entire road network. Figure 4
shows a portion of the binary tree. Figure 5 shows the MBR of a group of road
segments, segments 1, 2 and 9.

Figure 2. Corresponding matrix (20-by-20).

9 1 2 6 0 8 3 7 4 5Segment Number

Figure 3. Corresponding clustering tree.

440 MING REN AND HASSAN A. KARIMI VOL. 66

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

4.2. Searching Algorithm. As shown in Figure 4, the range of MBRs is narrowed
down from top to bottom. Therefore, in order to determine the search window for
map matching, the binary tree is traversed from top to bottom and will stop at a group
node where a halt criterion is met. The halt criterion is important for determining the
size of the search window. The searching algorithm is as follows:

1. Input the binary tree and a GPS point.
2. Set a criterion to halt search.
3. If the GPS point is within the boundary of the current group node and the halt

criterion is not met, then search its sub-trees. Otherwise, search the sibling node.
4. If the halt criterion is met, then traverse all the leaf nodes of this sub-tree for the

candidate road segments.

The halt criterion is critical in this algorithm. Since our purpose in the algorithm is
to define the set of candidate road segments by a given GPS position, the halt criterion
must consider the relationship between the GPS position and the segment groups.
We describe a GPS position as p(x, y), and a bounding box as B(minx, miny, maxx,
maxy). Then, c is noted as the centre of the bounding box. Distance (p, c) calculates
the distance between the GPS position (p) and the centre point (c) and within (p, B)
evaluates whether p is within the bounding box or not. With this, the criterion
could be:

IF Distance (p, c) , threshold and Within (p,B) THEN stop search.

The smaller the threshold is, the closer the GPS position is to the centre of a selected
group. In order to avoid misidentifying road candidates if the GPS position is located

Figure 4. Data structure of a binary tree for road segment clustering.

Figure 5. Distance from a GPS point to a MBR.

441ADAPTIVE ROAD CANDIDATES SEARCH ALGORITHMNO. 3

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

on the boundary of two clustered sub-groups, the threshold is set relatively small in
order to guarantee that the GPS position is close enough to the centre of a selected
group. With the same threshold, road segments in one cluster would be selected as
candidates more often in dense urban areas than in less dense, rural areas.

4.3. Adaptive Search Window Set. In spatial indexing techniques, a search
window for candidate segments is normally a fixed-size rectangle centred at a given
GPS position. In order to retrieve those segments within the search window, searching
algorithms need to pass through the indexed tree several times. In contrast to such
indexing techniques, a clustering tree provides an adaptive search window by
clustering spatially close segments into groups and only passing through the tree
once. The output of the searching algorithm is a list of candidate segments.
The number of segments selected in the list of candidate segments depends on three

factors. The first factor is the density of the road network. For example, in a rural area,
road networks are sparse and candidate segments may only include one or two
segments of highways, whereas in urban (downtown) areas, more segments are
included in the candidates list. Second is the relevant dynamic position of GPS
positions in a clustered group. The final factor is the threshold in the halt criterion,
which is set based on GPS error range.
In common with spatial indexing techniques, nodes in the clustering tree have

overlapping MBRs, which is the reason why we set a threshold to justify whether the
map matching of a GPS position is related to this clustered segment group or not. If a
GPS position is located between groups, then the search window will be adaptively
adjusted for a higher-level clustered group that includes the clustered lower-
level groups. For instance, in Figure 5, if a GPS position is located on the corner of
Segment 2 and Segment 6, the search window should cover the higher group that
includes segments 9, 1, 2 and 6. Instead of only searching the group corresponding to
the MBR shown in Figure 5, the search should be stopped on the group that contains
segments 9, 1, 2 and 6. This search procedure starts from the root of the tree, as shown
in Figure 3, and once the halt criterion is met it will stop at the level that includes
segments 9, 1, 2 and 6, rather than searching the lower level.

4.4. Adaptive Search Window Update. To track the movement of a vehicle, a
map matching search window must follow its motion. Whether to update a search
window or keep searching in the previous window depends on the direction and speed
of the vehicle’s movement. With the previous candidate road segments in memory,
and by knowing the successive positions to estimate the vehicle’s movement, searching
in the same segment group is continued. However, when the vehicle is moving out of a
known segment group, a new sub-tree has to be initiated. Under this circumstance, the
search window must be updated by repeating the initial search procedure with new
parameters.

5. PERFORMANCE ANALYSIS . To evaluate this proposed algorithm, we
used two datasets, the University of Pittsburgh’s main campus road map and the
Allegheny County road map, and built two clustering trees. By using simulated GPS
positions, we analyzed the performance of the algorithm.

5.1. Datasets. We employed road maps in the Pittsburgh area from the US
TIGER data files and collected some GPS positions on the University of Pittsburgh’s
main campus and then tested our algorithm on different GPS locations, simulating a

442 MING REN AND HASSAN A. KARIMI VOL. 66

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

vehicle’s movement. Our algorithm was implemented in Matlab and tested in a PC
environment with Intel Core 2, 2·13 GHz CPU and 2 GB memory.

5.2. Construction Cost. Memory usage and the time complexity involved in
constructing a clustering tree is dependant upon the extent of a road network. In order
to save both memory capacity and time, our strategy was to divide a large-scale road
network into a set of sub-networks and then build a corresponding clustering tree for
each sub-network. Thus the original road network corresponds to a forest structure.
Indexing each tree in the forest is straightforward. As shown in Figure 4, intermediate
memory is needed to build matrices to calculate the average distance of clusters. Each
matrix, before compression, is n by n, so the memory usage is n2, where n is the number
of intersections.
In our algorithm, average-link clustering merges, in each iteration, the pair of

clusters with the highest cohesion. Based on this recursive computation of cohesion,
the time complexity of average-link clustering is O(n2logn). However, Murtagh
(1992) compared various hierarchical clustering approaches in computational time

Table 1. Tree features of two road networks.

Road network
Road segments
(leaf nodes)

Maximum depth of
hierarchical clustering tree

Minimum depth of
hierarchical clustering tree

University of
Pittsburgh’s campus

171 14 10

Oakland area 1643 20 10

Figure 6. The clustered tree for the University of Pittsburgh’s main campus.

443ADAPTIVE ROAD CANDIDATES SEARCH ALGORITHMNO. 3

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

complexity and concluded that O(n2) time implementations exist for most of the
widely known hierarchical clustering methods, and some methods can even perform
close to O(n) expected time for hierarchical clustering. Therefore, the construction cost
of our hierarchical clustering tree can be further reduced by more sophisticated
techniques. In this paper, we use a recursive approach to construct the hierarchical
clustering tree. Table 1 provides features of the constructed clustering trees
corresponding to the two different network scales. Constrained by memory limitation
in MATLAB®, we could not conduct experiments with large-size road networks. In
spite of this, our algorithm can be expanded to any large-scale network by splitting
it into sub-networks and organizing it as a forest structure rather than a large tree
structure. For example, Allegheny County geographically includes Pittsburgh City, so
the city road network can be structured as a sub-network of the county road network.
A balanced binary tree has a depth, log2n, but the hierarchical clustering trees in our

algorithm are not balanced, which is why maximum and minimum depths are
considered. Figure 6 shows the result of the tree construction by using, as an example,
the University of Pittsburgh’s main campus which has the maximum depth 14 and
minimum depth 10 as shown in the first row in Table 1.

Figure 7-1. Moving on a relatively long road segment. Figure 7-2. Approaching an intersection.

Figure 7-3. At another intersection. Figure 7-4. Moving in the middle of a segment.

Figure 7. Query results changing with a vehicle’s movement.

444 MING REN AND HASSAN A. KARIMI VOL. 66

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

5.3. Searching Cost. In theory, if n is the number of segments, then the time
complexity of searching binary trees is O(log2n). However, two factors influence query
efficiency. One is the density of a road network and the other is the changing of a
moving object from an intersection to its linked road segments. Although geometry
and topology of road networks decide the tree clustering, once a road network is
built, its corresponding graph morphology hardly changes. Thus, the structure of a
clustering tree corresponding to the road network is essentially fixed, based on the
clustering methods. Therefore, for a given road network, we mainly consider the query
cost as influenced by the location of GPS positions.
As vehicles move on the road, they transfer from one road segment to another. As

vehicles approach an intersection, or move on a relative short segment, a search
window will cover more road candidates than those covered when moving on a long

Table 2. Results of the searching cost.

Road network

Maximum
hierarchical

level

Median
search
depth

Median
search depth
(Intersection)

Median
search depth
(on-segment)

Median
search depth
(boundary)

University of
Pittsburgh’s
campus

14 8 7 10 5

Oakland area 20 9 6 10 6

Figure 8. Example scenario on a large-scale network.

445ADAPTIVE ROAD CANDIDATES SEARCH ALGORITHMNO. 3

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

segment. Query performance is most inefficient when a vehicle moves on a boundary
between two large-scale clusters. Figure 7 shows how candidate road segments change
with different positions when a vehicle is moving. The red square in each figure shows
the received GPS position and the red points on the map show the intersections of
candidate segments as the result of searching the clustering tree. Furthermore, by
testing the same points in a larger area, e.g. in Oakland, which covers the entire
University of Pittsburgh’s main campus, it can be seen that the nature of the road
network itself determines similar candidate roads, as shown in Figure 8, although
different clustering trees for different road networks were searched. Since our average-
linkage clustering approach is based on the average difference of groups, and the same
area has constant road network structure, the searching algorithm produces results
with certainty. Given a GPS position, the experiment shown in Figure 8 indicates that
selected candidates in the large-scale network are consistent with the searching results
in small-scale network, as shown in Figure 7.
As discussed previously, in order to evaluate various map matching situations,

experiments were conducted in three scenarios: approaching an intersection, moving
on a relatively long segment, and moving around a boundary of two clusters. Table 2
shows the average searching cost for the two situations.
In summary, since the hierarchical clustering tree built for the road network is not

a balanced binary tree, we tested on real road networks to observe the actual
construction structures and computed average search costs in different situations.
Compared with multi-pass searching an object in spatial indexing techniques,
searching on the clustering tree of road segments requires only one pass.

6. CONCLUSION AND FUTURE RESEARCH. This paper proposes a
new algorithm to search for candidate road segments given a GPS position for map
matching. Rather than fixing a search window, this paper provides an adaptive
window based on obtained GPS positions and a real road network. Considering that
the clustering technique can represent the relationship of road segments based on the
density of a road network well, we used a hierarchical clustering algorithm to cluster
road segments. By building a hierarchical clustering tree, a binary tree is achieved.
We analysed memory usage and time complexity of the tree construction and
the computational efficiency of the searching algorithm. Based on the results of the
experiments, it can be concluded that this approach adaptively finds candidate road
segments based on GPS positions for areas with different geometry and topology. The
binary tree was designed to group segments and speed up the search time and, as
shown in Table 2, the algorithm can efficiently find road segments.
In our future research, we will address the opportunity for further savings in

memory usage by decreasing the redundant intermediate points in map databases
when building the clustering tree.

REFERENCES

Alborzi, H. and Samet, H. (2007). Execution time analysis of a top-down R-tree construction algorithm.
Information Processing Letters, 101, 6–12.

Bercken, J. V. D. and Seeger, B. (2001). An Evaluation of Generic Bulk Loading Techniques. VLDB’2001,
461–470.

446 MING REN AND HASSAN A. KARIMI VOL. 66

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

Chen, J. D., Meng, X. F., Guo, Y. Y. and Xiao, Z. (2009). Update-efficient Indexing of Moving Objects in
Road Networks. GEOINFORMATICA, 13(4), 397–424.

Guttman, A. (1984). R-tree: A dynamic index structure for spatial searching. Proceedings of the ACM
SIGMOD Conference, 47–57.

Huang, Z. (1998). Extensions to the K-means Algorithm for Clustering Large Datasets with Categorical
Values. Data Mining and Knowledge Discovery, (2), 283–304.

Kalashnikov, D. V., Prabhakar, S., Hambrusch, S. and Aref, W. (2002). Efficient evaluation of continuous
range queries on moving objects. Proceedings of the 13th International Conference on Database and Expert
Systems Applications, 731–740.

Kotsiantis, S. and Pintelas, P. (2004). Recent Advances in Clustering: A Brief Survey.WSEAS Transactions
on Information Science and Applications, 1(1), 73–81.

Lin, H. Y. (2008a). Efficient and compact indexing structure for processing of spatial queries in line-based
databases. Data & Knowledge Engineering, 64(1), 365–380.

Lin, H. Y. (2008b). Using B+-trees for processing of line segments in large spatial databases. Journal of
Intelligent Information Systems, 31, 35–52.

Murtagh, F. (1992). Comments on “Parallel Algorithms for Hierarchical Clustering and Cluster Validity”.
IEEE Transactions on PA analysis and machine intelligence, 14(10).

Sander, J., Qin, X., Lu, Z. Y., Niu, N. and Kovarsky, A. (2003). Automatic Extraction of Clusters
from Hierarchical Clustering Representations. Advances in Knowledge Discovery and Data Mining, 2637,
567–579.

Zhao, Y. L. (1997). Vehicle location and navigation systems: Intelligent Transportation Systems, Artech
House, 83–103.

Zhao, J. L. and Cheng, H. K. (2001). Graph indexing for spatial data traversal in road map databases.
Computers & Operations Research, 28(3), 223–241.

447ADAPTIVE ROAD CANDIDATES SEARCH ALGORITHMNO. 3

https://doi.org/10.1017/S0373463313000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000076

