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Abstract

We consider momentum push-forwards of measures arising as quantum limits (semiclassical measures) of eigen-
functions of a point scatterer on the standard flat torus T2 = R%/Z2. Given any probability measure arising by
placing delta masses, with equal weights, on 72 Jattice points on circles and projecting to the unit circle, we show
that the mass of certain subsequences of eigenfunctions, in momentum space, completely localizes on that measure
and are completely delocalized in position (i.e., concentration on Lagrangian states). We also show that the mass,
in momentum, can fully localize on more exotic measures, for example, singular continuous ones with support on
Cantor sets. Further, we can give examples of quantum limits that are certain convex combinations of such mea-
sures, in particular showing that the set of quantum limits is richer than the ones arising only from weak limits of
lattice points on circles. The proofs exploit features of the half-dimensional sieve and behavior of multiplicative
functions in short intervals, enabling precise control of the location of perturbed eigenvalues.

1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold with no boundary, unit mass, and let A, denote
the Laplace—Beltrami operator. Also, let {¢,} be an orthonormal basis of eigenfunctions of A, with
eigenvalues0 < 1} < A, < ....Foranobservable f € C*(S*M), where S*M denotes the unit cotangent
bundle of M, let Op(f) denote its quantization, defined as a pseudo-differential operator (cf. [9] for
details.) A central problem in quantum chaos (cf. [52, Problem 3.1]) is to understand the set of possible
quantum limits (sometimes called semiclassical measures) describing the distribution of mass of the
eigenfunctions {¢,} within S*M, in the limit as the eigenvalue A tends to infinity. A cornerstone result in
this direction is the quantum ergodicity theorem of Shnirelman [45], Colin de Verdiére [8] and Zelditch
[51] which states that if the geodesic flow on M is ergodic there exists a density one subsequence of
eigenfunctions {¢,, } such that

oy (1) = ©OpNon 00 = [ F@dun o)

as A; — oo, where dy is the normalized Liouville measure on S*M. (Note that any quantum limit, by
Egorov’s theorem, is invariant under the classical dynamics.)

While the quantum ergodicity theorem implies that the mass of almost all eigenfunctions equidis-
tributes in S*M with respect to duy, it does not rule out the existence of sparse subsequences along
which the mass of the eigenfunctions localizes. Whether or not this happens crucially depends on the
geometry of M, cf. Section 1.3.
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2 P. Kurlberg, S. Lester and L. Rosenzweig

In this article, we study quantum limits of ‘point scatterers’ on M = T2 = R?/2xZ>. These are
singular perturbations of the Laplacian on M and were used by Seba [40] in order to study the transition
between integrability and chaos in quantum systems. The perturbation is quite weak and has essentially
no effect on the classical dynamics, yet the quantum dynamics ‘feels’ the effect of the scatterer, and an
analog of the quantum ergodicity theorem is known to hold [38, 27] (namely, equidistribution holds for
a full density subset of the ‘new’ eigenfunctions), even though classical ergodicity does not hold.

The model also exhibits scarring along sparse subsequences of the new eigenfunctions [25]. In par-
ticular, there exist quantum limits whose momentum push-forwards, which can be viewed as probability
measures on the unit circle, are of the form cping + (1 = ¢) uniform, for some ¢ € [1/2, 1]. Here, both
Huniform and gisine are normalized to have mass one, and pii, can be taken to be a sum of delta measures
giving equal mass to the four points +(1,0), +(0, 1). We note that pypiform is the push-forward of the
Liouville measure and hence maximally delocalized, whereas ping is maximally localized since any
quantum limits in this setting must be invariant under a certain eight fold symmetry (cf. equation (1.7)).

Stronger localization, that is, going beyond ¢ = 1/2, is interesting given a number of ‘half delocal-
ization’ results for quantum limits for some other (strongly chaotic) systems, namely quantized cat maps
and geodesic flows on manifolds with constant negative curvature —1. In the former case, Faure and
Nonnenmacher showed [12] that if a quantum limit v is decomposed as v = vp + VLiouville + Vsc» With vpp
denoting the pure point part and v, denoting the singular continuous part, then vy jouvile (T2) > vpp(T2) s
and thus vpp(Tz) < 1/2. (We emphasize that T? is the full phase space in this setting.) In the latter case,
it was shown that the Kolmogorov-Sinai (KS) entropy with respect to any measure arising as a quantum
limit is at least 1/2. We remark that for arithmetic point scatterers, the KS entropy is zero with respect
to any flow invariant probability measure, in particular for any measure arising as a quantum limit.

The aim of this paper is to exhibit essentially maximal localization for a quantum ergodic system,
namely arithmetic toral point scatterers. In particular, we construct quantum limits (in momentum)
corresponding to ¢ = 1 in the above decomposition; other interesting examples include singular con-
tinuous measures with support, say, on Cantor sets. This can be viewed as a step towards a ‘measure
classification’ for quantum limits of quantum ergodic systems.

1.1. Description of the model

Let us now describe the basic properties of the point scatterer. This is discussed in further detail in
[38, 39, 27, 25, 40, 42]. To describe the quantum system associated with the point scatterer, consider
—A| Diyys where

D, = {f € L*(T?) : f(x) = 0 in some neighborhood of x}.

By von Neumann’s theory of self-adjoint extensions (see Appendix A of [38]) there exists a one
parameter family of self-adjoint extension of —A| D, Parameterized by a phase ¢ € (—m, m]. Moreover,
for ¢ # n the eigenvalues of these operators may be divided into two categories. The old eigenvalues
which are eigenvalues of —A, with multiplicity decreased by one, along with new eigenvalues which are
solutions to the spectral equation

> r(m)(m;_/l - #) — tan(p/2) Zl ”’lz('z)l, (1.1)

m>1

where
r(m) = #{(a,b) € Z* : a* + b* = m}.

We will refer to the case when ¢ is fixed as 4 — oo the weak coupling quantization. In this regime
work of Shigehara [42] suggests that the level spacing of the eigenvalues should have Poisson spacing
statistics, and this is supported by work of Rudnick and Ueberschér [39] along with Freiberg, Kurlberg
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and Rosenzweig [14]. In the hope of exhibiting wave chaos, Shigehara proposes the following strong
coupling quantization

1 m 1
>l )= 12

where « € R is called the physical coupling constant and reflects the strength of the scatterer. The strong
coupling quantization restricts the spectral equation to the physically relevant energy levels. Notably,
this forces a renormalization of equation (1.1)

r()

tan(¢/2) Z ~ —mlogA

so that ¢ depends on A in this case (see [48] equation (3.14)). We note that the weak coupling quantization
corresponds to a fixed self-adjoint extension, whereas the strong coupling quantization can be viewed
as an energy-dependent, albeit very slowly varying, family of self-adjoint extensions.

From the spectral equation, it follows that new eigenvalues interlace with integers which are repre-
sentable as the sum of two integer squares. We denote these eigenvalues as follows:

0<Ap<1l<A1 <2< <d<Ay<5<d5<---

and write A, for the set of all such eigenvalues. Also, given n = a® + b2, let n* denote the smallest
integer greater than n which is also a sum of two squares. Let

L=, —n>0 (1.3)

denote the distance between A, and the nearest old eigenvalue n to the left. In addition, given A € Aey
the associated Green’s function is given by

Gax) = -1 Z exp(—ié - xo)e,gx’ 21(x) =

Ga(x) (1.4)
€12 ~
£ez?

1
1Gall2

(see equation (5.2) of [38]). Also, note that the new eigenvalues interlace between the old eigenvalues;
hence, G, is well defined for 1 € A, . Since the torus is homogeneous, we may without loss
of generality assume that xo = 0. Our main focus will be the behavior of the matrix coefficients
{(Op(f)g1,8a)}acA,.., @[ ranges over the set of pure momentum observables (i.e., f € C*(S!) c
C*(S*(T?)); for such f the matrix coefficients are explicitly given by (cf. equation (5.3))

- ! f(l) a+ib
(Op(f)ga.82) = s w Z (= Z f(|a +ib|))' (1.5)

n20 (5-)2 a?+b?=n

1.2. Results

Our first main result shows that along a zero density, yet relatively large, subsequence of new eigenvalues
{4, } the mass of g, in momentum space, localizes on measures arising from Z?-lattice points on circles
(after projecting them to the unit circle). To describe these measures in more detail, consider an integer
n =a’+b?, with a, b € Z, and the following probability measure on the unit circle S' ¢ C

1
ﬂn:m Z O (a+ib)/la+ib|-

a’+b%=n

https://doi.org/10.1017/fms.2023.33 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.33

4 P. Kurlberg, S. Lester and L. Rosenzweig

We remark that yu,, can be viewed as the matrix coefficient of the ‘flat’ (old) Laplace eigenfunction
Yn(x) = ﬁ > £€72:| £ P=n e”'¢* _in the sense that, for f a pure momentum observable, we have
nT\rn N N

N

OP(Wnstia) = ), f(“”” ):/xn(f). (1.6)

v la +ib|

Following Kurlberg and Wigman [29], we call a measure u«, attainable if it is a weak limit point of
the set {1y },,=424p2. Any such measure is invariant under rotation by 7/2, as well as under reflection in
the x-axis; for convenience let

Symg := {<((1) "01), ("01 (1))>} c GLy(Z) (1.7)

denote the group generated by these transformations.

Theorem 1.1. Let mg = a*> + b*> € N be odd." In each of the weak and strong coupling quantizations,
there exists a subset of eigenvalues £y, C Apew with

HA< X1 A€ &) 1
#HA< X A€ A} (log X)1Ho(D)

such that for any pure momentum observable f € C*(S') ¢ C®(S*(T?))

A—00

Op(fgn ) — L § f(“”b )

r(mo) oo la +ib|

The key idea of the proof is to show that some new eigenvalues A lie very close to certain old
eigenvalues n, and this implies that g, is very well approximated by the flat eigenfunction ¢, (cf.
equations (1.5) and (1.6)), and consequently, in momentum space, the mass of g, completely localizes
on the measure (. Further, for any attainable measure y., there exists {m, ¢}, such that y,,, , weakly
converges to (1, and this implies the following corollary.

Corollary 1.1. Let uo be an attainable measure. Then there exists {1;}; C Apey such that for any pure
momentum observable f € C*(S")

(Op(£)ga,81,) /S f

We note that the set of attainable measures is much smaller than the set of probability measures on
S! that are Symg-invariant, in particular the set of attainable measures is not convex (cf. [29, Section
3.2].) In our next result, we show that in the strong coupling quantization there is a subsequence of
new eigenvalues along which the entire mass of g, localizes on a certain convex combination of two
measures arising from lattice points on the circle. In particular, the set of quantum limits, in momentum
space, is strictly richer than the set of attainable measures.

Theorem 1.2. Let mg, m| be odd integers which are each representable as a sum of two squares. Then
in the strong coupling quantization there exists a subsequence of eigenvalues &, 1, C Apey such that

!As far as possible quantum limits go, m being odd is not a restriction as any p,, for n even can be approximated by fi,,, for
my odd.
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for each A € &y m, there is an integer €4 with r(€y) # 0 and r(€y) < 1 such that for pure momentum
observables f € C®(S")

1 b
(Op(fgr,g1) =ca- W Z f(g:—;m)
a?+b%=my

1 a+ib 1 (1.8)
+(1=cy)- T Z [ f(—|a +ib|) + 0(—(loglog/l)1/“)’

a2+b2=m1 A

where
1
T o) fr(mE)”
Additionally,
#HA<X:2€&nmt 1

> .
#HA< X 1€ Apew? (log X)2+o(D)

Note that, since }; 1 < 1, the measure i, ¢, can be viewed as a fairly small perturbation of 1,y .

plta
Remark 1. By removing a further ‘thin’ set of eigenvalues (with spectral counting function of size
O(xl_f) for € > 0, we can construct quantum limits that are flat in position (for details, cf. [25, Remark
4]), in addition to the momentum push-forward properties given in Theorems 1.1 and 1.2. In particular,
taking say m( = 9 in Theorem 1.1 and noting that |z|?> = 9 for z € Z[] has the four solutions +3, +3i, this
then yields quantum limits that are completely localized on the superposition of two Lagrangian states —
essentially two plane waves, one in the horizontal and one in the vertical direction. This phenomenon is
sometimes called superscarring (cf. [0, 25]).

Further, assuming a plausible conjecture on the distribution of the prime numbers, we show that given
mg, m as in Theorem 1.2 the quantum limit of (Op(f)g., ga1) can be made to be any given convex
combination of y,,, and u,,, . The conjecture on the distribution of primes concerns obtaining a lower
bound on the number solutions (u, v) in almost primes to the Diophantine equation

aX — bY =4,
where v = pipa, u = p3 with p; a prime satisfying p; = a7 + b7 and b; = o(a;) for j = 1,2,3. The
precise formulation of this conjecture, which we call Hypothesis 1, is given in Section 5.5.

Theorem 1.3. Assume Hypothesis 1. Let [iw,, oo, be attainable measures and 0 < ¢ < 1. Then in the
strong coupling quantization there exists {A;}; C Ayew such that for any f € C*(S 1

Jj—oo
(Op(f)ga;>84;) — C/Sl fdies, + (1 =¢) ./sl fdpe, .

Further, assuming a variation of the prime k-tuple conjecture that also allows for prescribing Gaussian
angles, we can show (cf. Appendix C) that all Symg-invariant probability measures on § I arise as
quantum limits in momentum space.

1.3. Discussion

For integrable systems it is often straightforward to construct nonuniform quantum limits, for example,
‘whispering gallery modes’ for the geodesic flow in the unit ball, and for linear flows on T2, Lagrangian
states with maximal localization (i.e., a single plane wave) are easily constructed. We note that strong
localization in position for quantum limits on T?> was ruled out by Jakobson [20] — in position, any
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quantum limit is given by trigonometric polynomials whose frequencies lie on at most two circles (hence
absolutely continuous with respect to Lebesgue measure.) Further, for the sphere, Jakobson and Zelditch
in fact obtained a full classification — any flow invariant measure on S*(S?) is a quantum limit [21].

The quantum ergodicity theorem holds in great generality as long as the key assumption of ergodic
classical dynamics holds, but the existence of exceptional subsequence of nonuniform quantum limits
(‘scarring’) is subtle. For classical systems given by the geodesic flow on compact negatively curved
manifolds, the celebrated quantum unique ergodicity (QUE) conjecture [37] by Rudnick and Sarnak
asserts that the only possible quantum limit is the Liouville measure. Known results for QUE include
Lindenstrauss’ breakthrough [30] for Hecke eigenfunctions on arithmetic modular surfaces, together with
Soundararajan ruling out ‘escape of mass’ in the noncompact case [46]. On the other hand, for a generic
Bunimovich stadium (with strongly chaotic classical dynamics), Hassell [16] has shown that there exists
a subsequence of exceptional eigenstates where the mass localizes on sets of bouncing ball trajectories.

For quantized cat maps, again for Hecke eigenfunctions, QUE is known to hold [26]. However,
unlike for arithmetic modular surfaces, where Hecke desymmetrization is believed to be unnecessary,
it is essential for quantum cat maps. Namely, Faure, Nonnenmacher and de Bievre [13] constructed,
in the presence of extreme spectral multiplicities and no Hecke desymmetrization, quantum limits of
the form v = %vpp + %vLiouvme; in [12], this was shown to be sharp in the sense that the Liouville
component always carries at least as much mass as the pure point one. (We note that, on assuming very
weak bounds on spectral multiplicities, Bourgain showed [7] that scarring does not occur.) For higher-
dimensional analogs of quantum cat maps, Kelmer has for certain maps shown [23] ‘super scarring’,
even after Hecke desymmetrization, on invariant rational isotropic subspaces. Further, these type of
scars persist on adding certain perturbations that destroy the spectral multiplicities [24]. Other models
where scarring is known to exist include toral point scatterers with irrational aspect ratios [28, 22, 3]
and quantum star graphs [4], though neither model is quantum ergodic [28, 4].

Classifying the set of possible quantum limits, in particular for quantum ergodic settings, is an
interesting question. Here, Anantharaman proved very strong results for geodesic flows on negatively
curved manifolds [1]: any quantum limit has positive KS entropy with respect to the dynamics of
the geodesic flow. In particular, this rules out localization on a finite number of closed geodesics (for
compact arithmetic surfaces this was already known due to Rudnick and Sarnak [37].) Moreover, in the
case of constant negative curvature, Anantharaman and Nonnenmacher showed [2] that the KS-entropy
is at least half of the maximum possible. The measure of maximum entropy is given by the Liouville
measure, and thus ‘eigenfunctions are at least half delocalized’. Dyatlov and Jin [10] consequently
showed that any quantum limit must have full support in S*(M), for compact hyperbolic surfaces M
with constant negative curvature; together with Nonnenmacher this was recently strengthened [11] to
the include the case of surfaces with variable negative curvature.

1.4. Outline of the proofs

Our arguments use the multiplicative structure of the integers to create an imbalance in the spectral
equation (1.2) along a zero density, yet relatively large subsequence of new eigenvalues. Through
exploiting this imbalance, we control the location of the new eigenvalues in our subsequence and show
that they lie close to integers which are sums of two squares (cf. Section 5.3, in particular equation (5.14)
for the argument placing full mass at one nearby eigenspace and 5.4, in particular equation (5.18) for
placing mass at two nearby eigenspaces.) This greatly amplifies the amount of mass of the corresponding
eigenfunctions in momentum space which lies on the terms which correspond to these integers, so much
so that the contribution of the remaining terms is negligible in comparison. Consequently, the mass
completely localizes on a convex combination of two measures and moreover our construction allows
us to completely control the first measure.

In Section 2, we use sieve methods to produce integers n = p1p>, where p;, j = 1,2, is a prime with
pj= a’+b* = (a+ib)(a—ib),0 < b < a,with0 < arctan(b/a) < &, where ¢ is a small parameter, such
that Qgp1 p2+4is also a sum of two squares, Q1|Qop1p2+4 and (Qop1p2+4)/Q1 has abounded number
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of prime factors, where Qp, O are large integers whose purpose we will describe later. In particular,
we exploit special features of the half-dimensional sieve using an ingenious observation of Huxley and
Iwaniec [18]. Further, in order to find suitable Gaussian primes in narrow sectors we use a classical
result of Hecke together with nontrivial bounds on exponential sums over finite fields to control sums
of integral lattice points in narrow sectors with norms lying in arithmetic progressions to large moduli.

The subsequence of almost primes {n,} constructed as described above creates the imbalance in the
spectral equation (1.2) by boosting the contribution of the terms m = Qgn¢, Qone +4, without perturbing
the target measure(s). The next step in our argument is to show that this imbalance typically overwhelms
the contribution of the remaining terms. To do this, we first show in Section 3 that for all new eigenvalues
lying outside a small exceptional set the spectral equation (1.2) can be effectively truncated to integers
m with essentially |m — A| < (log2)'°. This is done by controlling sums of r(n) over short intervals
and uses a second moment estimate of the Dedekind zeta-function Jg;). In Section 4, we apply this
result to new eigenvalues which lie between Qon, and Qgne + 4 and show that for almost all such new
eigenvalues the remaining terms in the spectral sum (i.e., [m — 1| < (log2)'°,m # Qone, Qone +4)
is relatively small, provided that we take Qq, O sufficiently large thereby boosting the contribution of
the closest two terms. This is accomplished by using bounds for sums of multiplicative functions over
polynomials due to Henriot [17]. Crucially, we need good estimates for these sums in terms of the
discriminant of the polynomials.

Finally, to get complete control on the first measure in Theorem 1.2 we choose Qy so that it is the
product of a given fixed integer mq and large primes p; = a”> + b> with 0 < arctan(by /ay) < p;l/lo
so that the probability measure on S' associated with Qon, weakly converges to the measure associated
with mg as £ — oo. This last construction uses work of Ricci [35] on Gaussian primes in narrow sectors.

1.5. Notation

We write f(x) < g(x) provided that f(x) = O(g(x)). Additionally, if for all x under consideration
|f(x)] > cg(x) we write f(x) > g(x). If we have both f(x) < g(x) and f(x) > g(x), we write
f(x) =< g(x). For some additional notation related to sieves, see Section 2.1.1.

2. Sieve estimates

Let By be a sufficiently large integer, define £ = (loglogx)~'/!!, and let

Pex={p = (logx)B0 : p = a®> + b* and 0 < arctan(b/a) < &},

2.1)
PL={pePs:p<x'}

For brevity, we will write P, and P, for P, . and P, ,, respectively. Also, given f,g : N — C we

define the Dirichlet convolution of f and g by

(fg)m) = > fla)g(b).

ab=n

Also, let Q. Q1 < (logx)'/'® be odd coprime integers whose prime factors are all = 1 (mod 4).
Moreover, we assume that Qg = fozeorgo,Ql = flzelrf', where e, e; are square-free, fy, fi < 1
and rg, r| are primes congruent to 1 (mod 4). Throughout, the arithmetic function b (n) is the indicator
function of the set of integers which are representable as a sum of two squares. Also, for S ¢ N we define

1 if
13(”)={ ifnes,

0 otherwise,
and let (n) =#{m <n: (m,n) = 1}.
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Proposition 2.1. Let > 0 be sufficiently small, and let y = x™. Suppose y > QoQ1. Then

2
log1
S (e # L) (Wb(Qon+4) = 0 _AOBOEX_
x<n<2x n'2¢(Qo) ¢(Q1)(logx)
Q11Qon+4
(85 ey p)=1

This proposition builds on a result of Friedlander and Iwaniec [15, Ch. 4]. The main novelty here is
that we capture almost primes n = p; p» such that each prime factor p = a*> + b%, with 0 < b < a, has
the property that a + ib lies within a certain small sector.

We also will require the following result.

Proposition 2.2. We have that

log1
} , (p, o 1p ) (n)b(Qon +4) = SQL‘WM.
x<n<2x (Q1)(logx)
Q1|Qon+4

Since Proposition 2.2 follows from a similar, yet simpler argument than the one used to prove Propo-
sition 2.1, we will omit its proof. The rest of this section will be devoted to proving Proposition 2.1.

2.1. The Rosser-Iwaniec sieve

Let us first introduce the Rosser—Iwaniec S-sieve and the classical sieve terminology. We start with a
sequence of A = {a, } of nonnegative real numbers, a set of primes P and a parameter z. Define

P@=]]»r 2.2)

pEP
P<z

Our goal is to obtain an estimate for the sieved set

SAP) = > an
(n,;l’(sz);)ZI

This will be accomplished through calculating, for square-free d € N,

Aa(x) = Z an. 2.3)
n<x
n=0 (mod d)

We now make the hypothesis that our estimate for A;(x) will be of the form
Aa(x) =g(d)X + 14, 24
where g(d) is a multiplicative function with 0 < g(p) < 1. The number r; should be thought of as a

remainder term, so X is an approximation to A; (x), and the function g(d) can be interpreted as a density.
Let

v =[] a-g.

plP(z)
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We further suppose for all w < z that

V(iw) B o1 _ [logz « 1
o Lo ) e
peP

for some x > 0. The constant « is referred to as the dimension of the sieve.
Our arguments also require sieve weights. Let A = {14}, be a sequence of real numbers, where d
ranges over square-free integers. The sequence A is referred to as an upper bound sieve provided that

Lyet = Z,u(d) < Zad, Vn €N, (2.6)

d|n d|n

where 1,-; equals one if n = 1 and equals zero otherwise. We call A a lower bound sieve if

Z/ld <l,, VneN. 2.7)
d|n

For a sieve A = {14}, we use the notation

(A 1)(n) = Zad. 2.8)

din

(This will be used to show the existence of primes, or almost primes, with desired properties.) Addi-
tionally, we say that the sieve A has level Dif 14 =0 ford > D.

Given « > 0, the B-sieve gives both an upper and lower bound for S(A, P, z) whenever s =
log D /log 7 is sufficiently large in terms of x. The bounds consist of an error term, which is a sum of the
remainder terms |ry| for d < D and a main term XV (z) F(s), XV (z) f(s) (resp.), where F, f are certain
continuous functions with 0 < f(s) < 1 < F(s). For precise definitions, motivation and context, we
refer the reader to [15, Chapter 11].

Theorem 2.1 (Cf. [15, Theorem 11.13]). Let D > z, and write s = lﬁ)gg?. Then there exists [-sieve
weights such that

S(A,P,7) < XV(2) (F(s) +0((log D)—1/6) +R(D,z)

S(AP.2) 2 XV(2)(£(s) + O((1og D)™/%) = R(D. 2)
fors > B(x) — 1L and s > B(k) (resp.), where

R(D,2) < ) |rdl
d<D
d|P(2)

and B(k) denotes the sifting limit of dimension « (cf. [15, Ch. 6.4].)

In particular, note that for x = 1/2 (which is of particular interest to us since we sieve out by the
density 1/2 sequence of primes = 3 (mod 4) to detect sums of two squares), it is well known that
B(k) =1 (e.g., see [15, Ch. 14.2]), which will be important for us as the ‘sifting variable’ s (which
measures the sifting range relative to the sifting level, for example, smaller s corresponds to a smaller
sifting range) only needs to be > 1 to provide a lower bound for S(A, P, z), whereas for the linear sieve
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B(1) =2 so that one needs s > 2. In our arguments, we will use B-sieve weights, which are as defined
in [15] Sections 6.4-6.5. In particular for these weights, we have |14] < 1. We will sometimes refer to
the fundamental lemma of the sieve, by which we mean the following result (see [15, Lemma 6.11].)

Theorem 2.2. Let A* = {1} be upper and lower bound (resp.) B-sieves of level D with 8 > 4k+1. Also,
let s = log D [1og z. Then for any multiplicative function satisfying equation (2.5) and s > S+ 1 we have

> Aagd) =v(d)(1+0(s"?)).

d|P(z)

We also require the following estimate for the convolution of two sieves (see equation (5.97) and
Theorem 5.9 of [15]).

Theorem 2.3. Let A; = {14} and Ay = {ﬂ;i} be upper-bound sieve weights of level Dy, D, (resp.).
Also, let g1, g» be multiplicative functions satisfying equation (2.5) with k = 1. Then

D Aad.gi(d)ga(e)
d,e
(d,e)=1

2
< @ +o() [ [a+mpme) [ [] (1 -2i()
p

Jj=1 p<Dj

asmin{Dy, Dy} — oo, where for j = 1,2, hj(n) = g;(n)(1 - g; (n))~! and v is Euler’s constant.

If in addition g1 (p), g2(p) < 1/p so that hi(p)h2(p) < 1/p?, which will be the case for us, then

DL Al @z <C [ ] U-aip) [ ] (1-gp)), 2.9)
d,e p<D p<D>
(d,e)=1
where C > 0 is an absolute constant.
2.1.1. Notation
‘We will also use the notation
P3(z1,22) = 1_[ 2 and P3(2) := P3(3,2).
ZISp<22
p=3 (mod 4)

Additionally, let 1(n) = Iyn(n) = 1 denote the identity function and let 7(n) = (1 = 1)(n) = Xy, 1.
Also, define

1
Blug.a.e)= ) (p.xlp))=——= > (lp,xlp)m). (210

x<n<2x <p(q) x<n<2x
n=a (mod q) (n,q)=1

Further, 6 > 0 will denote a small, but fixed real number.

2.2. Preliminary lemmas

We begin by showing that the difference between the upper and lower bound sieves is ‘small’.
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Lemma 2.1. Let A* = {3} be upper and lower bound linear sieves (resp.) each of level w = XV,
where n > 0 is sufficiently small, whose sieve weights are supported on integers d such that d|P(y),
wherey =x", y > 000, and (d,2Q¢ fir1) = 1, in particular,

/1§=0if(d,2Q0f1}’1) > 1. 2.11)

Then

X, foe 0S8 Jom st

Q11Qon+4
2 1/@n'-1_Qo  xloglogx x
KeEenm + .
»(Qo) ¢(Q1)(logx)?  (logx)'0

Remark 2. We imposed the assumption that n > 0 is sufficiently small so small that the error
O (/1" in equation (2.16) is less than 1/2. The requirement y > QoQ is not essential; in the case
y < Qo0 the argument proceeds similarly, but some additional, straightforward estimates are needed
to treat the contribution of the primes between y and QQ.

Proof. Switching order of summation, it follows that

D ((m1>(Q°g+4)—(m1)(%f4))<1pg*h»;)(n)

x<n<2x
Q1]Qon+4 2.12)
=Zi Z ax Z (Ip, % 1p,)(n). ‘
+ d<w x<n<2x
d|P(y) Qon+4=0 (mod d)Q;
(d,20Q0 fir)=1
The inner sum on the right-hand side (RHS) of equation (2.12) equals
1
(Ip, * 1p,)(n) + B(x;dQ1, 7, €),
¢(dQ1) x;‘h (2.13)
(n,dQ1)=1

where vy is the unique reduced residue (mod dQ)) satisfying y-Qp = —4 (mod dQ) and B is as defined
in equation (2.10). Also,

D Uposlp)y= > (1pg*1p;><n>+0( D e )l (p2)]. (214
x<n<2x x<n<2x p1p2<2x
(n,dQr)=1 (p1p2,dQ1)#1

Since dQ; < x'/° (as 7 is small) and p, < x'/° the contribution to the error term from p;ps < x with
pil(p1p2,dQ1) is < X, <x19 Xp <y 1 < x%°. Also, since py > (logx)Bo

X 1 x(loglogx)
Z 1738(171)17’.@,(]72) < Z Z S logx Z p_z < (IOgX)BO ’

P1p2<2x p2ldQ1  p1<2x/p; p2ldO
(P1p2,dQ1)=p> p2 = (log x)Bo pa=>(log x)Bo

(2.15)
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Hence, using equations (2.13), (2.14) and (2.15) along with the fundamental lemma of the sieve (see
Theorem 2.2 and recall |14] < 1) with g(d) = ¢(Q1)/¢(Q1d),? and s = logw/logy = n~'/? we have

that
D, A S (e lp))
d<w x<n<2x
d|P(y) Qon+4=0 (mod d)Q,
(d,2Q0)=1
—1 @(01) 1/ (412
= (1p, = 1p )(n) (1— (1+0(n /(47 ))
<P(Q1) xSnZ£2x e i IE’ QO(QIP) (216)
(P,2Qo fir)=1
xloglogx
0( )y |B<x;dQ1,y,e>|)+o((lg—B§_l).
d<w ng)
(d.2)=1

Applying Theorem A.1 from the appendix, since w = xV7 < xl/ 2-o(1) we get that
Z |B(x:dQ1.7.6)| < ——

(d,2)=1

( )C) Moo 10"

Using the two estimates above in equation (2.12) (note the main terms in equation (2.16) are the same
for each of the sieves A* so they cancel in equation (2.12)) and applying equation (A.3) (with ¢ = 1)
from the appendix to estimate the sum over n completes the proof upon noting that

[ (1 _p(01) ) Qo Q 5
by ¢(Q1p)] ~ #(Qo)logy ~ ¢(Qo)nlogx
(P.2Qo fir1)=1

We next give a lower bound on the upper bound sieve, which together with Lemma 2.1 is strong
enough (given suitable parameter choices) to show the existence of infinitely many integers with exactly
two prime factors with the desired properties.

Lemma 2.2. Ler w = xV7, y = x" and A* be as in Lemma 2.1. Let 6 > 3yn>0and z = X279 Then
there exists a constant C; > 0 such that

Q0n+4) S 262 Qp  xloglogx
1

Z (Ip, * 1p)(n)(A" * l)( 77 2(00) #(01) (logx 2

x<n<2x
(Qon+4,P3(y,z))=1
Q11Qon+4

Proof. We now implement the sieve as discussed in Section 2. We start with the sifting sequence
m— +
A={p, *1p,) o0 (/l * 1) : Q1lm, Qolm — 4

and primes P = {p >y : p =3 (mod 4)}. With (2.11) in mind, we may choose

X:= (Ip, * 1p,)(n)
;" QD(EQI) x<;2x
e|P(y) (n,01e)=1
/l: 2.17)
= Z (Ip, = 1p,)(n) Z .
x<n<2x e<w p(eQ1)
(n,01)=1 e|P(y)

(€,2Q0 firin)=1

2Note that g is multiplicative on the set of square-free d with (d, fir;) = 1.
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Arguing as in the proof of Lemma 2.1, to estimate the inner sum we apply the fundamental lemma of the
sieve (see equation (2.16) and take D = w, z = y in Theorem 2.2 and note that we then have s = n‘l/ 2y
to get that it is

1 /l ©(01) 1/(45'%)
L |- 1+0 .
o L et @ g 11 [1- gy aroute™)

elP(y) (p,2Qq firin)=1

(e,2Q0 firin)=1

For n = p|p», recalling that fj < 1 and r; is prime, the RHS above is

1 1 1 Qo 1

= 1- = . .

¢(Q1) [Dy ( p—l) ¢(Q1) ¢(Qo) logy
(p,Qo)=1

Using equations (2.14) and (2.15) along with the prime number theorem for Gaussian primes in sectors
(see equations (A.1) and (A.3) in the appendix, with g = 1) yields

logl
Z (Ip, * 1p,)(n) ~ 4> - rloglogx
x<n<2x

(n,01)=1

log x

We conclude that

- &2 Qo xloglogx
"7 9(Qo) ¢(Q1)(log y)(logx)”

(2.18)

For d|P3(y, z), note that (d,eQoQ1) = 1 for e such that ple = p < y, and (1p,_ * lp,)(n) =0
if (d,n) # 1. To apply the sieve, we require an estimate for A, (cf. equations (2.3) and (2.4) for the
definition of Ay) and recalling our choice for X and the definition of 55 in equation (2.10) it follows that

Qon +4
AdQoux+4) = Y (Ip, xlp)(m)(A* )( : )
x<n<2x 1
Q11Qon+4
Qon+4=0 (mod d)
- Y (Ip, * 1p,)(n)
PR 219

x<n<2x
e|P(y) Qon+4=0 (mod e)Q;
Qon+4=0 (mod d)

A3 1
= DT Up s lp) () +rg = ——=X +rq,

& e(deQn) £ ¢(d)
e|P(y) (n,Q1e)=1
where
ra < . IB(x;deQi.y,2)] (2.20)
e<w
(e,2)=1

and 7y is the unique residue class (mod deQ) with Qgy = —4 (mod eQ) and Qpy = —4 (mod d); also
note that (d,eQ;) = 1 and B is as in equation (2.10).
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Hence, the half-dimensional Rosser—Iwaniec sieve Theorem 2.1 with set of primes P = {p = 3
(mod 4) : p > y} (sothatequation (2.21) holds with k = 1/2), gives forany D > z with s = log D /log z

4
x<n<2x Ql
(Qon+4,P3(y,z))=1
01|Qon+4 221)
1
> XV(z)(f(s) + 0(—)) _ ral.
(log D)'/6 C;D
d|P3(y,z)
where
1 lo
Vo= [] (1 - —1) =4 2L g, (2.22)
<p<z p - 0gz

y
p=3 (mod 4)

Taking D = z'*9, s0 s = 1 + &, we have by Theorem A.1, which is proved in the appendix, that (taking

q =edQ))
X
lral < (T(q) max |B(x;q,a,8)|) <« —. (2.23)
c;) q<DZQ11w (a’q):l (10gx)3
d|P3(y,z) (g,2)=1

Here, note that DQw < X258V < x%‘%, and the contribution of the divisor function is handled
by using Cauchy—Schwarz along with the trivial bound |B(x; ¢, a, &)| < x/q. Also, note that f(t) ~

21/% Vi —T1ast — 17 (see the equation after (14.3) of [15]), so f(s) = f(1 +6) > V6. Using this
along with equations (2.17), (2.22) and (2.23) in equation (2.21) completes the proof. |

Sieving as in the previous lemma, we will now deduce the claimed upper bound in Proposition 2.1.

Lemma 2.3. Let n > 0 be sufficiently small and y = x", with y > QoQ1. Then

£2Qo xloglog x
(Ip, = 1p,)(n)b(Qon +4) < : :
XS;ZX ‘ n'2¢0(Q0)  ¢(Q1)(logx)?
Q1|Qon+4

+4
(25 ey p)=1

Proof. Write Qon +4 = Q1 f2s, where s is square-free and note that since ((Qon +4)/Q1, P(y)) = 1
all the prime divisors of f (and s as well) are > y, in particular f is coprime to QoQ;. We now note that
b(s) < 1s(s) for S = {n: (n, P3(y,z)) = 1} and take A* to be the upper bound sieve from Lemma 2.1,
which we use to bound the condition ((Qon +4)/Q1,[1,<y p) = 1 to get that

D (p, 1) (m)b(Qon +4)

x<n<2x
Q41|Qon+4
(85 ey p)=1 0o
+ Qon + 4 10 )
Y >, (Ip, * 1p,) (m) (A % 1) +0(x/(logx)""),
o 01
f <(logx x<n<2x
plf=p>y ((Q0n+4)/f2»P3(YsZ'))=1

£2011Qon+4
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where the error term arises from the contribution of f > (logx)'?. The following sieving argument is
similar to the previous lemma (in fact we have already handled the case f = 1). For f as above let

Az Qo xloglog x
X = —_— 1p, * 1p = & , 2.25
Yo P AL Ry T
e|P(y) (n,fQTe):l

where the last estimate follows from repeating the argument given in equation (2.18). Similarly, arguing
as in equation (2.19) we have for each d|P3(y, z) with d coprime to f that

. — 4 Qon+4 _ 1
Ag(Ox +4; f) = XS;U (Ip, * 1p ) (n) (A" = 1)( 2 ) = mxf +ra.f,
Q1% Qon+4

Qon+4=0 (mod d)

where

ray < Y. |Blxidef’01,y.¢)|
e<w
(e,2)=1

We will now apply an upper bound sieve. For D = x'/°% and 7’ = x'/1%0, Theorem 2.1 with set of primes

P={p=3(mod4): (p,f)=1&p > y} gives for each f < (logx)'? with prime divisors all > y
that the inner sum on the RHS of equation (2.24) is

1
<XV ()| FQ)+0|—— || + E: ,
! f(z)( ? ((logD>1/6)) d<D ra.s| (2.26)
d|P3(y,z),(d,f)=1

where the sum over d is O (x'/?) since D = x'/%°, and

Ve(2) = ]_[ (1 - p%l) < %nuz, (2.27)

y<p<z
p=3 (mod 4), ptf

where the upper bound follows from equation (2.22). Using equations (2.25) and (2.27) in equation (2.26)
then applying the resulting estimate in equation (2.24) and summing over ' completes the proof. O

2.3. The Proof of Proposition 2.1

We first require a Brun—Titchmarsh type bound for primes in narrow sectors.

Lemma 2.4. Let O, q < x*37°W) be odd. Then

q X
Z lxe .
2
i ex ¢(q) ¢(Q)(logx)
|arctan(b/a)|<e
qp+4=0p1, p1 prime

Remark 3. The point of the lemma is that it holds for large moduli Q > x'/2. To accomplish this, we
use asymptotic estimates for Gaussian integers a = a + ib with N(«@) < x and N(a) = a (mod Q) and
|arg(@)| < &, where N (@) = aa is the norm of @. Details are given in Appendix, cf. section A.2.

The main step in the proof of Proposition 2.1 is the following lemma.
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Lemma 2.5. Let 7 = x%_‘s, where § > 0 is sufficiently small and y = x with 0 < n < 1/3. There exists
a constant C, > 0 such that

> (Ip, * 1p,)(n) = > (Ip, * 1p,)(n) + R.
<n<2 <n<2
611004 6,100+
(252, P(y)P3(v,2)=1 (252, P(y)=1

plQon+4=p=1 (mod 4)
where

2 5% Qo xloglogx
12 ¢(Qo)  ¢(Q1)(logx)?’

O0<KR<(Cy-¢

Proof. By construction, if (1p, * 1p,)(n) # 0, then Qon +4 = 1 (mod 4) and Q1 = 1 (mod 4) so that
(Qon+4)/01 =1 (mod 4) and must have an even number of prime factors which are congruent to 3
(mod 4). Since z > x!/* the integers which contribute to R must have precisely two such prime factors.
Dropping several conditions on the integers n which contribute to R, it follows that R is bounded by
the number of integers n = p1p> < 2x, (1p, * 1p,)(n) # 0 such that (Qon +4)/Q1 = aqi1q>, where
b(a) =1, (a,P(y)) = 1,491 = g» = 3 (mod 4) and ¢q1, g, are primes with z < g1, g2 < 4Qpx/(Q; so
a < 4Qox/(Q1z%). By symmetry, it suffices to consider the terms with g; < g,. We get that

R<2 ) p(p) ) b ) > 2. ey @28)

2 <(2x)1/9 4Q0x 10, x 4159254Q0x/ Q) p1<2x/p>
P 420,22 NG

( ;(QI)Z) 1 Qop1patid=aqiq2Qi
a,r\y))=

Applying Lemma 2.4 with ¢ = Qgp2 and Q = aq 01,

X

Qo
. 2.29
¢(Qo) ¢(aQ1)q1p2(logx)? (2:29)

> Ip, (p1) <&

P1=2x/p>
Qop1pr+é=aqiq2 Q1

2/3-o0(1)
Note that x/p, > 2-1/9x8/9 and Qop2,aq101 < (piz) , for 6 > O sufficiently small, so the
application of Lemma 2.4 is valid.
We claim that
2
Z b(a) - logx/z ’ (2.30)
2 w(a) logy
aﬁﬁ
(a,P(y))=1
which we will justify below. Additionally,
log /22X oo X log X
1 E) og 1 0g
> —~log a0 Ptz gl TP 2.31)
q1 logz log z log z log z
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Therefore, using equations (2.29), (2.30) and (2.31) in equation (2.28) we conclude that

Rep. Qo xlogx/z log x/2 3 Lp, (p2)
¢(Qo) ¢(Q1)(logx)?logz \ logy e D2
p2<(2x)!/

. 82 Qp x -loglogx
N2 9(Qo)  ¢(Q1)(logx)>

as desired.

It remains to justify equation (2.30). Let F(n) be the completely multiplicative function defined
by F(p) = 1 if p > y and zero otherwise. Then for all z > y, it follows from basic estimates for
multiplicative functions (see (1.85) of [19]) that

Z b(n) ()_Zb(n) —F(n)

n<t n<t
(n,P(y))=1

t ( b(p)F(p)) t
<<—| | 1+ < .
log? pet p-1 vlogzlogy

For 1 <t <y, the sum on the left-hand side (LHS) is empty so the bound is true in that case as well.
Hence, equation (2.30) follows from this estimate along with partial summation. O

Proof of Proposition 2.1. The upper bound has already been established in Lemma 2.3. It remains to
establish the lower bound. Let ¢ be sufficiently small in terms of C; and C,. Applying the inequality
(2.7) for a lower bound sieve (also recall our notation (2.8)) along with Lemmas 2.1 and 2 _._, using
a lower bound sieve to take care of the condition (Qanl+4, P(y)) = 1 (and recalling that z = x279 for
6 > 0), we have that

_ Qon +4
> (p, s lp)m) = > (Ip, #lp)m)(A = 1)( o
x<n<2x x<n<2x !
01|Qon+4 Q1 |Qon+4
(E5= PP (v,2)=1 (Qon4.P3(,2))=1
+4
=D Uprlp)m@s 1)(%)
x<n<2x Ql
Q11Qon+4 (2.32)

(Qon+4,P3(y,z))=1

+0( 2 1)@y Qo xloglogx )
#(Qo) ¢(Q1)(logx)2

1
1/2 -2

2612 Qo xloglogx N nin "
n'2 ¢(Qo) ¢(Q1)(logx)? el

1

Choosing 7 sufficiently small in terms of ¢ (which we choose in a way that only depends on Cy, Cy; see
below) the O-term above is < 1/2 in absolute value. Therefore, by equation (2.32) along with Lemma
2.5 it follows that

S Upipn s (QE0T Geel) O rlogloes
x<n<2x N A e 2 ] ¢(Qo) ¢(Q1)(logx)?
011Qon+4

(852 P Ps(v,2)=1

plQon+4=p=1 (mod 4)
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The term (%61/2 - C263/2) is positive for ¢ sufficiently small in terms of C| and C;. Also, b(Qon+4) = 1
for n such that all the prime factors of Qgn+4 are congruent to 1 (mod 4). This completes the proof. O

3. Truncating the spectral equation

In this section, we show that it is possible to achieve a very short truncation of the spectral equation
which holds for almost all new eigenvalues.

Theorem 3.1. Let A > 1. Then for B = B(A) sufficiently large, we have for every eigenvalue A, €
Anew N [1,x] except those outside an exceptional set of size O(x/(logx)?) that

r(m) {71 log A, + O(1) in the weak coupling quantization, G.1)

m— Ay % +0(1) in the strong coupling quantization.

m:|m-n|<Z (log x) 8

The above theorem is proved by capturing cancellation in the spectral equation even at very small
scales for almost all new eigenvalues. This is done by showing that the average behavior of sums of r(n)
over even very short intervals is fairly regular.

Lemma 3.1. Let x >3 and3 < L < x. Then

}CZ Z r(n)—ﬂ%

(<x <<+ £

2
< %(logx)z. 3.2)

Proof. We repeat a classical argument, which was used by Selberg [4 1] to study primes in short intervals.

Consider
1 r(n)
da =7 Z -

n>1

=L(s, xa){(s)  Re(s) > 1,

where L(s, x4) is the Dirichlet L-function attached to the nontrivial Dirichlet character (mod 4), and
£ (s) denotes the Riemann zeta-function. Note L(1, y4) = /4. Applying Perron’s formula, then shifting
contours to Re(s) = 1/2 (which is valid since it is well known that {g(;) (0 + it) < ti=o+o(D) for
0 < o < 1) and picking up a simple pole at s = 1 we see that forv,v+v/L ¢ Z

1 (v+2)S =y
Z r(n) = i /2) 4§’Q(i)(s)% ds

v<n<v+r (

1/2 (1+L)%+it_1
v v .

=4L(1,X4)'Z+— 4(@(:’)(%"‘”)]{—
R

3 . eit logv dt.
d 2

+ it

Notice that the integral on the RHS is a Fourier transform. Writing v = log(1 + %), making a change of
variables v = e and then applying Plancherel’s theorem yields

1 [~ 2 ™\?4
;1( D r(n)—n.%) dvs/R( D r(n)—n.%)e—j

VSnsv+y eT<n<e™
8 1 2\ 12 1 S\ 2
= [1caw s+ Pl wint

where w,, (s) = (¢”*—1)/s < min{v, 1/(1+|¢|)} uniformly for % < Re(s) < 1. To estimate the integral
on the RHS, we apply the well-known bound

T
/ 1Zaq) (3 +i0)|* dt < T(logT)?
0
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(see the introduction of [32]). Hence, we see that

. . . Lo dt
[lcaw @il rinfan<r [ lapGrinfare [ leo(+inPs
R lt]<1/v t|=1/v t
1
<v(log1/v)? < Z(1og L)%
Combining the estimates above, we conclude that
1 2x 2
)-C/x ( > r(n)—ﬂ%) dv < %(logx)z. (3.3)

v
vnsv+y

We will now bound the sum over integers ¢ < x on the LHS of equation (3.2) in terms of an integral
over ] <v <x.Let

Fv= 3 rm-n-1.

v<n<v+y
and let vy € [£, € + 1] be a point where the minimum of |F(v)| on [£, € + 1] is achieved. Observe that
F()=F(e)+0(r (&) +r(f*) +1),
where * = [£+ 1+ (€+1)/L]. Hence,

}C DFO? < )1( D Fe) + }C DO+ +1

<x <x <x

1 X
< —/ F(x)? dx +logx < > (logx)?,
X J1 L

where the last bound follows from equation (3.3) and the bound ¥, ., r(I)*> < xlogx (which in turns
follows from a Wirsing type estimate (cf. [49]) or by taking k = 1, R{(X) = X and F(n) = r(n) in
Lemma 4.1). m]

Lemma 3.2. Let A > 3 and x,Y > 3. Then for all but < x/(log x)? integers m € [1,x] we have

r(m+k)—r(m—k) ’ - (log x)34
k - \Y '

m 12m
Y 2<k<x!/2

Proof. Let

Ru(t)= ) (r(m+k)—r(m—k)).

1<k<t

It suffices to consider m € [x/(logx)?,x]. Hence, by summation by parts for each integer m €
[x/(logx)4, x] we have that

xl/Zm

r(m+k)—r(m-k) _Rm(xl/2%) Rm(Y%) x
k a xl/Z% B Y= * yo

R (1)
12

dt.

m 12m
Y2 <k<x!/2
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Using this along with Chebyshev’s inequality and the elementary inequality (|a| + |b] + |c|)? <
32(a? + b* + ¢?), it follows that

X

_ < <
(logn)A =" ="

) Z r(m+k)—r(m-k) S (logx)34
Yo ck<xl/Am k VY

2 2
Y 3 Ron (') (log " R (Y% <logx)2A / *Rm(r) »
(logx)®A &~ x vz

(logx)A ==

(3.4)

In the integral, we make a change of variables and apply the Cauchy—Schwarz inequality to get for each
m € [x/(logx)4,x] that

xl2m 1/2

2
x R, (1) (logx)?4 71 m\2
(/m g dt) < T/y t—sz(z;) dr. 3.5)

Observe that

Rm(H%) = Z r(n) — Z r(n).

ms<n<m+%H m—"H <n<m

Hence, by Lemma 3.1 with L = x/H (along with an analogue of this lemma for the second sum, which
is proved in the same way) we get

1 2
-3 Rm(HT) < H(logx)?,
X m=<x X

for 1 < H < x/3. Using this bound and equation (3.5) in equation (3.4) gives

r(m+k) —r(m—k) . (log x)34
Y2 <k<x!2m k 4

Y- 2 2 3
< x ((logx) N (logx) N (logx) < X
(logx)*A\ x1/2 Y Y (log x)*A-3

X
—= <
(logx)A

since we may assume Y < x!/2, otherwise the set on the LHS above is empty. O

Before proving the main result of this section, we require the following technical lemma.

Lemma 3.3. Let u, v be sufficiently large positive real numbers such that v¥/1° < u < 2v. Lett > 1 be
a real number that is not expressible as a sum of two squares such that |u — t| < v'/3. Then

> r(m)(L— n )z—ﬂlogt+0(l).

1 -t m?+1
m:lm-u|>v?2
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