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1. Introduction. A group-subgroup pair (G, C) is called a Hecke pair if C is almost
normal in G, i.e. if every double coset of C in G is a union of a finite number of left cosets
of C in G. To a Hecke pair one associates a convolution algebra of functions, �[G, C],
on the space of double cosets of C in G which coincides with the group algebra �[G/C]
when C is normal, see § 2 and [6]. The algebra �[G, C] is called the Hecke algebra
of the pair (G, C). Just as representations of a group G on a complex vector space
correspond to representations of its group algebra �[G], the algebra representations of
�[G, C] correspond to linear representations of G which are generated by their C-fixed
vectors [6, § 3.1] or [8, Chapter 1].

There is a *-algebraic structure on �[G, C], which is induced by inversion of group
elements in G. This paper addresses the question of how well unitary representations
of a group G which are topologically generated by C-fixed vectors correspond to
*-representations of �[G, C]. It is known that there is not always an exact
correspondence. This is in contrast with the situation for the group algebra �[G], which
corresponds to the special case C = {1}. For an arbitrary almost normal subgroup C,
the Hecke algebra �[G, C] may have many *-representations that are not induced by
unitary representations of G. This will be the case if �[G, C] does not have an enveloping
C∗-algebra because the *-representations arising from unitary representations of G are
uniformly bounded on each element of �[G, C].

If G is the infinite dihedral group and C is a subgroup of order 2 then �[G, C]
does not have an enveloping C∗-algebra, see [10, Example 3.1] or Lemma 3.2. A less
elementary example, where G is SL2(�p) and C is a Borel subgroup, is discussed in [6].
In each of these negative examples, replacing C by a finite index subgroup (the trivial
group in the first case and an Iwahori subgroup in the second, see [6]) produces a Hecke
algebra which does have an enveloping C∗-algebra.

If some almost normal subgroup C in G is given, can we always choose an almost
normal subgroup C′ within the same commensurability class such that �[G, C′] has an
enveloping C∗-algebra? We are interested in the case where G a totally disconnected,
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locally compact group and C is a compact, open subgroup. Such a group-subgroup
pair (G, C) is a Hecke pair because every double coset of C in G is a compact set
with an open cover of left cosets. If C is topologically finitely generated then the
commensurablity class of C consists of all compact open subgroups of G by the main
result of [9], Théorème 0.1. Moreover all Hecke algebras can be realised by such a
topological Hecke pair in the following sense. Given a Hecke pair (G′, C′) we can find a
Hecke pair (G, C), called its Schlichting completion, consisting of a totally disconnected,
locally compact topological group and a compact open subgroup with the property
that �[G, C] ∼= �[G′, C′] as *-algebras, see [5, 7] and [10, section 4].

Our question then becomes: Which conditions on a totally disconnected, locally
compact group G ensure that there is some compact open subgroup C in G such that
�[G, C] has an enveloping C∗-algebra? In Lemma 2.5 below we establish that for a
fixed element x ∈ G one can find a compact open subgroup C of G with the property
that the double coset CxC has a finite norm in every *-representation of �[G, C] by
choosing C to be sufficiently small. This suggests that �[G, C] may have an enveloping
C∗-algebra whenever the compact open subgroup C is small enough provided the result
of Lemma 2.5 can be obtained uniformly for all x ∈ G.

In § 3 we construct a compactly generated group for which the results of Lemma 2.5
can not be obtained uniformly. More precisely, our example shows that compact
generation does not ensure the existence of a compact open subgroup such that the
corresponding Hecke algebra has an enveloping C∗-algebra.

In the final section we present topological conditions on G which exclude any
example with similar features to the one constructed here. These conditions translate
into conditions on an algebraic Hecke pair via the Schlichting completion. We
conjecture that these conditions ensure existence of a largest C∗-norm on Hecke
algebras with respect to sufficiently small compact open subgroups.

2. Hecke Algebras. The Hecke algebra of a Hecke pair (G, C) can be defined by
a product formula that involves counting the number of left C-cosets in each double
coset CxC. If G is a totally disconnected, locally compact topological group and C
is a compact open subgroup, then every double coset of C in G is a compact set with
an open cover of left cosets. Hence every double coset of C in G is a union of a finite
number of left cosets of C in G.

When G is locally compact and C is a compact open subgroup, the Hecke algebra
�[G, C] can be realised as a subalgebra of the measure algebra on G with the familiar
convolution product. We shall adopt this point of view because the formulas are simpler
with this approach.

If G is a topological group, denote by MG the convolution algebra of compactly
supported bounded complex measures on G. If C is a compact group, denote by mC

its normalized Haar measure. Moreover, we denote both an element of G and its point
mass in MG by the same symbol.

DEFINITION 2.1. Suppose G is a totally disconnected, locally compact topological
group and let C be a compact open subgroup. The Hecke algebra of (G, C), �[G, C],
is the subalgebra of MG consisting of the measures with constant density on double
cosets modulo C, i.e. �[G, C] = mC ∗ MG ∗ mC . The map sending a measure µ to the
complex conjugate of the image of µ under inversion defines an involution ∗ on MG
which restricts to �[G, C], because m∗

C = mC .
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The element mC is an identity for the algebra �[G, C].
When proving our main result, we reduce a statement about the Hecke pair (G, C)

to a statement about another Hecke pair of the form (H, C′) with H � G and C′ � C.
For this task, the following observations will be useful.

LEMMA 2.2. Suppose G is a topological group, C is a compact open subgroup of G,
and H is a subgroup of G containing C. The inclusion of H in G induces an injective
unital *-homomorphism �[H, C] → �[G, C]. We may therefore view �[H, C] as a unital
*-subalgebra of �[G, C]. �

LEMMA 2.3. Suppose G is a topological group, C is a compact open subgroup of
G, and C′ is a compact subgroup of G containing C. Then �[G, C′] is a *-subalgebra of
�[G, C].

Proof. We have mC′ ∗ mC = mC′ = mC ∗ mC′ and hence

�[G, C′] = mC′ ∗ MG ∗ mC′

= mC′ ∗ mC ∗ MG ∗ mC ∗ mC′

= mC′ ∗ �[G, C] ∗ mC′ .

Since m∗
C′ = mC′ , �[G, C′] is *-closed in �[G, C]. �

To concisely formulate our results we introduce the following notation.

NOTATION 2.4. For an element m ∈ �[G, C] we let

‖m‖G,C := sup{‖π (m)‖: π is a *-representation of �[G, C] on a Hilbert space} .

There is an enveloping C∗-algebra for �[G, C] iff ‖m‖G,C < ∞ for all m in �[G, C].
The following result shows that a technique of descent enables us to bound norms

on any chosen double coset. It motivates the suspicion, mentioned in the introduction,
that for well-behaved groups the Hecke algebra with respect to a sufficiently small
compact open subgroup has an enveloping C∗-algebra.

LEMMA 2.5. Let G be a topological group and let U and V be compact open subgroups
of G. Then ‖∑n

i=1 λi mV ∗ xi ∗ mV‖G,V < ∞ provided that V satisfies

V ∪
n⋃

i=1

x−1
i Vxi ⊆ U.

Proof. It suffices to show that ‖m∗ ∗ m‖G,V < ∞ for all elements of the form
m = mV ∗ xi ∗ mV ∈ �[G, V ].

By assumption Vx−1
i VxiV ⊆ U , showing that m∗ ∗ m belongs to the algebra

�[U, V ]. Since U is compact, �[U, V ] is finite dimensional. Thus ‖m∗ ∗ m‖U,V < ∞
and hence ‖m∗ ∗ m‖G,V < ∞ as well.

As a consequence of Lemma 2.5 we obtain the following result.

PROPOSITION 2.6. Suppose that G is topological group. Let U be a compact, open,
normal subgroup of G. Then for any compact, open subgroup V ⊆ U the algebra �[G, V ]
has an enveloping C∗-algebra.

Proof. Lemma 2.5 shows that for any x in G ‖mV ∗ x ∗ mV‖G,V < ∞ as soon
as V ∪ x−1Vx ⊆ U , a condition which is automatically satisfied by the normality
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assumption on U . The Hecke algebra �[G, V ] is spanned by elements of the form
mV ∗ x ∗ mV and thus the conclusion follows. �

The question arises as to whether we can relax the condition on U somewhat by
making it dependent on the element x under consideration. More precisely, we pose
the following question.

OPEN QUESTION 2.7. Suppose that G is a compactly generated, totally disconnected,
locally compact group which is uniscalar in the sense that for each x ∈ G there is a
compact, open subgroup U such that x−1Ux = U. Does �[G, V ] have an enveloping
C∗-algebra if V is sufficiently small?

3. The Construction. In this section we provide an example showing that a
compactly generated group G need not admit a largest C∗-norm on the Hecke algebra
with respect to any compact open subgroup.

Our example is built from a Hecke pair (D, F) with F finite such that �[D, F ]
contains an element �1 such that ‖�1‖D,F = ∞. The group G will be assembled from
D in such a way that infinitely many copies of �[D, F ] survive in �[G, C] for any
compact open subgroup C of G.

Let D := � � F be the semidirect product where F is the group of order 2 acting
on � by inversion, so that D is isomorphic to the infinite dihedral group. Equip D with
the discrete topology. Next let H be the restricted product

H :=
∏

�

D|F := {
h ∈ D� | h(n) ∈ F for all but finitely many n

}
.

Recall that the restricted product
∏

i∈I Gi|Oi, where Gi are locally compact groups and
Oi is a compact, open subgroup of Gi has a topology defined by a basis of the identity
consisting of

∏
i∈i Ui with Ui open in Gi for all i and Ui = Oi for all but finitely many

i. The group H meets all our requirements except that of compact generation.
There is an action of � on H via the shifting of indices. The semidirect product

G = � � H with respect to this action is our counterexample.
The rest of this section is devoted to the proof of the following result.

THEOREM 3.1. The group G is compactly generated and, for any compact open
subgroup C in G, there is an element �C of �[G, C] such that ‖�C‖G,C = ∞.

The existence of �C will be shown by reduction to the corresponding statement
for �[H, C], which in turn will be reduced to part (4) of Lemma 3.2 by Lemma 3.4.

We begin by establishing some notation. The elements of F will be denoted by
0̄ and 1̄, with the group operation being addition modulo 2, and we identify F with
the subgroup {(0, ā) | ā ∈ F} of D. The group K := ∏

� F is naturally identified with a
compact open subgroup of H, and hence of G. Since F is a maximal compact subgroup
of D, K is a maximal compact subgroup of G. The identity element of H will be denoted
by 0 and the shift of H by 1 will be denoted by σ . The elements of G will be written
as σ lh with l ∈ � and h ∈ H. We will define conjugation such that, for l ∈ �, we have
σ l(h) = σ lhσ−l.

That G is compactly generated may be seen by verifying that it is generated by
K ∪ {σ, h0}, where h0 is the function in H which takes the value (1, 0̄) at 0 and the identity
elsewhere. It remains to prove the assertion about unboundedness of representations;
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our proof relies on the corresponding statement about the Hecke algebra �[D, F ],
which we establish first.

The double cosets over F in D are F(n, 0̄)F = {(n, 0̄), (−n, 0̄), (n, 1̄), (−n, 1̄)}, where
n ∈ �. This and elementary calculations then yield the following description of the
structure of �[D, F ]. The Chebychev polynomials are defined in [4], page 123.

LEMMA 3.2. Let �n = mF ∗ (n, 0̄) ∗ mF ; then
1. �[D, F ] is the linear span of {�n | n ∈ �} and for all natural numbers m and n we

have

�∗
n = �n

�m ∗ �n = 1
2

(
�m+n + �|m−n|

)
.

2. �[D, F ] is isomorphic to the ring of polynomials in �1, and �n = pn(�1), where
pn is the degree n Chebychev polynomial.

3. For any real number λ the assignment πλ: �n �→ pn(λ) defines a one-dimensional
unital *-representation of �[D, F ].

4. The supremum sup{‖πλ(�1)‖: λ ∈ �} is infinite. In particular ‖�1‖D,F = ∞.

Theorem 3.1 will follow from this Lemma because the group G is assembled from
D and F in such a way that infinitely many copies of �[D, F ] survive in �[G, C] for any
compact open subgroup C of G, as we will see shortly.

Consider first the structure of �[G, C] when C = K . The set of probability measures
{mK ∗ σ lh ∗ mK : σ lh ∈ G} spans �[G, K ] and, since mK is invariant under the shift on
H, mK ∗ σ lh ∗ mK = σ l ∗ mK ∗ h ∗ mK . Hence �[G, K ] has the �-grading

�[G, K ] =
⊕
l∈�

σ l ∗ �[H, K ].

To decompose �[H, K ], define, for each finite I ⊂ �,

HI = {h ∈ H | h(n) = (0, 0̄) unless n ∈ I}.

The group H{i} will be written as Hi. Since HI is the direct product
∏

i∈I Hi and each
Hi is isomorphic to D, we have

�[HI K, K ] ∼=
⊗
i∈I

�[HiK, K ] and �[HiK, K ] ∼= �[D, F ] for each i, (1)

by [8, Theorem 6.3], where the involution on the tensor product is the tensor power
of the involution on �[D, F ]. For index sets I and J with I ⊆ J the inclusion
homomorphisms �[HI K, K ] → �[HJK, K ] are unital and

�[H, K ] = lim
−−−→

I finite

�[HI K, K ]. (2)

The combined isomorphism �[HI K, K ] → ⊗
i∈I �[D, F ] in (1) is given by

mK ∗ h ∗ mK �→
⊗
i∈I

mF ∗ h(i) ∗ mF (h ∈ HI ). (3)
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This, plus the fact that conjugation by σ intertwines this family of isomorphisms as the
shift of the index set I , allow us to define a one-dimensional *-representation of �[G, K ]
by taking the same representation for each factor �[D, F ] and the trivial representation
for the shift σ .

LEMMA 3.3. Let λ ∈ � and define

�λ(σ l ∗ mK ∗ h ∗ mK ) =
∏
n∈�

πλ(mF ∗ h(n) ∗ mF ) ; σ lh ∈ G,

where πλ is the *-representation of �[D, F ] defined in Lemma 3.2. Then �λ is a unital
*-representation of �[G, K ].

(Note the infinite product on the right hand side is well-defined because all but finitely
many terms are equal to 1.)

Lemma 3.3 and 3.2 imply that when C = K , we may take

�K := mK ∗ h0 ∗ mK

in Theorem 3.1 (Recall that h0 ∈ H is defined by h0(0) = (1, 0̄) and h0(n) = (0, 0̄) for
n 
= 0.)

Next consider the case when C is a proper compact open subgroup of K . In this
case mC is not invariant under the shift on H, that is, mσ (C) 
= mC . Denote the product
of probability measures mC ∗ mσ l (C) by m(l)

C . Then m(l)
C is the Haar measure of the

subgroup C + σ l(C) of K .
The next lemma shows that if C is a proper, compact, open subgroup of K , then

�[H, C] has quotients isomorphic to �[D, F ]. Define H<i and H>j to be the subgroups
of H supported on the coordinates at most i and at least j respectively;

H<i := {h ∈ H | h(n) = (0, 0̄) if n ≥ i} and H>j := {h ∈ H | h(n) = (0, 0̄) if n ≤ j}.

Define subgroups K<i and K>j of K similarly. Note that the Hecke algebras �[H<i, K<i]
and �[H>j, K>j] are both isomorphic to �[H, K ], which has �[D, F ] as a quotient; hence
�[H, C] has �[D, F ] as a quotient as well.

LEMMA 3.4. Let C be a proper open subgroup of K. Then, for some interval [i, j] ⊆ �,
there is a surjective *-homomorphism

T : �[H, C] → �[H<i, K<i] ⊗ �[H>j, K>j]

such that T(m(l)
C ) = 0 for every l 
= 0.

Proof. Since C is open, there are integers i ≤ j such that

{k ∈ K | k(n) = 0̄ for i ≤ n ≤ j}

is contained in C. Since C is a proper subgroup of K , we may choose i to be maximal
and j to be minimal with respect to this property.

Put C[i,j] := C ∩ H[i,j]. Then H = H<i × H[i,j] × H>j and C = K<i × C[i,j] × K>j

and it follows that

�[H, C] ∼= �[H<i, K<i] ⊗ �[H[i,j], C[i,j]] ⊗ �[H>j, K>j]. (4)
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Writing h|<i, h|[i,j] and h|>j for the projections of h ∈ H onto H<i, H[i,j] and H>j

respectively, the isomorphism in (4) is given by

mC ∗ h ∗ mC �→ (
mK<i ∗ h|<i ∗ mK<i

) ⊗ (
mC[i,j] ∗ h|[i,j] ∗ mC[i,j]

) ⊗ (
mK>j ∗ h|>j ∗ mK>j

)
.

The homomorphism T we seek will be obtained by composing this isomorphism with
Id ⊗ φ ⊗ Id for a non-zero multiplicative linear functional φ: �[H[i,j], C[i,j]] → � that
remains to be constructed.

Functionals on �[H[i,j], C[i,j]] are determined by characters on H[i,j] and these
characters are in their turn indexed by functions k : [i, j] → {±1} as follows. First note
that the character group of F = {0̄, 1̄} may be identified with ({±1},×) by

〈ā,±1〉 =
{

1, if ā = 0̄
±1, if ā = 1̄

,

and let q: D → F be the homomorphism q(n, ā) = ā. Then for each k ∈ {±1}[i,j] the
map χk: H[i,j] → {±1} defined by

χk(h) =
∏

n∈[i,j]

〈q ◦ h(n), k(n)〉

is a character. Next, define the linear functional φk on �[H[i,j], C[i,j]] by

φk(µ) =
∫

H[i,j]

χk(h) dµ(h) for µ ∈ �[H[i,j], C[i,j]].

Then φk is multiplicative and is non-zero if C[i,j] ⊆ ker χk because φ(mC[i,j] ) = 1 in that
case. We claim that there is k ∈ {±1}[i,j] such that C[i,j] ⊆ ker χk and k(i) = −1 = k(j).

To see this, first note that since the index i was chosen as large as possible there
is k1 ∈ {±1}[i,j] with C[i,j] ⊆ ker χk1 and k1(i) = −1. Since j was chosen as small as
possible, there is k2 ∈ {±1}[i,j] with C[i,j] ⊆ ker χk2 and k2(j) = −1. If either k1(j) = −1
or k2(i) = −1, then the claim is justified. Otherwise, k1k2 bears it out. Now construct
φk using such a k.

Since C[i,j] ⊆ ker χk, the map T : �[H, C] → �[H<i, K<i] ⊗ �[H>j, K>j] construc-
ted from φk is a surjective homomorphism. It remains to show that T

(
m(l)

C

) = 0 if
l 
= 0.

The element m(l)
C maps to mK<i ⊗ µ ⊗ mK>j under the isomorphism in (4), where

µ is the Haar measure of the restriction of the group C + σ l(C) to [i, j]. To determine
T

(
m(l)

C

)
it remains to calculate φk(µ).

If l > 0, then σ l(C) contains the element hi of H defined by

hi(n) =
{

(0, 1̄) if n = i
(0, 0̄) otherwise

and hence µ is invariant under translation by hi. Since k(i) = −1, the character χk

changes sign under translation by hi and therefore φk(µ) = 0. Similarly, if l < 0 then
φk(µ) = 0 because k(j) = −1.

We therefore have φk(µ) = 0 for l 
= 0 and hence T
(
m(l)

C

) = 0 as required. �
In the next result we extend T to �[G, C]. It will follow that for C a proper,

compact, open subgroup of K , �[G, C] has quotients isomorphic to �[D, F ].

https://doi.org/10.1017/S0017089506002990 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506002990


200 U. BAUMGARTNER, J. RAMAGGE AND G. A. WILLIS

LEMMA 3.5. Let C be a proper open subgroup of K. Then, for some interval [i, j] ⊆ �,
there is a surjective *-homomorphism

T̃ : �[G, C] → �[H<i, K<i] ⊗ �[H>j, K>j] .

Moreover the algebra �[G, C] has quotients isomorphic to �[D, F ].

Proof. We begin by proving the first statement. For each l ∈ � put

Al := span
{
mC ∗ σ lh ∗ mC : h ∈ H

}
.

Then A0 = �[H, C] and we obtain a grading �[G, C] = ⊕
l∈� Al with Al1 ∗ Al2 ⊆ Al1+l2 .

The identity

(mC ∗ σ−lh1 ∗ mC) ∗ (mC ∗ σ lh2 ∗ mC) = mC ∗ σ l(h1) ∗ mσ l (C) ∗ h2 ∗ mC

implies that, when l 
= 0, A−l ∗ Al is contained in the kernel of the homomorphism
T defined in Lemma 3.4. The required homomorphism can therefore be obtained by
setting T̃ |A0 = T and T̃ |Al = 0 for l 
= 0.

To see the second statement, use that �[H<i, K<i] ⊗ �[H>j, K>j] is isomorphic to
�[H, K ] ⊗ �[H, K ] ∼= �[H, K ], hence has quotients isomorphic to �[D, F ]. �

We are now ready for the proof of our main result.

Proof of Theorem 3.1. Let C be a compact open subgroup of G. Any such subgroup is
contained in H. The group K is a maximal compact subgroup of H and up to an inner
automorphism of H all maximal compact subgroups of H are equal to K . Hence, up
to an automorphism of G all maximal compact subgroups of G are equal to K . We
may therefore assume from the outset that C is contained in K .

If C = K , then, the element �K := mK ∗ h0 ∗ mK satisfies the requirement of
Theorem 3.1, as remarked after Lemma 3.3. If C 
= K , then �[G, C] has a quotient
isomorphic to �[D, F ] by Lemma 3.5. Any element mapping to �1 in �[D, F ] under
the map �[G, C] → �[D, F ] satisfies the requirement for �C in Theorem 3.1. The proof
is complete. �

4. A Conjecture. The main ingredients in the construction of the example are
that the group G has a compact open subgroup that is isomorphic to the product over
the integers of copies of a finite group and that there is an inner automorphism of G
which acts as the shift on this subgroup. Two conditions on a group G precluding such
a structure have been studied in [1] and [2]. It may be that these conditions are the right
ones to impose on G in order to guarantee that there is a compact open subgroup C
such that �[G, C] has a largest C∗-norm.

First, the contraction group of an automorphism α is

{x ∈ G | αk(x) → eG as k → ∞}.

Contraction groups are shown in [1] to be closely related to the compact open subgroups
tidy for α. In particular, there are arbitrarily small subgroups tidy for α if and only if
the contraction group for α is closed. The automorphism that is a shift on a product
over the integers of copies of a finite group does not have closed contraction groups.
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Second, for compact open subgroups U and V of G define

d(U, V ) = log([U : U ∩ V ][V : U ∩ V ]).

Then d is a metric on the compact open subgroups of G which plays an important
role in the definition of the notion of direction of an automorphism [2]. A condition
which seems to be important for the study of the space of directions of a group G
is that balls in the metric space of compact open subgroups of G should be finite,
that is, this metric space is proper. The infinite product of copies of a finite group
does not satisfy this condition, which, however is satisfied if C is topologically finitely
generated.

Ergodic abelian groups of automorphisms of totally disconnected locally compact
groups are studied in [3] and in that paper a condition of ‘local finite generation’ is
imposed. This condition implies the finiteness of balls condition and so may also be
relevant to Hecke algebras.

CONJECTURE 4.1. Let G be a totally disconnected locally compact group and suppose
that G satisfies one of the following conditions:

1. For each compact open subgroup C and any real number R ≥ 0 the set
{C′ ≤ G | d(C, C′) ≤ R} is finite;

2. Contraction groups of inner automorphisms of G are closed.
Then the Hecke algebra �[G, C] has a largest C∗-norm whenever the compact open
subgroup C is sufficiently small.

Conditions 1 and 2 are independent because the full automorphism group of a
homogeneous tree satisfies 1 but not 2, while the infinite product of copies of a finite
group satisfies 2 but not 1. Both conditions are satisfied if G is a p-adic Lie group. At
the time of writing it is still an open question whether the conjecture holds even in this
case.
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