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Introduction. In [10], C. Sundberg uses a clever argument involving an idea of
Davie and Jewell [13] to prove an isomorphism theorem for a very general class of
operators. A related spectral inclusion theorem is an immediate consequence of the proof
of this result, as Sundberg points out. He goes on to list several well known examples that
are applications of his main result and remarks that the proof of the McDonald-Sundberg
theorem (c.f. [9]) can now be considerably simplified. The purpose of this note is to give
further evidence of the utility of the criterion established in [10]. Here and throughout X
denotes a compact Hausdorff space and A is a function algebra on X. The Shilov
boundary of A is the minimal closed subset d(A) of X with the property that

II/IU = SUP{|/(JC)| :* e a(^)} for all feA.

Given a positive (regular Borel) measure n on X, the abstract Hardy space H\n) is the
L2(/i)-closure of A. For / e L°°(fi), we define the multiplication operator Mf on L2(n) by

Mfg=fg, for geL2(fi)

and we define the Toeplitz operator Tf on H2(ft) by

Tfg = P(fg), for geH2(ti),

where P:L2((x)-*H2((i) denotes the orthogonal projection.
Let J" denote the C*-algebra of bounded operators on H2{fi) generated by

{Tf:f eC(X)} and let <g denote the commutator ideal of 3~; that is, <€ is the ideal
generated by {TfTg - TgTf :/, g e C(X)}. Now 5"/<g is a commutative C*-algebra and it is
of interest to obtain a description of ST/^ in terms of continuous functions on X. If X is
the closed unit disk in the complex plane, A is the disk algebra, and fi is Lebesgue
measure on dX, a theorem of L. A. Coburn (see Chapter 7 of [4]) asserts that
37 « = C(dX).

In general, the recent result of C. Sundberg [10] tells us that 2TIC€ = C(E) for the
closed set

E = {x eX:f eC(X) with f(x) = 0 implies Mf is not bounded below on H2(fi)}.

We can use % in place of the semicommutator ideal because the two ideals are the same
in our context. As a consequence of his proof, Sundberg obtains the inclusion

o(Tf).

Main result. Our goal is to further describe this set E, but first we need a notion
from the theory of function algebras. A closed set F in X is said to be a peak set for A if
there is a function feA with / = 1 on F and | / | < 1 off F. A point x e X is a weak peak
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point for A if {x} is an intersection of peak sets. It is not hard to see that the weak peak
points for A are dense in d(A). The reader is referred to [5] as a general reference for
function algebras.

THEOREM. / / supp pt, a d(A), then £ = supp;U (i.e., STI1^ = C(supp fi)). In general,
d(A) fl supp n c E.

Proof. First of all, it is clear that E c supp fi. Thus we need only prove the
containment d(A) D supp (ic:E. Towards this end, suppose/is a continuous function that
vanishes at y e 9(A) n supp /x. For convenience, let ||/||oc, = 1. For any e > 0, there is an
open set V containing y such that | / | < £ on V. But V contains a weak peak point x for A,
and so there exists he A with h(x) = \\h \\x = 1 and \h\ < 1 on X\V. Choose 0 < a < /3 < 1
such that \h\^a on X\V and put 5 = {t e X: |1 -h(t)\ ^ 1 - /3} . By Runge's theorem,
there is a sequence {/?„} of polynomials such that pn-*0 uniformly on {2: \z\ = a) and
/?„—»2/x(S)~1/2 uniformly on {2: |1 — z\ = 1 - j8}. Because pn(h) e A, there is a function
geA with J |g|2dn ^ 1 and with |g| < £ on X\V. Now

f
x\v

Thus \\Mfg\\2^2me \\g\\2, whereby y e £ .

COROLLARY. For / e C ^ ) , we have f(d(A) D supp /x) c o(Tf).

REMARKS. If A = //°°, the bounded analytic functions on the open unit disk in the
complex plane and if n is the natural lift to d(/f") of Lebesgue measure m on the unit
circle, we obtain f(d(H°°)) a a(Tf). Now 3(/r°) can be identified with the maximal ideal
space of L°°(m) and L°°(m) = C(d(H°°)) under this identification. Letting £%(/) denote the
essential range of / in L°°(m), and taking the Toeplitz operator 7} acting on the classical
Hardy space, we obtain the well known result of R. G. Douglas (see Chapter 7 of [4])
that £%(/) <= o(Tf). In view of the previously mentioned theorem of L. A. Coburn, it
seems natural to ask if similar results hold for algebras A that lie between the disk algebra
and H°°. This was the question that originally motivated this research. Of course, we were
able to obtain more.

Theorem 2 of [7] asserts that the first statement of our main result holds for function
algebras that approximate in modulus, while Theorem 2 of [8] is a version of our main
result for hypo-Dirichlet algebras but with the restriction that the measure n be a
logmodular measure for a multiplicative linear functional on A. Given a compact set X in
the complex plane, let

A = A(X) = {/ e C(X):/ is analytic on the interior of X)

and let supp fi^X. In the case X = supp ju, because d(A) = dX, we obtain f(9X) a a(Tf)
for / e C(X), generalizing certain cases of a result in [2] for Bergman spaces.
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Furthermore, an example in [2] shows that/(Ar) neither contains o{Tf) nor is contained in
o{Tf). In the case dX = suppn, we again get f(dX) c: o{Tf), generalizing results in [1]
and [8] concerning Hardy spaces of finitely connected planar domains. Of course these
results hold for any algebra A on X with d(A) = dX; e.g., the T-invariant algebras in [6].
Similar results also hold in several variables when the Shilov boundary can be identified.
Finally, note that the McDonald-Sundberg theorem of (cf. [9]) shows that d(A) n supp /x
is not necessarily equal to E even when d(A) a E.

The author would like to thank Sheldon Axler and Paul Bourdon for some valuable
conversations regarding the work presented here.
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