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1. Introduction and summary

When # objects are to be compared in pairs, a complete experiment
requires N = (3) comparisons. There are frequent occasions when it is
desirable to make only a fraction F of the possible comparisons, either
because N is large or because even an individual comparison is laborious.
The problem of what constitutes a satisfactory subset of the comparisons
has been considered by Kendall [5] who lays down the following two mini-
mum requirements:

(a) every object should appear equally often;

(b) the design should be ““connected” so that it is impossible to split the
objects into two sets with no comparison made between objects in one set
and objects in the other.

For a limited number of combinations of #» and F it is possible to find
partially balanced incomplete block (PBIB) designs with two associate
classes and of block size two (Clatworthy [1]), designs which possess a
high degree of symmetry and for which conditions (a) and (b) are auto-
matically satisfied. However, a more flexible class of experimental arrange-
ments is called for. Such a class is provided by the ““cyclic’ designs described
in § 2 which include the PBIB designs (with blocks of size two) of the group
divisible and cyclic types. Cyclic designs were introduced, in a special case,
by Kempthorne [4] and have also been studied by McKeon [6]. Both authors
were primarily interested in the analysis and were able to develop methods
of analysis corresponding to two important applications.

In the present paper, the emphasis is on design rather than analysis.
We shall say that two designs are equivalent if one can be obtained from the
other by a re-labelling of the # objects. It is shown how the cyclic designs
for given # may be enumerated and effectively reduced in number in view of
equivalences which exist among designs of the same size. These results are
quite independent of the background to the experiment and hold equally
whether actual measurements are made on the objects or whether all that
is available is some expression of preference for one object in each pair.
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However, in order to allow some comparison with the results of Kempthorne,
Clatworthy, and McKeon, a table of “‘efficiencies’ of the designs is given.
On this criterion, it turns out that some of our designs are superior to any
so far proposed, while in other cases our methods show that arrangements
previously advocated are optimal in the class of cyclic designs. Group divis-
ible PBIB designs are optimal when they exist; other types of PBIB
designs may or may not have higher efficiencies than the best cyclic design
of the same size.

A review of work on the design of paired-comparison experiments is given
in [2]. It will be convenient to represent the # objects in the experiment by
the numbers 0, 1, 2, ..., n — 1.

2. Cyclic paired-comparison designs

Consider first the case » = 5. The 20 pairwise comparisons which can
be made when order of presentation is taken into account may be set out in
four cyclic sets:

{1} o1 12 23 34 40
{2): 02 13 24 30 4l
8: 03 14 20 31 42
{4: 04 10 21 32 43

Here set {s} (s=1,2,-+-,n — 1) is of the form
Os1,s+1 ---¢s+¢t---n—1,s+n—1

where ¢ 4+ s is reduced modulo #» when necessary. Note that in all sets the
order of presentation has been balanced out. Set {8} is equivalent to {2}
(briefly {3} ~ {2}) if we ignore the reversal in the order of presentation, as
we shall; likewise {1} ~ {4}. Clearly the smallest experiment satisfying
Kendall’s conditions (a) and (b) consists of 5 comparisons which may be
taken to be set {1} by suitable labelling of the objects. For n = 5 set {2}
would do equally well since the re-numbering (permutation) of the objects

® RoD = 5 4 1 3

changes {1} to {2} and {2} to {4} ~ {1}. Thus {1} and {2} differ only in the
arbitrary numbers assigned to the objects.
For n = 6 the situation is rather different. The 15 distinct comparisons
can be broken down into two cyclic sets:
{1}: 01 12 23 34 45 50
{2): 02 13 24 35 40 51
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and the ‘“half-set’’:
8: 03 14 25

{1}—{3} all satisfy condition (a), but only {1} meets (b). {2} is not connected
and separates into two subsets 02 24 40 and 13 35 51, the reason
being, of course, that 2 is a factor of 6. However, {1} may be combined with
{2}, or even with {3} if order within a pair is ignored.

Some generalizations are apparent. When # is odd, the (3) distinct pairs
may be divided into (» — 1) sets of »; for » even into 4n — 1 sets of # and
one set of in. {s} ~ {n — s} and we shall henceforth let s run from 1 to m,
where m = 1(n — 1) or {n according as # is odd or even. The leading set
{1} will always satisfy (a) and (b); so will {s} provided s and # are relative
primes. If s and » have greatest common divisor (g.c.d.) f, then {s} separates
into f subsets. A combination of sets {s;}, {s,}, - - - gives a connected design
if the positive integers #, s, s,, * -+ have g.c.d. unity. Among connected
designs of a given size we may intuitively prefer the ‘“most connected”
design which can be constructed with a minimum of repetition. This point
will be further discussed in § 5.

3. The permutations R(n, u)

The permutation R (5, 2) of equation (1) is a special case of the permuta-
tion R(n, u)(u = 1, 2, - - -, m) which acting on object ¢ (#=0,1,--,n—1)
changes it to tu{mod =). Correspondingly, under R(n, «)

set {s} >set {su} (s=1,2---,m),

where su has to be reduced modulo # and also for the equivalence
{s} ~ {n — s}. In particular, R(», 1) is the identity permutation.

ExampLE 1. Under repeated application of R(17, 8)
(1) — (8} > {4} > {2} > (1},
where {8} — {4} since 8.8 = 64 = 13 = 4. We write
64 = 4(mod 17; E).
Regarded as operations on the sets {s} the permutations
R(n, 1), R(n, 2),--, R(n, m),
are seen to be isomorphic with the integers
1,2, -+, m,

under multiplication with reduction (mod #; E). We will now study this
system of integers more closely.

~
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THEOREM. If P is a prime, then the integers
G:1,2,--,m
Jorm a multiplicative group under reduction (mod p; E).

Proor. Let g be a primitive root of ; that is, g is a positive integer < $
such that g#£ 1 (mod ) for 2 =1,2,---,$ — 2, but g~ =1 (mod p).
Then the cyclic group H of order p — 1

H: l’ g, gﬂ' s, gp—2' (mod ?)
is the complete system of residues mod p, viz.,
H: 1,2,---,2m(=p —1).
Clearly the elements
G*: 1,g%g% -, g%, (mod )

form a subgroup G* (the alternating group) of H. Now under the double
reduction (mod p; E) we have

g*(ﬁ—l) = 1,
and G* becomes the group
l, g’ gz’ . .,_g§(?—3), (mod p; E)

which is the G of the theorem.

When # is not prime, the integers less than »# and relatively prime to »
are said to constitute a reduced system of residues mod #, and form a multi-
plicative group. The number of such integers, whether # is prime or not, is
given by Euler’s function ¢(n) and is even except for the trivial cases
n =1, 2. By a simple extension of the above theorem, it is clear that the
first 4¢(n) integers relatively prime to # form a multiplicative group, G,
under reduction (mod p; E).

The definition of a primitive root may be generalized from p ton: gisa
primitive root of # if g#® is the smallest power of g equal to one. We have
tacitly assumed that every prime has a primitive root. Actually a more
general result is well known (e.g. Dickson [3], Theorem 26): There exist
primitive roots of # if and only if » equals 2, 4, $*, or 2p*, where p is any
prime > 2 and 4 any integer. In these cases it follows as before that the
group G’ is given by )

G: 1,g,g -, glvem (mod #; E).

The generation of G’ by powers of some element g’ € G’ is in fact possible
in a wider set of circumstances. As long as these powers are distinct and not
equal to one (mod #; E), but g’#*"" = 1(mod #; E), g’ will serve its purpose.
We shall call the smallest such integer the least primitive root (mod #; E)
of » and denote it by d’. Values of d’ are easily obtained for small #» and a
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short list is given in Table 1. Tables of (ordinary) least primitive roots d
of primes are of assistance; for we have

d' = min (d, d?)

(mod n; E).

ExaAMPLE 2. (a) #» = 14. G’ consists of 1, 3, 5, so that i¢p(14) = 3.

We have

Thus &’ = 38

32 =

i

9=235, 3¥=53=1

(mod 14; E).

(b) » = 23. From Uspensky and Heaslet [7] we find d = 5. Hence

dl

= min (5, 25) = 2

(mod 23; E).

4. Enumeration of cyclic paired-comparison designs

We shall now demonstrate the usefulness of the results of § 3 in the enu-

meration of distinct incomplete paired-comparison designs.

TaBLE 1

Elements of G’ and least primitive root d’ (mod #n; E)

2

Elements of G’

d’

ot

s -l Sormnrrre b
[

ML b - 3 -

RN RN N S T R g C Y R T )

—
[+
bt et et e bl et e et el et et i bt el et et et et et et et ot el et

NMNWNDHWND W

Lo B
Lol

g

ST s e -

4
9
5
7
4
1
4
7
5
9
4

-wc\»hquoampqwqwo-ﬁmw

-

, 1

oo

, 6, 7, 8,9, 10, 11

6,7 8,9, 11, 12

9, 11

7, 8,10, 11, 13

11, 13

5, 6,7 8, 9,10, 11, 12, 13, 14
3

ST CIN ~I0 | bo Wb WD Oty oeddodtoOr o oD DN = 1D

ExAMPLE 3. # = 13. From Table 1 the least primitive root (mod 13; E)
of R(13, 2) therefore generate all the permutations

is 2. Successive powers
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R(13,1), R(13, 2), - - -, R(13, 6) so that consideration may be restricted to
R(13, 2). Under repeated application of R(13, 2) we obtain

B> > {48386 ~>{1}

showing that all individual sets are equivalent. Turning now to pairs of sets
we can easily establish the following equivalences

{l, 2} ~ {2, 4} ~ {4:, 5} ~ {5, 3}~ {3, 6}~ {6, 1},
(L3}~ (2, 6}~ {4 L)~ {5, 2} ~ {3, 4}~ {6, 5},
{1, 5}~ {2, 3}~ {4, 6}.

Thus the 15 pairs of sets have been reduced to 3 distinct pairs. All compari-
sons of pairs of sets, that is, of designs in which each object occurs » = ¢
times, can consequently be confined to comparisons of the 3 prototype
designs {1, 2}, {1, 3}, {1, 5}. In the same way, triples of sets (» = 6) may be
reduced to the prototypes {123}, {124}, {125}, {134}, the first three represent-
ing 6 members, the last one two. For » = 8 there are again 3 prototypes
corresponding to the omission of two pairs from the complete design (r = 12).
There is only one distinct design for » = 10 resulting from the absence of
any one set in the complete experiment.

Similar arguments apply whenever # is prime and continue to hold for
all connected sets even when # is composite. Unconnected sets {sl}, {so}, - -,
{s.} are equivalent if and only if each has the same greatest common divisor f
(say) with . It is clear that the structure of these « sets is the same as that
of the sets {s,/f}, {s,/f}, * - -, {s./f}, with » replaced by »/f. The distinct con-
nected designs listed in Table 2 for # =< 15 have been enumerated with the
help of these considerations, and the list could easily be extended. Before
reduction for equivalences and removal of unconnected designs, the total
number of arrangements of size (u,7) is

ln—1
(z(n1 )) for » odd,
'2'7

1

1, —1
2
( ) for #» even, r even,
1y
)

1p —1
(12n ) for » even, » odd.
3(r — 1)

5. Efficiencies of incomplete paired-comparison designs

Kempthorne [4] and McKeon [6] have put cyclic designs to two distinct
uses, requiring different analyses, but nevertheless leading to expressions
for efficiency which differ only by a proportionality factor. It is, therefore,
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of interest to compute these efficiencies for the designs of Table 2 in order
to see how previously proposed designs compare with our larger collection.
We use McKeon’s general definition of efficiency, E,, of any paired compari-
son design as the ratio of the average between-object variance for the com-
plete design to the average between-object variance for the incomplete
design. Denote a particular cyclic incomplete paired-comparison design by
(g1, &2, * * > Em] With g, = 1 or 0 according as set {s} is or is not included in
the design. Then the efficiency of this design is (with a slight change of
McKeon’s notation)

g oo =1
! rnb, ’
where
(%n—l) 1
(—) 7 even,
2 2,1%,,
3n-1) 1
= 2 - n odd,
= A4
and
3{n—1)
A =3r— Z gx cos 2n(kl[n) — (—1)" §g4n n even,
i(”—l)
=1r— Y g, cos2n(ki/n) n odd.
k=1

For a complete design (r =n — 1)E, = 1.

The following are some comments on Table 2:

(a) Considerable variation in E, may exist among designs of the same size
(n, 7), especially when 7/n is relatively small. The choice of design is there-
fore important. For given # it may happen that a smaller design is more
efficient than a poorly chosen larger design. Maximal efficiencies for each
size are in bold type.

(b) Unconnected designs have zero efficiency and are not shown. Apart
from this, however, there appears to be no simple relationship between
efficiency and the ‘‘degree of connectedness.” For example, when n =9,
r = 4 the design {1, 2} consisting of two connected sets is less efficient than
{1, 3} which contains the unconnected set {3}.

‘(c) The maxima of E, for (n,7) = (6,3), (6,4), (8, 4), (8,6), (9,6),
(10, 5), (10, 8), (12, 6), (12, 8), (12, 9), (12, 10), (14, 7), and (15, 10) corre-
spond to all group divisible PBIB designs with two associate classes which
exist in the range of Table 2 (Clatworthy* [1]).

* Clatworthy’s and also Kempthorne’s figures for efficiency need to be multiplied up by
2(n—1)/n to convert them to values of E;.
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TABLE 2

Efficiencies of connected cyclic paired-comparison designs

n=2_
yr= 2 {1} .800*
n=28
r= 2 {1} 714
3 {1, 3} 926 {2, 3} .887*
4 {1, 2} 962
n=717
r= 2 {1} .643*
4 {1, 2} .929*
n=2_8
r= 2 {1} 583
3 {1, 4} .853
4 {1, 2} .887* {1, 3} 942
b {1, 2, 4} .950* {1, 3, 4} 948
6 {1, 2, 3} 980
n=29
r= 2 {1} .533+*
4 {1, 2} .847 {1, 3} .905*
6 1,2 3} .963* {1, 2, 4} 970
7n = 10
r= 2 {1} 491
3 {1, 5} .785 {2, 8} .783*
4 {1, 2} .809 {1, 3} .897 {1, 4} .900
5 {1, 2, 5} .931* {1, 3, 5} 953 {1, 4, 5} .884
{2, 4, 5} .866
6 {1, 2, 3} 945 {1, 2, 4} .944
7 {1, 2, 8, 8} 972 {1, 2, 4, 5} .972*
8 {1, 2, 3, 4} .988
n =11
r= 2 {1} - .455*
4 {1, 2} 772 {1, 3} .885*
6 {1, 2, 3} .922 {1, 2, 4} 947+
8 {1, 2, 3, 4} 977*

* Asterisks refer to designs proposed by Kempthorne [4].
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TaBLE 2 (continued)

n =12
yr= 2 {1} 423
3 {1, 8} 723+ .
4 {1, 2} 738 {1, 3} .863 {1, 4} .842
{1, 5} .852 {2, 3} 879 {3, 4} 840
5 {1, 2, 6} .899 {1, 3, 6} .895 {1, 4, 6} .920*
{1, 5, 6} .820 {2, 3, 6} .896 {3, 4, 6} .887
6 {1, 2, 3} .900 {1, 2, 4} 924 {1, 2, b} 938
{1, 3, 4} 922 {1, 3, 8} .960 {1, 4, 6} .924
{2, 3, 4} 942
7 {1, 2, 3, 6} .950 {1, 2, 4, 6} .940 {1, 2, 5, 6} 949
{1, 3, 4, 6} .958* {1, 3, 5, 6} 960 {1, 4, 5, 6} 945
{2, 3, 4, 6} .939
8 {1, 2, 3, 4} .967 {1, 2, 3, 5} 970 {1, 2, 4, 5} 976
{1, 3, 4, 5} .965
9 {1, 2, 3, 4, 6} .982* {1, 2, 8, 5, 6} .984 {1, 2, 4, 5, 6} .981
{1, 3, 4, 5, 6} .982
10 {1, 2, 3, 4, 5} .992
n =13
r= 2 {1} .396*
4 {1, 2} 706 {1, 3} .845* {1, 5} .865
6 {1, 2, 3} .878 {1, 2, 4} 918 {1, 2, 5} .938*
{1, 3, 4} .923
8 {1, 2, 38, 4} .955 {1, 2, 3, 6} 957 {1, 2, 3, 6} 966*.
10 {1, 2, 3, 4, B} .983*
n =14
yr= 2 {1} 371
3 {1, 7} .668 {2, 7} .668*
4 {1, 2} .676 {1, 3} .827 {1, 4} 852
{1, 6} 805
5 {1, 2, 1} .874 {1, 3, 7} 901 {1, 4, T} .905*
{1, 6, 7} .762 {2, 4, 7} .857
6 {1, 2, 3} .855 {1, 2, 4} .901 {1, 2, 5} 928
{1, 2, 6} .909 {1, 3, 4} .909 {1, 3, b6} 940
{1, 4, 6} .928
ki {1, 2, 3, 7} .936 {1, 2, 4, 7} .950* {1, 2, 5, 7} .940
{1, 2, 6, T} 918 {, 3, 4, 7} 918 {1, 3, 5, 7} .966
{1, 4, 6, 7} .940
8 {1, 2, 3, 4} 1941 {1, 2, 3, 5} 954 {1, 2, 3, 6} .956
{1, 2, 4, 6} .936 {1, 2, 5, 6} 963
9 {1, 2, 3, 4, 7} .965 {1, 2, 3, 5, 7} .971 {1, 2, 3, 6, 7} .972*
{1, 2, 4, 6, 7} .964 {1, 2, 5, 6, 7} .963
10 {1, 2, 3, 4, 5} .978 {1, 2, 3, 4, 6} .978
11 {1,2,3,4,5,7} .987 {1,2,8,4,6,7} .987*
12 {1,2,3,4,5,6} .994
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TaBLE 2 (continued)

”n =15
y= 2 {1} .350%*
4 {1, 2} .649 {1, 3} .808* {1, 4} .842
{1, 5} .781 {1, 6} .840 {3, 5} 781
6 {1, 2, 3} .834 {1, 2, 4} .889 {1, 2, 5} 913
{1, 2, 6} .921 {1, 8, 4} .897 {1, 3, 5} .931*
{1, 3, 6} .888 {1, 4, 5} 931 {1, 4, 6} .933
{1, 5, 6} .874 {3, 5, 6} .883
8 {1, 2, 3, 4} .927 {1, 2, 38, 8} .940 {1, 2, 38, 6} .945
{1, 2, 3, 7} .954 {1, 2, 4, 7} 955 {1, 2, 5, 6} .951*
{1, 2, 5, 7} .951 {1, 8, 4, 5} 952 {1, 3, 4, 6} .954
{1, 3, 5, 6} 951 {1, 4, 5, 6} 919
10 {1, 2, 3, 4, 5} .970 {1, 2, 8, 4, 6} .973 {1, 2, 3, 4, 7} .973
{1, 2, 3, 5, 6} .976¢ {1, 2, 8, 5, 7} .971 {1, 2, 4, 5, 7} .980
{1, 8, 4, 5, 6} .971
12 {1,2,38,4,5, 6} .989* {1,2,8,4,5,7 .989 {1,2,3,4,6,73 .990

There are only two other cases which are PBIB designs, viz. (5, 2) and
the arrangement {1, 3, 4} for » = 13, » = 6. These designs are not group
divisible and are formally classified as cyclic PBIB designs. The second is
not optimal.

(d) Triangular PBIB designs exist for (6, 4) (10, 3), (10, 6), (15, 6),
(15, 8) with respective efficiencies .962, .818, .947, .925, .942. There is only
one Square PBIB design in the range of Table 2, viz. (9, 4) with E, = .889.
In general, Triangular and Square designs are not cyclic. The efficiency of
such a design may or may not exceed that of the best cyclic design of the
same size.

(e) Kempthorne’s designs exist only when n-+7 is odd. They are of the
form {}(n—r+-1), 4(n—r+2), - - -, m}, where m = 4n or §(n — 1) according
as #n is even or odd. Each of these designs is represented in Table 2 by an
equivalent one. They sometimes have maximal efficiency.

I am indebted to the referee for a helpful comment, to Dr. J. M. Cameron
of the National Bureau of Standards for drawing my attention to one of the
references, and to Mrs. Cecile K. Cotton for computational assistance. This
work was done with support from the Army Research Office, Durham,
North Carolina.
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