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Incompressibility of Products of
Pseudo-homogeneous Varieties

Nikita A. Karpenko

Abstract. We show that the conjectural criterion of p-incompressibility for products of projective
homogeneous varieties in terms of the factors, previously known in a few special cases only, holds in
general. Actually, the proof goes through for a wider class of varieties, including the norm varieties
associated with symbols in Galois cohomology of arbitrary degree.

Let F be a ûeld. A smooth complete irreducible F-variety X is incompressible, if
every rational self-map X ⇢ X is dominant. _is means that cdimX = dimX, where
the canonical dimension cdimX is deûned as the minimum of dimY for Y running
over closed irreducible subvarieties of X admitting a rational map X ⇢ Y . _e notion
of canonical dimension was originally introduced in [1].
For thewhole exposition, let p be a ûxedprimenumber. _e canonical p-dimension

cdimp X, the p-local version of cdimX, is deûned as the minimum of dimY for Y
running over closed irreducible subvarieties of X admitting a correspondence X

p′↝Y
of degree 0 and of p-prime multiplicity. For arbitrary F-varieties X and Y with ir-
reducible X, a correspondence X ↝ Y of degree 0 is an element of the Chow group
CHd(X × Y), where d ∶= dimX (cf. [3, §62]); its multiplicity is its image under the
push-forward homomorphism CHd(X × Y) → CHd X = Z with respect to the pro-
jection X × Y → X. We refer to [3, §75] for the basic properties of themultiplicity of
a correspondence.

_e notion of canonical p-dimension was originally introduced in [10]. We refer
to [6] and [18, §4] for motivation, history, and a general discussion of the canonical
(p-)dimension.

_e variety X is p-incompressible if every self-correspondence X
p′↝X of degree 0

and of p-primemultiplicity is dominant, i.e., if cdimp X = dimX. _e rational equiv-
alence class of the closure of the graph of a rational map is a correspondence of degree
0 and ofmultiplicity 1; therefore we always have cdimp X ≤ cdimX ≤ dimX. In par-
ticular, a variety that is p-incompressible (for at least one p) is incompressible.

Studying canonical p-dimension, it is more appropriate to use the Chow group
Ch with coeõcients in F ∶= Fp ∶= Z/pZ rather than the Chow group CH with integer
coeõcients. Multiplicities of correspondences, aswell as degrees of classes of 0-cycles,
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then take values in F. We also consider the Chow motives with coeõcients in F; see
[3, Chapter XII].

_emain result of this paper is the following criterion of p-incompressibility of the
product of projective homogeneous varieties (also called twisted �ag varieties) under
a semi-simple aõne algebraic group, contained in _eorem 7: the product X × Y of
F-varieties X and Y is p-incompressible if and only if the varieties XF(Y) and YF(X)
are p-incompressible.

_e story of this criterion began 9 years ago with the case of Severi–Brauer vari-
eties proved in 2007 for the purpose of computing the essential p-dimension of ûnite
groups; see [11] or Example 9. Several other special classes of projective homogeneous
varieties have been treated a�erwards; see Example 10. _e proof of the general case
given here is new even in the known particular cases; it is actually simpler than the
available proofs of the particular cases. Moreover, it works for a wider class of vari-
eties. Concrete examples of new and useful varieties covered by the proof are given
in an appendix.

Let us now introduce the class of varieties,whichwe call pseudo-homogeneous and
for which we can prove the above criterion. Recall that a ûeld L is p-special, if the
degree of any ûnite ûeld extension of L is a power of p.
A smooth complete geometrically irreducible variety X is pseudo-homogeneous if it

has the following two properties. For every ûeld extension L/F containing a p-special
ûeld extension of F:
(i) the variety XL is p-compressibleprovided that there exists a self-correspondence

α∶XL ↝ XL of degree 0 such that the multiplicity of α diòers from the multi-
plicity of the transpose α t of α;

(ii) one has cdimp XL ≥ d, where d is the minimal integer for which there exist an
element a ∈ Chd XL and an element b ∈ Chd XL(X) with deg(aL(X) ⋅ b) = 1.

(As a variant, the assumption that L contains a p-special ûeld can be removed from
(i), but it is important for (ii) in order to make Example 6 work.)

Remark 1 _e deûnition of “pseudo-homogeneous” depends on the prime p. It
would be better to say “p-pseudo-homogenous”, but we omit “p-” for convenience.
_e same applies to “split” and “A-trivial”, introduced below. On the other hand, we
do not abbreviate “p-incompressible”.

Remark 2 A pseudo-homogeneous variety remains pseudo-homogeneous under
any base ûeld extension. On the other hand, it is not clearwhether the product of two
pseudo-homogeneous varieties is necessarily pseudo-homogeneous.

Remark 3 _e opposite to property (i) holds for any smooth complete variety X.
If X is p-compressible, then there exists a correspondence α∶X ↝ Y of degree 0 and
multiplicity 1 to a proper closed subvariety Y ⊂ X. Considering α as a correspondence
X ↝ X, we havemult α = 1 andmult α t = 0.

Remark 4 _e opposite to the inequality in (ii) holds for any smooth complete va-
riety X (cf. [10, Proof of_eorem 5.8, part “≤”]). Indeed, take theminimal d such that
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there exist a ∈ Chd X and b ∈ Chd XF(X) with deg(aF(X) ⋅b) = 1. Wemay assume that
a = [Y] and b = [Z] for closed subvarieties Y ⊂ X and Z ⊂ XF(X). Since the product
[YF(X)] ⋅ [Z] ∈ ChXF(X), which is a 0-cycle class of degree 1, can be represented by
a 0-cycle with support on the intersection YF(X) ∩ Z (see [4, §8.1]), the variety YF(X)
has a 0-cycle of degree 1, that is, there exists a degree 0 correspondence X ↝ Y of
multiplicity 1 (see [3, p. 328] concerning the relation between correspondences and
0-cycles). _erefore cdimp X ≤ dimY = d.

Remark 5 Property (i) holds for any A-trivial variety, cf. [12, Deûnition 2.3]: the
proof given in [6, Lemma 2.7] for projective homogeneous varieties goes through.
More precisely, we speak about the A-triviality for the coeõcient ring F deûned as
follows: a smooth complete variety X over a ûeld F isA-trivial if for anyûeld extension
L/F with X(L) /= ∅, the degree homomorphism deg∶Ch0 XL → F is an isomorphism.

Here is our basic example of pseudo-homogeneous varieties. For more examples
see Appendix A.

Example 6 Any projective homogeneous variety (under an action of a semi-simple
aõne algebraic group) is pseudo-homogeneous. See [6, Lemma 2.7] for (i) and
[7, Proposition 6.1] for (ii).

_eorem 7 Let X and Y be pseudo-homogeneous F-varieties such that the product
X × Y is also pseudo-homogeneous. _en the variety X × Y is p-incompressible if and
only if the varieties XF(Y) and YF(X) are p-incompressible. Moreover,

(1) cdimp(X × Y) = cdimp XF(Y) + cdimp YF(X) ,

provided that at least one of the three varieties XF(Y), YF(X), X ×Y is p-incompressible.

Of course, for projective homogeneous X and Y , the product X × Y is also pro-
jective homogeneous so that we do not need to require the product to be pseudo-
homogeneous.

Partial cases of_eorem 7 dealing with some special types of projective homoge-
neous varieties have recently been proved [5, 9]. For an older result in this direction
see Example 9 below.

_e p-incompressibility criterion, given in_eorem 7 for products of two varieties,
immediately generalizes to ûnite products of arbitrary length.

Corollary 8 For n ≥ 1, let X1 , . . . , Xn be F-varieties such that, for every subset
I ⊂ {1, 2, . . . , n}, the product∏i∈I X i is pseudo-homogeneous. _en X is p-incompres-
sible if and only if for every i = 1, . . . , n the variety (X i)F(X1×⋅⋅⋅×X i−1×X i+1×Xn) is p-incom-
pressible.

Proof Assuming that the statement holds for some n ≥ 1, we prove it for n + 1. Set
X ∶= X1 × ⋅ ⋅ ⋅ × Xn and Y ∶= Xn+1. If X × Y = X1 × ⋅ ⋅ ⋅ × Xn+1 is p-incompressible,
XF(Y) and YF(X) are p-incompressible, and it follows by induction hypothesis that the
variety (X i)F(X1×⋅⋅⋅×X i−1×X i+1×Xn+1) is p-incompressible for any i = 1, . . . , n + 1.
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_e other way round, if (X i)F(X1×⋅⋅⋅×X i−1×X i+1×Xn+1) is p-incompressible for any i,
then, in particular, YF(X) is p-incompressible and, by induction hypothesis, XF(Y) is
p-incompressible. It follows that X × Y is p-incompressible.

Example 9 For the purpose of computing the essential dimension of ûnite groups,
Corollary 8 for Severi–Brauer varieties X1 , . . . , Xn has been obtained in [11,_eorem
2.1 with Remark 2.10] (see also [9, Remark 4.2]). A second and simpler proof was
given in [9]. _e third proof, given here (see the proof of_eorem 7), is particularly
simple. _e result has numerous further applications; see [15, 16].

Example 10 For the purpose of computing the essential dimension of representa-
tions of ûnite groups, introduced in [14], Corollary 8 forWeil transfers of generalized
Severi–Brauer varieties has been obtained in [9] under the assumption that the corre-
sponding central simple algebras are balanced. Corollary 8 shows that this assumption
is super�uous. Another area of applications for this result is provided in [2], where it
is important that the assumption of being balanced can be dropped.

Proof of_eorem 7 Since canonical p-dimension of a variety does not change un-
der any base-ûeld extension of degree prime to p (see [17, Proposition 1.5] and [16,
Lemma 2.2]), wemay assume that F is p-special.

In order to prove_eorem 7 in whole, we only need to prove equality (1). We start
proving its (more diõcult) “≥” part now. If the variety X × Y is p-incompressible,
the “≥” part is however trivial. We therefore assume that the F(X)-variety YF(X) is
p-incompressible, that is, cdimp YF(X) = dimY .

Let d be theminimal integer such that there exist

a ∈ Chd(X × Y) and b ∈ Chd(X × Y)F(X×Y)
with deg(aF(X×Y) ⋅ b) = 1. Slightly abusing, but simplifying, notation, we will some-
times write a instead of aF(X×Y) in the last formula or in similar situations.

Since the product X×Y is pseudo-homogeneous,we have cdimp(X×Y) ≥ d. Our
aim is to show that d ≥ cdimp XF(Y) + dimY .

Let α ∈ Chd(X×Y×X×Y) be the push-forward of a under the diagonal morphism
of X × Y . Note that α = (a × [X] × [Y]) ⋅ ∆, where ∆ ∈ Chdim(X×Y)(X × Y × X × Y)
is the diagonal class.

Let β be a preimage of b under the �at pull-back

(2) Chd((X × Y) × (X × Y))→→ Chd(X × Y)F(X×Y)
along the morphism induced by the generic point of the ûrst factor of the product
(X × Y) × (X × Y). For surjectivity of (2), see [3, Corollary 57.11].

Let δ ∈ Chdim Y(YF(X) × XF(X) × YF(X)) be the class of the graph of the closed
imbedding

in∶YF(X) ↪ XF(X) × YF(X)
induced by the closed rational point ptX on XF(X) given by the generic point of X.
Finally, let γ ∈ Chdim Y(X × Y × Y) be the class of the graph of the projection

prY ∶X × Y → Y .
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We consider the elements α, β, δ, and γ as correspondences and take their com-
position ρ (over the ûeld F(X)) in the following order:

ρ∶YF(X)
δ↝ XF(X) × YF(X)

β↝ XF(X) × YF(X)
α↝ XF(X) × YF(X)

γ↝ YF(X) .

Let ptY be the rational point on YF(Y) given by the generic point of Y . As usual,
we abbreviate [ptY]F(Y)(X) ∈ Ch0 YF(X×Y) as [ptY]. A direct computation shows
that deg ρ∗([ptY]) = 1, where ρ∗∶ChYF(X×Y) → ChYF(X×Y) is the homomorphism
induced by ρ. Indeed,

[ptY]
δ∗=in∗z→ [ptX] × [ptY]

β∗z→ b α∗z→ a ⋅ b
γ∗=prY∗z→ prY∗(a ⋅ b)

and degprY∗(a ⋅ b) = deg(a ⋅ b) = 1. To compute the image under β∗ in the above
chain, we ûrst notice that β∗([ptX] × [ptY]) = βF(X×Y) ○ [Γf ], where Γf is the graph
of the closed imbedding f ∶ Spec F(X × Y) ↪ (X × Y)F(X×Y), given by the points
ptX , ptY , and then we apply [3, Proposition 62.4(2)] (over the ûeld F(X × Y)).

On the other hand, deg ρ∗([ptY]) = mult ρ, cf. [3, Lemma 75.1]. _erefore
mult ρ = 1. Since the pseudo-homogeneous F(X)-variety YF(X) is p-incompressible,
it follows that mult ρt = 1. But ρ∗([Y]) = (mult ρt)[Y], showing that ρ∗([Y]) = [Y].
We therefore have

[Y] δ∗=in∗z→ [ptX] × [Y] β∗z→ b̃ α∗z→ a ⋅ b̃
γ∗=prY∗z→ [Y]

for some b̃ ∈ Chd−dim Y(X×Y)F(X). By commutativity of push-forward and �at pull-
back for the cartesian square

X × Y
prY // Y

XF(Y)

OO

// Spec F(Y)

OO

it follows that deg(a′ ⋅ b′) = 1, where a′ ∈ Chd−dim Y XF(Y) is the pull-back of the
element a ∈ Chd(X × Y) with respect to the morphism XF(Y) → X × Y given by
the generic point of Y , and where b′ ∈ Chd−dim Y XF(X)(Y) = Chd−dim Y XF(Y)(X)
is the pull-back of b̃ ∈ Chd−dim Y(X × Y)F(X). By Remark 4 we have d − dimY ≥
cdimp XF(Y), that is, d ≥ cdimp XF(Y) +dimY . _e “≥” part of equality (1) is proved.

_e proof of the “≤” part, given in [9, Lemma 3.4] for projective homogeneous X
and Y , alsoworks in the current setting. We reproduce it for the reader’s convenience.
As in [9, Lemma 3.4], we prove themore general inequality

cdimp(X × Y) ≤ cdimp X + cdimp YF(X)

without any p-incompressibility assumption (on XF(Y), on YF(X), or on X × Y).
We set x ∶= cdimp X and y ∶= cdimp YF(X). Since the variety X is pseudo-homo-

geneous,we can ûnd aX ∈ Chx X and bX ∈ Chx XF(X) with deg(aX ⋅bX) = 1. Similarly,
since the variety YF(X) is pseudo-homogeneous, we can ûnd aY ∈ Chy YF(X) and
bY ∈ Chy YF(X)(Y) with deg(aY ⋅ bY) = 1. Let αY ∈ Chdim X+y(X × Y) be a preimage
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of aY under the pull-back along themorphism YF(X) → X×Y induced by the generic
point of X. We set

a ∶= (aX × [Y]) ⋅ αY ∈ Chx+y(X × Y) and b ∶= bX × bY ∈ Chx+y(X × Y)F(X×Y) .
We have the relation deg(a ⋅b) = deg(aX ⋅bX) ⋅deg(aY ⋅bY) = 1, showing byRemark 4
that cdimp(X × Y) ≤ x + y.

A Generically Upper-split Varieties

By a Tate motive we mean any shi� F{i} (i ∈ Z) of the motive of the point F ∶=
M(Spec F). (We follow the tradition of denoting themotive of the point by the same
letter as the coeõcient ring.) Amotive is split if it is isomorphic to a ûnite direct sum
ofTatemotives. We say that a smooth complete variety is split provided that itsmotive
is split. A smooth complete geometrically irreducible variety X is generically split if
themotive of the F(X)-variety XF(X) is split.

We generalize the notion of a generically split variety as follows.

Deûnition A.1 A smooth complete geometrically irreducible variety X is generically
upper-split if there exists a direct summandU of the total motiveM(X) of X such that
Ch0 U /= 0 and UF(X) is split.

Clearly, any base ûeld change of a generically upper-split variety is again a gener-
ically upper-split variety. Also the product of two generically upper-split varieties is
generically upper-split again.

Note that U in the above deûnition is a generically split motive in the sense of [19,
Deûnition 1.1] and therefore satisûes the nilpotence principle by [19, Proposition 3.1]:
any endomorphism of U vanishing over a ûeld extension of F is nilpotent.

Example A.2 Let F be a ûeld of characteristic 0 and let X be a norm variety (see
[12, §4]) or, more generally, any p-generic splitting variety of a non-zero symbol in
the Galois cohomology group Hn+1(F , µ⊗n

p ) for some n ≥ 1. _en X is generically
upper-split. Indeed, X is smooth, complete, and geometrically irreducible by the very
deûnition of a p-generic splitting variety. Moreover, by [12, _eorem 4.1], there is a
direct summand R (called theRostmotive of the symbol) in themotive of X such that

RF(X) ≃
p−1
⊕
i=0

F{i ⋅ (pn − 1)/(p − 1)}.

In particular, RF(X) is split and Ch0 R = Ch0 RF(X) = F is non-zero. Note that the
structure of the total motive of X is a complete mystery and is understood only in
very special situations (namely, when p = 2 and X is a projective quadric; when n = 1
and X is a Severi–Brauer variety, and ûnally, when n = 2 and X is a smooth equivari-
ant compactiûcation of the special linear group of a central division algebra of prime
degree [13]).

We deûne the upper motiveU(X) of a generically upper-split variety X as themo-
tive U(X) from the following.
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Lemma A.3 For any generically upper-split variety X, there exists an indecompos-
able direct summand U(X) of M(X) such that U(X)F(X) is split and Ch0 U(X) /= 0.
Moreover, the isomorphism class of U(X) is determined by X.

Proof To prove existence ofU(X), let us note that anymotiveU as inDeûnitionA.1
satisûes the Krull–Schmidt principle and, in particular, decomposes into a ûnite di-
rect sum of indecomposable motives, cf. [8, §2a]. Since Ch0 U /= 0, at least one of
the summands (in fact, precisely one, because the F-vector space Ch0 U = Ch0 X is
1-dimensional) also has non-zero Ch0, and therefore can be taken for U(X).

To prove uniqueness, given a second U(X)′ with the same properties as U(X),
we proceed as in [8, end of §2b] to prove that the composition U(X) → M(X) →
U(X)′ of the imbedding of a direct summand followed by the projection onto a direct
summand is an isomorphism. Indeed, similarly as in [8, Corollary 2.2], some power
of the composition U(X) → U(X)′ → U(X) is a projector. Moreover, it is non-zero
because its multiplicity is 1 /= 0. By indecomposability of U(X), it follows that the
projector is the identity so that the composition is an isomorphism. _e composition
U(X)′ → U(X) → U(X)′ is an isomorphism by the same reason. _e statement
follows.

_e dimension dimU(X) of the upper motive U(X) is deûned as the maximal
d such that the Tate motive F{d} is a direct summand of U(X)F(X). Given a mo-
tive M, we write M∗ for its dual. Recall that the total motive M(X) of an arbitrary
smooth complete equi-dimensional variety X satisûes the duality formula M(X) ≃
M(X)∗{dimX}. _e same formula holds for the upper motive of a projective ho-
mogeneous variety over a p-special ûeld [6, Proposition 5.2]. It turns out that it also
holds in the case of a generically upper-split variety.

_eorem A.4 _e upper motive U(X) of an arbitrary generically upper-split variety
X satisûes the duality formula U(X) ≃ U(X)∗{dimU(X)}.

Proof _e proof is similar to [8, proof of_eorem 3.5], but diòers in the two follow-
ing aspects (as well as in notation). First, since U(X) splits already over F(X), the
proof here is not inductive. And second, the total motive of the variety in [8, proof of
_eorem 3.5] is geometrically split (meaning that it splits over some extension of the
base ûeld), whereas here we only know that the summand U(X) of the total motive
M(X) has this property. However, since all computations are done “inside” ofU(X),
this second diòerence does not create any complications.

Proceeding as in [8, proof of_eorem 3.5], we construct somemorphisms

α∶U(X)→ U(X)∗{dimU(X)} and β∶U(X)∗{dimU(X)}→ U(X)

with the composition β ○ α given by a correspondence of multiplicity 1. A power
of the composition is a non-zero projector and therefore, by indecomposability
of U(X), an isomorphism. _us U(X) is identiûed with a direct summand of
U(X)∗{dimU(X)}. SinceU(X)∗{dimU(X)} is indecomposable,U(X) is actually
identiûed with the whole of it.

https://doi.org/10.4153/CMB-2016-024-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-024-4


Incompressibility of Products of Pseudo-homogeneous Varieties 831

In order to construct α and β,we set d ∶= dimU(X) and pick up a direct summand
F{d} in U(X)F(X). _e projection U(X)F(X) → F{d} is given by some

a ∈ Hom (U(X)F(X) , F{d}) = Chd U(X)F(X) ⊂ Chd XF(X)
and the imbedding F{d}→ U(X)F(X) is given by some

b ∈ Hom (F{d}, U(X)F(X)) = Chd U(X)F(X) ⊂ Chd XF(X) .

Note that deg(a ⋅ b) = 1.
Let α′ be any preimage of a under the pull-back epimorphism Chd(X × X) →→

Chd XF(X) given by the generic point of the ûrst factor. We take for α the composition
π t ○ α′ ○ π, where π is the projector of U(X).

_e construction of β is more tricky. Let pt be the rational point on XF(X), given
by the generic point of X, and let β′ be a preimage of b × [pt] under the pull-back

Chdim X+d(X × X × X)→→ Chd(X × X)F(X) ,
given by the generic point of the second factor of X × X × X. We consider β′ as a
correspondence X ↝ X × X and take the composition β′ ○ π t . Let β′′ be the pullback
of β′ ○ π t along the closed imbedding X × X ↪ X × X × X, (x , y) ↦ (x , x , y), given
by the diagonal of the ûrst factor in X × X. We set β ∶= π ○ β′′ ○ π t .

It remains to check thatmult(β○α) = 1. Recall that thismultiplicity coincideswith
the degree of the 0-cycle class (β○α)∗([pt]) and (β○α)∗ = π∗ ○β′′∗ ○π t

∗
○α′

∗
○π∗. We

have π∗([pt]) is a 0-cycle class of degree 1, the degree of the product b ⋅α′
∗
(π∗([pt]))

coincides with the degree of the product b ⋅ α′
∗
([pt]) which is 1 because α′([pt]) = a.

As a consequence, π t
∗
(α′

∗
(π∗([pt]))) = a. Finally, the degree of the 0-cycle class

β′′
∗
(a) is 1.

_e following statement provides the generically upper-split analogue of [6, _e-
orem 5.1].

Corollary A.5 Any generically upper-split variety X is pseudo-homogeneous and sat-
isûes cdimp X = dimU(X).

Proof We start by proving the equality. Let Y be a closed subvariety of X with
dimY = cdimp X andwith a correspondence α∶X ↝ Y of degree 0 andmultiplicity 1.
We consider α as a correspondence X ↝ X. If π∶X ↝ X is a projector determining
U(X), an appropriate power of the composition π○α○π gives a non-zeromotive iso-
morphic to a direct summand of U(X) and therefore to U(X) itself. It follows that
Chi U(X)L = 0 for any i > dimY and any ûeld extension L/F. In particular, taking
L = F(X), we get dimU(X) ≤ dimY = cdimp X.

_e opposite inequality is proved, based on _eoremA.4, exactly as in [6, proof of
_eorem 5.1]. In the course of the proof, elements a ∈ Chd X and b ∈ Chd XF(X) are
constructedwith d = cdimp X and deg(a ⋅b) = 1. _is shows that X satisûes property
(ii) of the deûnition of a pseudo-homogeneous variety.

To show thatproperty (i) is also satisûed, assume that there is a self-correspondence
α∶X ↝ X with mult α = 1 and mult α t = 0. Proceeding with α as in the begin-
ning of the current proof, we represent U(X) by a projector in the form of a power
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of π ○ α ○ π. _e multiplicity of the transpose of this projector is 0 showing that
dimU(X) < dimX. Since we already proved the formula dimU(X) = cdimp X, it
follows that X is p-compressible.

Corollary A.6 _e conclusion of Corollary 8 holds for arbitrary generically upper-
split varieties X1 , . . . , Xn .

In particular, the conclusion of Corollary 8 holds for norm varieties X1 , . . . , Xn ;
see Example A.2. (Note that the corresponding symbols in the Galois cohomology
need not be of the same degree.) _is makes it possible to determine the canonical
p-dimension of an arbitrary ûnite direct product X = X1 × ⋅ ⋅ ⋅ × Xn of norm vari-
eties. Indeed, if for any i, X i considered over the function ûeld of the product of the
remaining varieties is p-incompressible, then we have cdimp X = dimX. Otherwise,
if X i considered over the function ûeld of the product of the remaining varieties is
p-compressible for some i, then we remove this X i which does not aòect the canon-
ical p-dimension of the product. Proceeding this way, we eventually end up with
a p-incompressible product, whose dimension is the canonical p-dimension of the
original product. _is can be viewed as a generalization to symbols in Galois coho-
mology of arbitrary degree of the result of Example 9 related to the Brauer group.

Remark A.7 An anonymous referee suggested considering the following property
(∗) of a smooth complete geometrically irreducible F-variety X. _ere is an inde-
composable geometrically split direct summand U of the total motive M(X), such
that Ch0 U /= 0 and UF(X) contain F{dimU} as a direct summand. We say that X
satisûes (∗∗) if X satisûes (∗) over any ûeld extension of F. Clearly, any projective
homogeneous variety as well as any generically upper-split variety satisûes (∗∗).

Given X with (∗∗), it is not clear if U satisûes nilpotence principle, but we can
avoid this problem by workingwith the reducedChowmotives, i.e., the Chowmotives
constructed out of the reduced Chow groups in place of the usual Chow groups, cf.
[6, §3]. _en the isomorphism class of U is determined by X (cf. Lemma A.3), U
satisûes the duality formula of _eorem A.4 as well as the equality of Corollary A.5,
and, ûnally, X is pseudo-homogeneous.

So far, we do not see new interesting examples of varieties, covered by this ap-
proach; this is why we do not pursue it in more details here.
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