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SUPPLEMENT TO CLASSIFICATION
OF THREEFOLD DIVISORIAL CONTRACTIONS

MASAYUKI KAWAKITA

Abstract. Every threefold divisorial contraction to a non-Gorenstein point is
a weighted blowup.

This supplement finishes the explicit description of a threefold divisorial
contraction whose exceptional divisor contracts to a non-Gorenstein point.
Contractions to a quotient singularity were treated by Kawamata [8]. The
author’s study (see [7]), based on the singular Riemann-Roch formula, pro-
vided the classification except for the case of small discrepancies. On the
other hand, Hayakawa (see [1], [2], [3]) classified those with discrepancy at
most 1 by the fact that there exists only a finite number of divisors with
such discrepancies over a fixed singularity. The only case left was when it
is a contraction to a ¢D/2 point with discrepancy 2. We demonstrate its
classification in Theorem 2 by the method in [7]. It turns out that every
contraction is a weighted blowup.

THEOREM 1. Let f: Y — X be a threefold divisorial contraction whose
exceptional divisor E contracts to a non-Gorenstein point P. Then f is a
weighted blowup of the singularity P € X embedded into a cyclic quotient of
a smooth fivefold.

Our method of classification is to study the structure of the bigraded ring
@D, ; [-Ov(iKy + jE)/f.Oy(iKy + jE — E). We find local coordinates at
P to meet this structure, and we verify that f should be a certain weighted
blowup. The choice of local coordinates is restricted by the action of the
cyclic group, which makes easier the classification in the non-Gorenstein
case. We do not know if this method is sufficient to settle all the remaining
Gorenstein cases in [4], [5], and [6] with discrepancy at most 4.
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68 M. KAWAKITA

By a threefold divisorial contraction to a point, we mean a projective
morphism f: (Y D E) — (X > P) between terminal threefolds such that
—Ky is f-ample and the exceptional locus F is a prime divisor contracting
to a point P. We will treat f on the germ at P in the complex analytic
category. According to [7, Theorems 1.2, 1.3], the only case left is

type el with P =cD/2, discrepancy a/n=4/2

in [7, Table 3]. We will prove the following theorem.

THEOREM 2. Suppose that f is a divisorial contraction of type el to a
c¢D /2 point with discrepancy 2. Then f is the weighted blowup with wt(x1, x2,
x3,24,25) = ((r+1)/2,(r —1)/2,2,1,7) withr > 7, r =+1 mod 8 for a suit-
able identification

1
C(C5 /_(1’1717(]’0))

T12223T45/ o

2
7 + 475 + p(x2,T3,24) =0
P6X206<1 425 + p(22, 3, T4) )

23+ q(z1,23,24) + 25 =0

such that p is of weighted order more than r and q is weighted homogeneous
of weight r — 1 for the weights distributed above.

The proof is along the argument in [7, Section 7]. Henceforth, f: (Y D
E) — (X 3 P) is a divisorial contraction of type el to a ¢D/2 point with
discrepancy 2. By [7, Table 3], Y has only one singular point, say, @, at
which E is not Cartier. @ is a quotient singularity of type (1/2r)(1, —1,r+4)
with » > 7, r = £1 mod 8.

We set vector spaces V; = Vi0 ® V;l with

Vi := f.Oy(~iB)/ f.Oy (~(i + 1)E),
Vi = £.0y (Ky — (i +2)E)/f.Oy (Ky — (i +3)E).

They are zero for negative i, and we have the bigraded ring € V; by a local
isomorphism Ox(2Kx) ~ Ox. To study its structure in the lower-degree
part, we first compute the dimensions of V/ in terms of the finite sets

T

1 —1
Nio= {1, 1o, b5, 1, 15) € 2 %Zﬁ o+ 2l el =il < 1.

N; is decomposed into Ni0 U NZ-1 with Nij ={(l1,l2,l3,l4,l5) € N | l1 + l2 +
I3 =7 mod 2}.
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LEMMA 3. We have dim V;j = #NZJ

Proof. We follow the notation in [7]. We have (rq,bq,vq) = (2r,r +4,2)
and E®=1/r by [7, Tables 2, 3]. By dim V/ = d(j, —i — 2) for i > —2 in [7,
(2.8)], the equality in [7, (2.6)] for (j, —i — 27) implies that for i >0,

2i+1
r

dim V7 —dimV,'/ = + Boyp(2i + 1 + 2) — Bo,(2i + 7).
Here By, (k)= (k -2r —k)/2r, and "~ denotes the residue modulo 2r. On the
other hand, by N7 = (N} +(0,0,1,0,0)) U {(l1,12,0,4,15) € N/},

#N/ — #N/J
#{(0,0,0,l4,l5) c NZO} + #{(1, 1,0,l4,l5) € NZO} for _7 = 0,
#{(0,1,0,14,15) € N} } + #{(1,0,0,14,15) € N}} for j=1.

The lemma follows by verifying the coincidence of their right-hand sides. []

We will find bases of V; starting with an arbitrary identification

1
(1) PEX:OE(gf):O)CCimmm/g(l,l,l,O).

For a semi-invariant function h, ordg h denotes the order of h along E.

LEMMA 4.

(i) We have ordgxg =1 and ordg z; > 2 for i =1,2,3. There exists some
k with ordg xp =2. We set xp = x3 by permutation.

(ii) For i< (r—1)/2, the monomials xéf’xif for (0,0,13,14,0) € N; form a
basis of V;. In particular, for k=1,2, ordgzy > (r —1)/2 for &y, :=
Ty + chl3l4xé3xi4 with some cyq1, € C, with summation over (0,0, 13,
14,0) € Uic(r-1)2 N7 -

(iii) There exists some k with ordg Ty = (r — 1)/2 such that the monomials
Ty and CL‘éBl‘if for (0,0,13,14,0) € N(,_1)/2 form a basis of Vi._1y/2. We
set T, = To by permutation; then ordg &y > (r+1)/2 for &1 :=x; +
20121314§:l22a;é3xi4 with some cpyiq1, € C, with summation over (0,l2,l1s,
l4,0) S N(lrfl)/2'

(iv) We have ordg &1 = (r 4+ 1)/2. Fori <r—1, the monomials ﬁ:lllijl;a;ffa:ff
for (l1,12,13,14,0) € N; form a basis of V.
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(V) Set NZ = {(ll,lg,lg,l4,l5) € Zgol((T—Fl)/Q)ll—i-((T — 1)/2)[2+2l3—|—l4+

rls =i}, and set Nio = {(I1,13,13,14,15) € Nj | Iy + I + I3 even}. The
monomials 4 z2x2 2k for (11, 12,13,14,0) € NO_| have one nontrivial

relation, say, ¥, in V79_1. The natural exact sequence below is exact.

0—-Cy— @ (lella—:l;xgsxif — V. —0.
(11,l2,l3,l4,0)EN, 1

(vi) We have ordg v =r. The natural exact sequence below is exact.

0— Cxytp — @ (Ci:lf:il;:c?xi“@b“ — V. —0.
(ll,lQ,l3J4,l5)€Nr
Proof. We follow the proof of [7, Lemma 7.2|, using the computation
of Lemma 3. Claim (i) above follows from dimV{ =1, dimVj! =0, and
dim V! = 1. Then V0 is spanned by z2 and z}, which should form a basis
of V{ by dim V) = 2. Now (ii)—(v) follow from the same argument as in [7,
Lemma 7.2]. We obtain the sequence in (vi) also, which is exact possibly
except for the middle. Its exactness is verified by comparing dimensions. []

COROLLARY 5. We distribute weights wt(Z1,Z2,23,24) = ((r+1)/2,
(r—1)/2,2,1) to the coordinates &1,%2,x3,x4 obtained in Lemma 4. Then

¢ in (1) is of form
¢ = cxa) + ¢>r(21, T2, 3, 4)

with c € C and a function ¢, of weighted order more than r, where 1 is as
in Lemma 4(v).

Proof. Decompose ¢ = ¢<, + ¢, into the part ¢<, of weighted order at
most r and ¢~ of weighted order more than r. Then ordg ¢<, = ordg ¢, >
T, SO ¢<, is mapped to zero by the natural homomorphism

&y Cilzhaall — Ox/f. 0y (—(r+1)E),
(l,l2,l3,14,0)€U; <, NP
whose kernel is Cz41 by Lemma 4(iv)—(vi). 0

We will derive an expression of the germ P € X in Theorem 2. By [9,
Remark 23.1], the ¢D/2 point P € X has an identification in (1) with ¢
either of

(A) ¢ =13 + Tow3wy + 23 + x%ﬁ + )
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or of
2 2 2a—1 2
(B) ¢ =] + T524 + A2 + g(z5, x4),

with a,8>2, v>3, A€ C, and g € (x4, 7323, 23). As its general elephant
has type Dy with k> 2r by [7, Lemma 5.2(i)], we have

(2) v>7r in (A), ordg(0,z4) >r in (B).

LEMMA 6. Case (A) does not happen.

Proof. By Lemma 4(i), ordg x4 =1, ordgx; > 2 for i =1,2,3, and some
ordg x; = 2. We have ordg 1 > 3 by the relation —x% = x2x3x4+x§°‘ —1—1‘?{6—}—
z, and (2). Thus, we may set ordgzs =2 by permutation and construct
Z1,T9 as in Lemma 4(ii).

Let W(,_1)/2 be the subspace of V(,_1)/5 spanned by the monomials in
x3,24. If T1 ¢ W(,_1)/2, the triple (Z1,73,74) plays the role of (Z2,z3,74)
in Lemma 4(iii). We construct &2 as in Lemma 4(iii) to obtain a quartuple
(Z9,T1,x3,24), and distribute wt(zo,Z1,23,24) = ((r+1)/2,(r —1)/2,2,1)
as in Corollary 5. Set 1 = x1 + p1(z3,24) and T = x9 + p2(Z1,23,24), and
rewrite ¢ as

¢=(T1 — p1)* + (&2 — pa)aswa + (B2 — po)** + 23" + 2.

Here, ¢ has the term 72 of weight r — 1, which contradicts Corollary 5.
Hence, 21 € W(,_1)/2, and we obtain a quartuple (Z1,T2,x3,24) by &1 =

x1+p1(xs,24), To = x2+p2(23,24) as in Lemma 4. Distribute wt(Z1, Z2, 3,

x4)=((r+1)/2,(r—1)/2,2,1), and rewrite ¢ as

¢= (@1 —p1)* + (T2 — p2)asza + (T2 — p2)** + 23 + 2.

So ¢ has the term Zozszs of weight (r+5)/2, whence (r+5)/2 > r by
Corollary 5, a contradiction to r > 7. (]

LEMMA 7. The germ P € X has an expression in Theorem 2, with q not of
form (z3s(x3,24))?, such that each ordg x; coincides with wtx; distributed
i Theorem 2.

Proof. We have case (B) by Lemma 6. We have ordg x4 = 1 and ordg 21 >
3 as in (A), so ordgxe > 3 and ordgxz3 = 2. We construct Zz;,Zs as in
Lemma 4(ii). By the same reason as in the proof of Lemma 6, we obtain
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T € W(r—l)/2 and a quartuple (21, T2, 23,24) by &1 =21 + p1(x3,24), T2 =
xo+pa(x3,x4). Distribute wt(Z1, To, x3,24) = ((r+1)/2,(r — 1)/2,2,1), and
rewrite ¢ as

¢= (21— p1)* + (T2 — p2)?ma + A(T2 — p2)23* ' + g(23, 24).

So ¢ has the term Z3x4 of weight r and should be of form
¢ = (23 + h(&1,Z2,23,24) ) T4 + >r(21, T2, T3, 74)

as in Corollary 5 with ¢ = 5:% + h(#1,Z2,23,74). In particular, po =0, as
otherwise poZox4 would be of weighted order less than r, and one can write

¢ =i} + 249 + p(ZT2, T3, 24), ¥ =75+ q(&1,23,74),

where p is of weighted order more than r and ¢ is weighted homogeneous of
weight  — 1. A desired expression is derived by setting x5 := —1 and replac-
ing x4 with —x4. Thus g is not of form (z3s(x3,74))? by Lemma 4(iii) and
ordp(Z3 +q) =r. U

Take an expression of the germ P € X in Theorem 2 by Lemma 7. We
apply the extension of [7, Lemma 6.1] to the case when X is embedded into
a cyclic quotient of C°. Let g: Z — X be the weighted blowup with wtz; =
ordg x;. By direct calculation, we verify the assumptions of [7, Lemma 6.1]
and that Z is smooth outside the strict transform of zjxox32425 = 0. We
need the condition ¢ # (x35)? to check that the restriction F'N Z of the
exceptional locus in the ambient space defines an irreducible reduced 2-
cycle on Z. Therefore, f should coincide with g by [7, Lemma 6.1], and
Theorem 2 is completed.

REMARK 8. Using H N E ~P! in the proof of [7, Theorem 5.4], one can

show that
(i) if =1 mod 8, xzxéHS)M appears in p and xgul)m appears in g;
(ii) if =7 mod 8, xérﬂ)m appears in p and xlxgrfg’)/zl appears in gq.

Theorem 1 follows from [1], [2], [3], [7], [8], and Theorem 2.

Acknowledgments. I was motivated to write this supplement by a ques-
tion of Professor J. A. Chen. He, with Professor T. Hayakawa, informed me
that only one case was left.

https://doi.org/10.1215/00277630-1548493 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-1548493

THREEFOLD DIVISORIAL CONTRACTIONS 73

REFERENCES

[1] T. Hayakawa, Blowing ups of 3-dimensional terminal singularities, Publ. Res. Inst.
Math. Sci. 35 (1999), 515-570.

, Blowing ups of 3-dimensional terminal singularities, II, Publ. Res. Inst.

Math. Sci. 36 (2000), 423-456.

, Divisorial contractions to 3-dimensional terminal singularities with discrep-
ancy one, J. Math. Soc. Japan 57 (2005), 651-668.

[4] M. Kawakita, Divisorial contractions in dimension three which contract divisors to
smooth points, Invent. Math. 145 (2001), 105-119.

, Divisorial contractions in dimension three which contract divisors to com-

pound Ay points, Compos. Math. 133 (2002), 95-116.

[6] , General elephants of threefold divisorial contractions, J. Amer. Math. Soc.
16 (2003), 331-362.
[7] , Three-fold divisorial contractions to singularities of higher indices, Duke

Math. J. 130 (2005), 57-126.

[8] Y. Kawamata, “Divisorial contractions to 3-dimensional terminal quotient singular-
ities” in Higher-dimensional Complex Varieties (Trento, 1994), de Gruyter, Berlin,
1996, 241-246.

[9] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43-66.

Research Institute for Mathematical Sciences
Kyoto University

Kyoto 606-8502

Japan

masayuki@kurims.kyoto-u.ac. jp

https://doi.org/10.1215/00277630-1548493 Published online by Cambridge University Press


mailto:masayuki@kurims.kyoto-u.ac.jp
https://doi.org/10.1215/00277630-1548493

