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Abstract
This paper presents an integrated guidance and control (IGC) design method for an
unmanned aerial vehicle with static stability which is described by a nonlinear six-
degree-of-freedom (6-DOF) model. The model is linearized by using small disturbance
linearization. The dynamic characteristics of pitching mode, rolling mode and Dutch
rolling mode are obtained by analysing the linearized model. Furthermore, an IGC
design procedure is also proposed in conjunction with a proportional–integral–derivative
(PID) control method and fuzzy control method. A PID controller is applied in the
control loop of the elevator and aileron, and the attitude angle and attitude angular
velocity are used as compensation feedback, giving a simple and low-order control
law. A fuzzy control method is applied to perform the cross-coupling control of rolling
and yawing. Finally, the 6-DOF simulation shows the effectiveness of the developed
method.
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1. Introduction

In past decades, most flight control systems were designed by using the traditional
separate design method, that is, the guidance and control systems were designed
separately and then integrated into one system. If the overall system performance
was not satisfactory, the whole system would be redesigned to improve performance.
This design method is not truly optimal and the overall system performance tends to be
overconservative. Thus, an efficient method, called the integrated guidance and control
(IGC) system design methodology, was proposed by Yueh and Lin [15] to improve
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the overall performance. The IGC design method also improves system safety and
reliability by removing one loop.

Recently, the IGC design method has been extensively studied in the literature. A
sliding-mode controller was derived for an integrated missile autopilot and guidance
loop by Idan et al. [4, 11]. To evaluate the performance of the various guidance
and control solutions, a two-dimensional nonlinear simulation of the missile lateral
dynamics and relative kinematics was used [11] and the additional degree of freedom
(DOF) was then used [4] to account for the guidance and autopilot requirements.
However, the linearized models of Idan et al. [4, 11] are all formulated under the
limitation that the angle between line of sight and missile velocity is small or almost
constant. Backstepping control was used to design IGC laws with a higher-order
sliding-mode observer by Hwang and Tahk [3]. The stability of the integrated
backstepping guidance and control logic was proven using the Lyapunov method.
However, the approaches of Hwang and Tahk [3] may not strictly maintain the
stability of the overall system. The feedback linearization technique was employed
by Menon et al. [7] for the IGC of a moving-mass actuated kinetic warhead, and a
9-DOF simulation model of a kinetic warhead was developed with three moving-mass
actuators. However, the feedback linearization could result in a large control and it is
only applicable to systems which satisfy some conditions of feedback linearizability.
A prototype fully integrated missile guidance and control system has been discussed
by Palumbo and Jackson [8]. The IGC problem was formulated as a single nonlinear
minimax optimization problem, which was handled by the state-dependent Riccati
technique. However, as mentioned in that paper, solving the state-dependent Riccati
equation online was time consuming. Particularly for a 6-DOF missile with an IGC
design, the system order would grow much higher. Many other IGC schemes have
been developed to incorporate various control theories [2, 5, 6, 9, 12, 14].

Most of these IGC methods are designed for missiles. Furthermore, most of these
existing design results are theoretical, and are difficult to use in engineering. In this
paper we apply the IGC design method to an unmanned aerial vehicle which is derived
from a real airplane model. The main contribution of this paper is twofold. First, it
provides an IGC design method for an unmanned aerial vehicle. The aircraft studied
has good static stability, which results in small control augmentation press; thus the
inner loop and outer loop can be integrated. However, there exists strong lateral-
directional coupling, and hence a fuzzy controller is introduced to achieve cross control
of rolling and yawing. Therefore, an IGC method using a proportional–integral–
derivative (PID) controller and fuzzy controller is introduced in this paper. Second,
the IGC method is applied to an unmanned aerial vehicle with low flight velocity and
low cost, making it suitable for use in geological exploration and frontier inspection.

The rest of the paper is organized as follows. The common design method for
aircraft, where the control and guidance loop are designed separately, is described in
Section 2. Then the structure of the IGC design method is introduced. The linearized
model of the unmanned aerial vehicle is presented in Section 3. Analysis of the
airplane ontology shows that the IGC design can be applied for this unmanned aerial
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F 1. Logic diagram of control and guidance loops designed separately.

vehicle to achieve better control efficiency. Furthermore, the IGC design method is
concretely proposed for the aircraft. The nonlinear 6-DOF simulation results are given
in Section 4 to demonstrate the potential applications of the proposed IGC approach.

2. Structure and advantages of the IGC design

The design structure where the control and guidance loops are designed separately
is depicted in Figure 1. The control loop is the inner loop, which aims to achieve
control augmentation. A sensor is used in the inner loop to feed back information
on the attitude angle and attitude angular velocity. For some high speed and large
envelope airplanes, information on the attack angle and sideslip angle is also needed.
The guidance loop is the outer loop, which aims to maintain the flight path and flight
attitude. A sensor is used in the outer loop to feed back position and attitude angle
information.

The integrated design structure is shown in Figure 2, where guidance and control
loops are merged into one loop. A sensor is used to feed back the position, attitude
angle and attitude angular velocity of the airplane, where position information is
used to realize flight path and attitude angle information is used to achieve control
augmentation. It should, however, be pointed out that the applicability of this design
method depends on the ontology performance of the airplane. If the integrated design
method is used to design a system which includes the feedback loop in the inner and
outer loop, then the order of the control law is significantly decreased.

Suppose that the guidance and control loops are designed separately. Then a PID
control method can be used for both the inner and outer loops, where the inner loop
control law is

Gc
I (s) = K p

I

(
1 +

1

T i
I s

+ T d
I s

)
.

Here K p
I denotes the controller gain; T i

I and T d
I denote the time constants of the

integral term and differential term, respectively; the subscript I denotes the inner loop;
the superscript c denotes the control law; and the superscripts p, i and d denote,
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F 2. Structure diagram of integrated design of guidance and control loops.

respectively, the proportional, integral and differential terms. Denote the transfer
function of the airplane ontology by G(s). By using the Mason formula, we obtain
the closed loop transfer function of the inner loop,

GIC(s) =
Gc

I (s) ×G(s)

1 + Gc
I (s) ×G(s)

,

where the subscript C denotes the closed loop. The control law of the outer loop is

Gc
O(s) = K p

O

(
1 +

1

T i
Os

+ T d
Os

)
,

where K p
O denotes the controller gain, T i

O and T d
O denote the time constants of the

integral and differential terms, respectively, and the subscript O denotes the outer loop.
Similarly, by using the Mason formula, we obtain the transfer function of the whole
loop,

GOC(s) =
Gc

O(s) ×Gc
I (s) ×G(s)

1 + Gc
I (s) ×G(s) + Gc

O(s) ×Gc
I (s) ×G(s)

, (2.1)

where the subscript and superscript notation is as above.
Suppose that a PID control method is used for the IGC design. Then the integrated

control law is

Gc(s) = K p
(
1 +

1
T is

+ T d s
)
,

where, similarly, K p denotes the controller gain, T i and T d denote the time constants
of the integral and differential terms, respectively, and the superscript c again denotes
the control law. The overall closed-loop transfer function is

GC(s) =
Gc(s) ×G(s)

1 + Gc(s) ×G(s)
. (2.2)

Comparison of (2.1) with (2.2) shows that when the guidance and control loops are
designed separately, the order Nsep of the closed loop system satisfies

Nsep = 2 + 2 + N,

https://doi.org/10.1017/S1446181113000199 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000199


204 R. Li, Y. J. Shi and H. L. Xu [5]

where N denotes the order of the transfer function of the outer airplane ontology. When
the IGC design is used, the order Nint of the closed-loop system satisfies

Nint = 2 + N.

The order of the closed-loop system is lower when the IGC design is used.
The element error and other unpredictable errors would also be reduced by

removing one loop. Furthermore, when the airborne code is compiled, the probability
of logic error and code realization error would be reduced. Consequently, the safety
and reliability of the system are improved.

3. IGC design

3.1. Analysis of airplane ontology From classical mechanics, we obtain the
following centroid kinetic equations of the airplane:

m
(du

dt
+ qw − rv

)
= T cos ϕ − D cos α cos β − Y cos α sin β

+ L sin α − mg sin θ,

m
(dv

dt
+ ru − pw

)
= −D sin β + Y cos β + mg sin φ cos θ, (3.1)

m
(dw

dt
+ pv − qu

)
= −T sin ϕ − D sin α cos β − Y sin α sin β

− L cos α + mg cos φ cos θ.

Here m is the mass of the airplane; u, v, w are the velocity components of the
mass centre motion in the geographic coordinates; p, q, r are the angular velocity
components around the centroid in the body axis system; T is the engine thrust; ϕ is
the engine installation angle; α, β are the attack angle and sideslip angle, respectively;
g is gravitational acceleration; and θ, φ are the pitching angle and rolling angle,
respectively. The kinetic equations of the airplane around the centroid are

Ix
dp
dt

+ (Iz − Iy)qr − Izx

(
pq +

dr
dt

)
= R,

Iy
dq
dt

+ (Ix − Iz)rp + Izx(p2 + r2) = M,

Iz
dr
dt

+ (Iy − Ix)pq + Izx

(
qr −

dp
dt

)
= N,

where I∗ is the corresponding component of the inertial tensor and R, M, N are the
rolling moment, pitching moment and yawing moment, respectively. The centroid
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kinematic equations of the airplane are

dxg

dt
= u cos θ cos ψ + v(sin θ sin φ cos ψ − cos φ sin ψ)

+ w(sin θ cos φ cos ψ + sin φ sin ψ),
dyg

dt
= u cos θ sin ψ + v(sin θ sin φ sin ψ + cos φ cos ψ)

+ w(sin θ cos φ sin ψ − sin φ cos ψ),
dzg

dt
= −u sin θ + v sin φ cos θ + w cos φ sin θ,

where xg, yg, zg are the centroid coordinate components of the airplane in the
geographic coordinates and ψ is the yaw angle. The kinematic equations of the airplane
around the centroid are

dφ
dt

= p + tan θ(q sin φ + r cos φ),

dθ
dt

= q cos φ − r sin φ,

dψ
dt

=
1

cos θ
(q sin φ + r cos φ).

The 12 differential equations above are nonlinear and contain variable coefficients.
It is difficult to solve them analytically. Thus, the linearization method is employed.
In order to analyse the stability and maneuverability of the airplane, the characteristic
points are chosen, at which the system is trimmed and linearized according to some
specific flight modes (such as horizontal flying and steady circling). Here we apply the
commands findop and linearize in Matlab to achieve the trimming and linearization.
By trimming and linearizing the 6-DOF nonlinear ontology model, we obtain the
longitudinal equations of the unmanned aerial vehicle as follows:

ẋ =


−0.611 −0.039 0.005 0

50.8 −1.728 −0.412 −0.684
−3.553 0.176 −0.036 −9.779

1 0 0 0

 x +


−3.408
−5.569
0.023

0

 u, (3.2)

where x = [∆Q ∆W ∆U ∆θ]T; u = ∆δe; ∆Q is the increment of the pitching
angular velocity; ∆W is the increment of the z axial velocity component with the
body axes coordinate system; ∆U is the increment of the x axial velocity component
with the body axes coordinate system; ∆θ is the pitching angle increment; and ∆δe is
the increment of the elevator deflection angle. By solving the characteristic function
of (3.2), it follows that the damping ratio of the pitching mode is 0.673 and the
undamped oscillation frequency is 1.76 rad s−1. The linearized lateral-directional
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F 3. Step response of (a) pitching mode, (b) rolling mode and (c) Dutch rolling mode.

equations of the unmanned aerial vehicle are

ẋ =


−0.116 3.553 −50.8 9.779
−0.064 −6.775 0.048 0
0.019 0.017 −0.163 0

0 1 0.07 0.011

 x +


0.111 6.375
−10.64 4.656
0.012 −2.981

0 0

 u, (3.3)

where x = [∆V ∆P ∆R ∆φ]T; u = [∆δa ∆δr]T; ∆V is the increment of the y axial
velocity component with the body axes coordinate system; ∆P is the increment of the
rolling angular velocity; ∆R is the increment of the yawing angular velocity; ∆φ is the
increment of the rolling angle; ∆δa is the increment of the aileron deflection angle;
and ∆δr is the increment of the rudder deflection angle. By solving the characteristic
function of (3.3), it follows that the damping ratio of the rolling mode is 1, and the
undamped oscillation frequency is 6.75 rad s−1. The damping ratio of the Dutch rolling
mode is 0.15, and the undamped oscillation frequency is 1.04 rad s−1.

Figures 3(a–c) show the step response curves of the pitching mode, lateral-
directional rolling mode and Dutch rolling mode, respectively. We see that the stability
of the pitching mode and the rolling mode is good, while the damping ratio of the
Dutch rolling mode is small, but the oscillation period is long. Since the number of
oscillations of the pitching mode and lateral-directional rolling mode is less than 3,
the first flying quality requirement described by Zhang [16] is ensured, namely that
the aircraft can perform all given flight tasks. For the Dutch rolling mode, we see
from Figure 3 that the oscillation occurs several times; however, the oscillation period
is long (over 15 seconds), which is accepted by the flying qualities requirement [16].
Thus, the aircraft studied has good static stability. Therefore, the IGC design can be
applied for this unmanned aerial vehicle to achieve better control efficiency.

3.2. Design of the PID control law for the elevator and aileron Although wide
choices for control schemes are offered with advanced developments in digital
technology, more than 90% of industrial controllers are still implemented based around
PID algorithms, since no other controllers can match the simplicity, clear functionality,
applicability, and ease of use offered by the PID controller [1]. Therefore, in this paper
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T 1. Design parameters of the elevator control law.

θc KHp
e KHi

e KHd
e Kθp

e Kθd
e

0.3 0.3 0.1 0.5 1.5 1.0

T 2. Design parameters of aileron control law.

Kφ
ψ Kφp

a Kφi
a Kφd

a

1.0 1.5 0.5 0.5

the PID control method is applied for controller design of the main channels of the
elevator and aileron.

When the IGC method is applied, the altitude feedback is the guidance loop, and the
pitching angle feedback and pitching angular velocity feedback are the control loop to
achieve compensation. The control law of the elevator is designed as follows:

δe = KHp
e (H − Hc) + KHi

e

∫
(H − Hc) dt + KHd

e
d(H − Hc)

dt
+ Kθp

e (θ − θc) + Kθd
e Q,

where H is the flight height of the airplane; Hc is the instruction flight height; θ is the
current pitching angle; θc is the trim pitching angle; Q is the current pitching angular
velocity; and KHp

e , KHi
e , KHd

e , Kθp
e , Kθd

e are the design parameters of the elevator control
law. The trim pitching angle is determined by the flight state and is set as 0.3.

The bank to turn (BTT) method is used for the track path angle in the lateral-
directional control. The control law of the aileron is

δa = Kφp
a (φ − φc) + Kφi

a

∫
(φ − φc) dt + Kφd

a P,

where φ is the current rolling angle; φc is the instruction rolling angle; P is the current
rolling angular velocity; and Kφp

a , Kφi
a , Kφd

a are the design parameters of the aileron
control law. The instruction rolling angle satisfies

φc = Kφ
ψ(ψ − ψc),

where ψ is the current yaw angle, ψc is the instruction yaw angle and Kφ
ψ is the design

parameter of the aileron control law. The design parameters of the elevator and aileron
control laws can be obtained by the parameterized method given by Shi and Li [10].
They are listed in Tables 1 and 2.

3.3. Fuzzy controller design for the rudder For the rudder, cross-coupling control
of the aileron and rudder is applied, that is,

∆δr = Kari∆δa. (3.4)
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In the following, we show how to solve for the cross-coupling gain Kari.
Equation (3.1) can be written as:

m
(du

dt
+ qw − rv

)
= Fx,

m
(dv

dt
+ ru − pw

)
= Fy, (3.5)

m
(dw

dt
+ pv − qu

)
= Fz.

In addition, it is known that

u = V cos α cos β, v = V sin β, w = V sin α cos β.

When the sideslip angle β is small, the foregoing formulation can be approximated as:

u = V cos α, v = Vβ, w = V sin α.

When the short-term motion is considered, V is usually assumed constant. Then,
substituting the above formulation into the second equation of (3.5), we obtain

m
(
V

dβ
dt

+ rV cos α − pV sin α
)

= Fy. (3.6)

From the flight dynamics, we can assume that, when the sideslip angle β is small, the
side force in (3.6) satisfies Fy = 0. Thus, for keeping β̇→ 0,

r
p

= tan α. (3.7)

Here r is the yaw rate and p is the roll angular velocity. These are functions of the
aileron and rudder deflection angle. Expanding (3.7),

Nδa∆δa + Nδr ∆δr

Rδa∆δa + Rδr ∆δr
= tan α.

Considering the cross-coupling control law (3.4),

Nδa∆δa + Nδr Kari∆δa

Rδa∆δa + Rδr Kari∆δa
= tan α.

Then the cross-coupling gain Kari can be obtained as follows:

Kari = −
Nδa − Rδa tan α
Nδr − Rδr tan α

.

The cross-coupling gain Kari is relative to the angle of attack. Therefore, it must be
adjusted with reference to the angle of attack.
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T 3. Membership functions for the fuzzy controller.

Variable γ θ δr

Type Parameter Type Parameter Type Parameter

NB Trapezoid [−Inf−Inf − 15 − 6] Trapezoid [−Inf−Inf − 20 − 11] Trapezoid [−Inf−Inf − 0.6 − 0.4]

NM Triangle [−18 − 10.5 − 3] Triangle [−25.5 − 16.5 − 5.5] Triangle [−0.6 − 0.4 − 0.1]

NS Triangle [−12 − 5.25 0] Triangle [−20 − 8.5 0] Triangle [−0.4 − 0.1 0.2]

NO Triangle [−6 0 1.5] — — — —

ZO — — Triangle [8.5 0 8.5] Triangle [−0.1 0 0.5]

PO Triangle [−1.5 0 6] — — — —

PS Triangle [0. 5.25 12] Triangle [0 8.5 20] Triangle [0 0.5 1]

PM Triangle [3 10.5 18] Triangle [5.5 16.5 25.5] Triangle [0.5 1 2]

PB Trapezoid [6 15 Inf Inf] Trapezoid [11 20 Inf Inf] Trapezoid [1 2 Inf Inf]

T 4. Rules for the fuzzy controller.

θ γ
NB NM NS NO PO PS PM PB

NB NB NB NB NB NB NB NB NB
NM NS NS NB NB NB NB NB NB
NS PS PS NM NB NB NB NB NB
ZO PB PS NS NM NM NM NM NB
PS PB PM PS NS NS NS NM NM
PM PB PB PM PS ZO ZO ZO NS
PB PB PB PB PB PM PS ZO ZO

Since there is no sensor for the angle of attack in such low-cost airplanes, usually
the angle of attack is replaced by the flight path angle γ and the attitude angle θ. Thus,
a fuzzy controller is applied to the control law of the rudder due to good adaptability,
where the inputs are the flight path angle γ and the attitude angle θ; the output is the
cross-coupling gain of the aileron and the rudder; and the domains are γ ∈ [−15, 15],
θ ∈ [−20, 20] and Kari ∈ [−0.5, 2], respectively. The linguistic terms and membership
functions are described by Table 3. In each membership function, N denotes negative;
P denotes positive; ZO and O denote zero; and B, M and S denote big, middle and
small, respectively. The membership functions of the flight path angle γ include NO
and PO, aiming to improve the steady state precision [13]. The fuzzy controller rules
are described in Table 4.

The output surface of the fuzzy control law is shown in Figure 4. When the airborne
code is generated, the interpolation table is produced according to the output surface,
and thus the real time response and the reliability of the flight control system are
ensured.
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F 4. Output surface for the fuzzy controller.

4. Simulation and verification

In this section, the flight path control of an unmanned aerial vehicle is accomplished
by the proposed method. The starting flight state is in the north horizontal direction
and an altitude of 215 m. The task of lateral-directional flight is to maintain the flight
path deflection angle. The longitudinal flight task is to track the instruction altitude,
which is 215 m before 100 s and 315 m after 100 s. A fixed step size is used during
the simulation course, which is 5 ms, and the simulation time is 800 s.

The simulation curves of the aileron, elevator and rudder deflection angles of the
airplane are shown in Figures 5(a–c). Figure 5 shows that there is a slight aileron
deflection during the flight course due to the lateral-directional asymmetry; the elevator
helps the airplane to climb to the tracking altitude at 100 s; the rudder oscillates
slightly as a result of the dead zone nonlinear elements, such as the rudder clearance.
Fortunately, the oscillation amplitude is small and the oscillation period is long, which
does not affect the flight.

The simulation curves of the rolling, pitching and yaw attitude angles are shown
in Figure 6(a–c). Figure 6 shows that the rolling angle and the yaw angle can
be well retained since the control law aims to accomplish the flight path tracking
in the horizontal direction and the instruction flight path does not change, and the
pitching angle responds to the instruction of the elevator to produce the corresponding
increment, achieving altitude track.

The simulation curves of the rolling, pitching and yaw attitude angular velocities
are shown in Figure 7(a–c). Figure 7 shows that the airplane has good stability
performance.

The position and velocity simulation curves of the centroid motion are shown in
Figure 8. Figure 8(a) shows how the altitude changes with time, where the ordinate is
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F 5. Deflection angle of (a) aileron, (b) elevator and (c) rudder.
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abscissa the north flight distance, (c) climbing velocity, (d) north flight velocity.
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the altitude of the airplane. During the simulation, the altitude of the airport is 15 m,
that is, the airplane starts to fly at an altitude of 200 m relative to the airport at 100 s,
and after 500 s it climbs to a relative altitude of 300 m and stays at this flight level.
Figure 8(b) is also the simulation curve of the flight altitude, while the abscissa is the
north flight distance. Figure 8(c) is the simulation curve of the upward flight velocity,
that is, the climbing velocity. Figure 8(d) is the simulation curve of the north flight
velocity. Figure 8 shows that the airplane can track the instruction flight path well and
thus the desired flight task can be achieved.

In order to test the robustness of the proposed control method, we introduce the
real local wind field, which is shown in Figure 9, where the abscissa is the velocity
of the wind and the ordinate is the flying altitude. Figure 9(a) shows the component
of wind from east to west; Figure 9(b) shows the component of wind from north to
south; and Figure 9(c) shows the component of downward wind. The flight simulation
curve with wind field test is shown as the solid lines in Figure 10, and the simulation
curve without wind is shown as dotted lines in the same figure for comparison. The
simulation curve of the pitching angle is shown in Figure 10(a). Since the aircraft flies
against the wind, it is seen that the climbing time has increased. Figure 10(b) depicts
the velocity simulation curve of northward flight. It is seen from the figure that flight
velocity is apparently affected by the wind. The simulation curve of the flight altitude
is shown in Figure 10(c), which shows that the aircraft can perform the flight task well
under the effect of wind.

5. Conclusions

The IGC design method for an unmanned aerial vehicle with low flight velocity and
low cost was studied and a PID controller was designed to produce the elevator and
aileron control law. For the coupling action of the rolling and yaw, a fuzzy control
method was adapted to obtain the rudder control law. By using the IGC design, the
structure of the control law is simplified, the order of the control law is decreased and
the safety and reliability of the system are improved. The 6-DOF simulation results
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F 10. Flight simulation curve with wind: (a) pitching angle, (b) northward flight velocity, (c) altitude.

show that the designed control law can maintain good stability performance of the
airplane and keep the track angle constant.
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