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Abstract

In this paper we study the variation of the p-Selmer rank parities of p-twists of a principally polarized
Abelian variety over an arbitrary number field K and show, under certain assumptions, that this parity
is periodic with an explicit period. Our result applies in particular to principally polarized Abelian
varieties with full K-rational p-torsion subgroup, arbitrary elliptic curves, and Jacobians of hyperelliptic
curves. Assuming the Shafarevich–Tate conjecture, our result allows one to classify the rank parities of
all quadratic twists of an elliptic or hyperelliptic curve after a finite calculation.
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1. Introduction

In this paper we study the behaviour of the p-Selmer rank in families of p-twists of
principally polarized Abelian varieties over arbitrary number fields. Our main result is
that, under certain conditions on the Abelian variety, the parity of the p-Selmer rank
is periodic with an explicit period (see Theorem 4.6, Corollary 4.7, and the following
remarks). This is proved by using known results which write the variation of the p-
Selmer rank under p-twist as a sum of local invariants and which evaluate those local
invariants in certain cases (see Theorem 4.4).

Calculating arithmetic ranks of elliptic curves, and more generally Abelian
varieties, is a very difficult problem in Diophantine geometry. As of today, this
problem remains wide open in general, theoretically and computationally. In various
forms, it is related to many long-standing open problems, such as the Birch and
Swinnerton-Dyer conjecture. Many recent attempts at progress in this field have
involved studying the Selmer rank and its parity. Given that the Selmer rank provides
an upper bound for the arithmetic rank and, assuming the Shafarevich–Tate conjecture,
in certain cases (see Remark 4.10) its parity differs by a simple factor from the parity
of the arithmetic rank, any information on Selmer ranks and their parities can be used
in the study of arithmetic ranks.
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As an example, consider Goldfeld’s conjecture about elliptic curves over Q (see
[1, Conjecture B]). This predicts that among quadratic twists of a fixed elliptic curve
E over Q, half have rank 0 and half have rank 1. Assuming the Shafarevich–Tate
conjecture, this would imply that half of the quadratic twists of E have even Selmer
rank and half have odd Selmer rank. Now, it would be very interesting if one could
prove statements like this concerning Selmer ranks without assuming big conjectures
such as Goldfeld or Shafarevich–Tate.

In fact, there has been much recent interest in studying the variation of Selmer
ranks and their parities. For example, Klagsbrun, Mazur and Rubin prove the above
statement for 2-Selmer rank parities in [3]. As another example, Swinnerton-Dyer in
[14] studies the size of 2-Selmer groups of quadratic twists of elliptic curves over
Q with full rational 2-torsion subgroup. Several other mathematicians, including
Kane, Kramer and Yu, have considered more general versions of this problem for
p-Selmer groups of p-twists of elliptic curves and Jacobians of hyperelliptic curves
(see [2, 4, 6, 7, 10, 16], for example). Our work in this paper is inspired by the above
literature and gives uniform results that are finer than some of the existing ones. In
particular, under certain conditions on the Abelian variety, the periodicity result of
Section 4 reduces the problem of finding what portion of twists have even or odd
p-Selmer rank to a finite calculation (see the examples given in Section 5). Under
certain conditions when p = 2, assuming the Shafarevich–Tate conjecture, we can
actually completely classify the rank parities of twists after a finite calculation (see
Remark 4.10).

In Section 2 we set up some general notation that will be fixed throughout the
paper. Section 3 is devoted to reviewing the necessary definitions and results on global
metabolic structures, Selmer structures, twisting, and local conditions. This material
is gathered from several references, including [3, 5, 6, 8, 10, 16], but in order to give
a uniform treatment suitable for our applications we have included our version of it
for the reader’s convenience. In Section 4 we prove our main results, which imply the
periodicity of the p-Selmer ranks together with an explicit period. Finally, in Section 5,
we illustrate how our results can be applied to particular examples by calculating the
2-Selmer rank parities for all quadratic twists of two explicit elliptic curves over Q.

2. General notation

Throughout this paper, p denotes a fixed rational prime and K a number field
containing a primitive pth root of 1. Fix an algebraic closure K̄ of K and let GK :=
Gal(K̄/K) be the absolute Galois group of K. Let C(K) := Hom(GK , µp) denote the
group of characters of GK with order dividing p. χ (respectively, 1K) will denote a
nontrivial (respectively, the trivial) character in C(K). Note that by Kummer theory,
we can identify C(K) with K∗/(K∗)p.

A will denote a principally polarized Abelian variety over K (i.e. A is defined over
K and we have fixed a principal polarization of A over K), and when dimK(A) = 1 we
use the more standard notation E. Let ep : A[p] × A[p]→ µp be the nondegenerate
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alternating Weil pairing of A. Let Σ denote a fixed finite set of places of K containing
all primes of bad reduction for A, all primes above p, and all archimedean places.

For each place v of K, fix an embedding of K̄ into the algebraic closure K̄v of
the completion Kv of K at v. This gives an embedding of the absolute Galois group
GKv := Gal(K̄v/Kv) into GK . If v is a finite place, Ov denotes the ring of integers of
Kv, kv the residue field, Iv the inertia subgroup of GKv , and Gkv = GKv/Iv the absolute
Galois group of kv.

For any GK-module M which is a finite-dimensional Fp-vector space and any place
v of K, let locv : H1(GK , M)→ H1(GKv , M) denote the localization map. If M is
unramified at v, that is, if Iv acts trivially on M, we define H1

ur(GKv , M) to be the
unramified subgroup H1(Gkv ,M) ⊂ H1(GKv ,M), where the inclusion is induced by the
inflation homomorphism. Finally, M∗ denotes the Tate twist of the dual of M, i.e.

M∗ := HomGK (M, µp).

3. Preliminary notions and results

3.1. Global metabolic structures. A critical notion we will use in this paper is that
of global metabolic structures as developed in [3]. For the reader’s convenience, we
briefly outline in this section what we will use.

Let V be a finite-dimensional vector space over Fp. Recall that a quadratic form on
V is a function q : V → Fp such that:

• q(av) = a2q(v) for every a ∈ Fp and v ∈ V;
• the map (v,w)q := q(v + w) − q(v) − q(w) is a bilinear form.

A subspace X of V is called a Lagrangian subspace if q|X = 0 and X⊥ = X with respect
to the bilinear form (, )q. The quadratic space (V, q) is called a metabolic space if V has
a Lagrangian subspace and (, )q is nondegenerate.

All metabolic spaces relevant to our study arise in the following way. Let A be a
principally polarized Abelian variety defined over K, and let A[p] denote the p-torsion
subgroup of A. Then for each place v of K, the cup product and the Weil pairing induce
the local Tate pairing:

〈, 〉v : H1(GKv , A[p]) × H1(GKv , A[p])→ H2(GKv , µp),

which is symmetric and nondegenerate (recall that local Tate duality states that for any
Galois module M as above, the pairing H1(GKv , M) × H1(GKv , M∗)→ H2(GKv , µp) is
nondegenerate). Note that if v is a finite place, then it is a well-known fact of local
class field theory that H2(GKv , µp) = Fp.

A global metabolic structure on A[p] consists of a quadratic form qv on
H1(GKv , A[p]) for every place v of K, such that:

(1) the quadratic space (H1(GKv , A[p]), qv) is a metabolic space for every v;
(2) for every v < Σ, the unramified cohomology group H1

ur(GKv , A[p]) is an isotropic
subspace with respect to qv;
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(3) for any c ∈ H1(GK , A[p]),
∑

v qv(locv(c)) = 0;
(4) the bilinear form induced by qv is the local Tate pairing 〈, 〉v for every v.

We conclude our discussion of global metabolic structures with a result concerning
their existence and uniqueness. For this result, if the fixed rational prime p
happens to be 2, we need to assume that the Abelian variety A is the Jacobian of
a hyperelliptic curve with affine equation y2 = f (x), where f (x) is an odd-degree
separable polynomial. Note that any such Abelian variety comes with a canonical
principal polarization.

Proposition 3.1. Let A be a principally polarized Abelian variety over K, which
satisfies the above condition when p = 2. Then there is a canonical1 global metabolic
structure on A[p].

Proof. First assume that p = 2. In this case, we have assumed that A is the Jacobian of
a hyperelliptic curve C, which is defined by an affine equation y2 = f (x) for a separable
polynomial f of odd degree. Let O denote the unique point at infinity of C and consider
the Abel–Jacobi map j : C → A that sends a point P of C to the class of P − O. There
is a corresponding theta divisor and a Heisenberg group H that sits in a short exact
sequence of group schemes over Kv (see [16, Section 5] and [10, Section 4]):

1→ Gm →H → A[2]→ 1. (3.1)

The desired quadratic form qv is then induced by the connecting homomorphism

H1(GKv , A[2])
δ
−→ H2(GKv , K̄

∗
v ) ⊂ Q/Z

corresponding to the short exact sequence (3.1). It is shown in [16, Lemma 5.8 and
comment after Lemma 5.2] and [10, Proposition 4.9] that this construction defines a
global metabolic structure on A[2].

Now assume that p > 2 is an odd prime. For each place v of K, there is a unique
quadratic form

qv(x) := 1
2 〈x, x〉v

inducing the local Tate pairing. It follows from [9, Theorem I.2.6] that for v < Σ,
H1

ur(GKv , A[p]) is a Lagrangian subspace of H1(GKv , A[p]). For the third part of the
definition, note that for any c ∈ H1(GK , A[p]),

∑
v qv(locv(c)) = 1

2
∑

v〈locv(c), locv(c)〉v
is a multiple of the sum of local invariants of an element of Br(K), hence is zero. �

Remark 3.2. It follows from the proof of the above proposition that if p is odd, then
there is in fact a unique global metabolic structure on A[p].

1When p = 2, the global metabolic structure depends on our choice of rational Weierstrass point for A.
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3.2. Selmer structures. A Selmer structure S for A[p] consists of an Fp-subspace
H1
S

(GKv , A[p]) of H1(GKv , A[p]) for every place v of K, such that H1
S

(GKv , A[p]) =

H1
ur(GKv , A[p]) for all but finitely many v. We say that S is Lagrangian if for every v,

H1
S

(GKv ,A[p]) is a Lagrangian subspace of H1(GKv ,A[p]) with respect to the canonical
global metabolic structure (see Proposition 3.1). The Selmer group associated to S is
defined as

H1
S

(GK , A[p]) := Ker
(
H1(GK , A[p])→

⊕
v

(H1(GKv , A[p])/H1
S

(GKv , A[p]))
)
,

where the sum runs over all places v of K. Note that the Selmer group is finite, since
it consists of cocycles which are unramified outside of a finite set of places. The
following result is taken from [3], although they only state and prove the claim when
A[p] has rank 2 over Fp.

Theorem 3.3. Suppose that S and S′ are Lagrangian Selmer structures for A[p]. Then

dimFp (H1
S

(GK , A[p])) − dimFp (H1
S′

(GK , A[p]))

≡
∑

v

dimFp (H1
S

(GKv , A[p])/(H1
S

(GKv , A[p]) ∩ H1
S′

(GKv , A[p]))) mod 2, (3.2)

where the sum is taken over all places v of K.

Proof. If necessary, enlarge Σ to a finite set of places Σ′ outside of which
H1
S

(GKv , A[p]) = H1
S′

(GKv , A[p]) = H1
ur(GKv , A[p]), and note that the right-hand sum in

(3.2) is finite since we only have to sum across v ∈ Σ′. Let V :=
⊕

v∈Σ′ H1(GKv , A[p]),
let locΣ′ : H1(GK ,A[p])→ V denote the direct sum of the localization maps, and define

H1
Σ′(GK , A[p]) := Ker

(
H1(GK , A[p])→

⊕
v<Σ′

(H1(GKv , A[p])/H1
ur(GKv , A[p]))

)
.

Now consider the following subspaces of the metabolic space (V,
⊕

v∈Σ′ qv):

• X :=
⊕

v∈Σ′ H1
S

(GKv , A[p]);
• Y :=

⊕
v∈Σ′ H1

S′
(GKv , A[p]);

• Z := locΣ′(H1
Σ′

(GK , A[p])).

In terms of these subspaces, the claim is equivalent to showing

dimFp (H1
S

(GK , A[p])) − dimFp (H1
S′

(GK , A[p])) ≡ dimFp (X/(X ∩ Y)) mod 2.

First note that

B := Ker
(
H1(GK , A[p])→

(⊕
v<Σ′

(H1(GKv , A[p])/H1
ur(GKv , A[p]))

)
⊕

(⊕
v∈Σ′

H1(GKv , A[p])
))
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sits in short exact sequences of the form

0→ B→ H1
S

(GK , A[p])
locΣ′

−−−→ X ∩ Z → 0,

0→ B→ H1
S′

(GK , A[p])
locΣ′

−−−→ Y ∩ Z → 0.

Therefore, we have

dimFp (H1
S

(GK ,A[p])) − dimFp (H1
S′

(GK ,A[p])) = dimFp (Y ∩ Z) − dimFp (X ∩ Z). (3.3)

So it suffices to show that the right-hand side of (3.3) is congruent modulo 2 to
dimFp (X/(X ∩ Y)). But, using [3, Proposition 2.4], this would be the case if all
subspaces X, Y , and Z are Lagrangian in V . X and Y are Lagrangian by assumption, so
it remains to show that Z is also Lagrangian. From the definition of Z, every element
z ∈ Z has the form z = locΣ′(x) for some x ∈ H1(GK ,A[p]) that is unramified away from
Σ′. Therefore, (∑

v∈Σ′
qv

)
(z) =

∑
v∈Σ′

qv(locv(x)) =
∑
all v

qv(locv(x)) = 0,

which shows that Z is an isotropic subspace of V . Finally, that Z is a maximal isotropic
subspace (i.e. Z = Z⊥) follows from global Poitou–Tate duality (see [12, Theorem
1.7.3(ii)]). �

3.3. Twisting. For any nontrivial element χ ∈ C(K), let Fχ be the cyclic degree p
extension of K corresponding to χ, that is, Fχ = K̄Ker(χ). Following [8, Section 5], let
Res(−) denote the Weil restriction functor, and define Aχ to be the kernel of the map

ResFχ

K (AF)→ A,

induced by the trace element in the group ring Z[Gal(Fχ/K)]. It is known that Aχ is
an Abelian variety of dimension (p − 1) · dim(A) over K, which coincides with the
quadratic twist of A by χ when p = 2.

Remark 3.4. Note that by Kummer theory, one can identify C(K) with K∗/(K∗)p, and
therefore for any nontrivial d ∈ K∗/(K∗)p, we can similarly define the twist Ad of A by
d. In this section, we make all definitions and statements for twists by characters and
omit the analogous definitions and statements for twists by elements of K∗/(K∗)p.

It is known that the ring of integers Z[µp] of Q(µp) acts on Aχ (see, for example,
[8, Lemma 5.4 and Theorem 5.5]). In particular, if p denotes the unique prime of
Z[µp] lying above p, then any uniformizer π of p acts on Aχ. Let Selπ(Aχ) denote the
π-Selmer group of Aχ, and put

dp(Aχ) := dimFp (Selπ(Aχ)).

There is a canonical GK-isomorphism A[p] � Aχ[π]. Indeed, for p = 2, where A is
supposed to be the Jacobian of a hyperelliptic curve C : y2 = f (x), it follows from the
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fact that A[2] is generated by classes {(xi, 0) − O} where xi runs through roots of f (x)
and O is the point at infinity of C, and for p > 2 it is shown in [6, Section 4]. This
leads to a canonical identification:

H1(GKv , A[p])
∼
−→ H1(GKv , Aχ[π]). (3.4)

Now we will associate a Selmer structure Sχ to any character χ ∈ C(K) as
follows. For any place v, let H1

Sχ
(GKv , A[p]) be the image under the Kummer

map of Aχ(Kv)/πAχ(Kv), where we have used the identification (3.4) to identify
H1(GKv , Aχ[π]) with H1(GKv , A[p]). The following result shows that the resulting
Selmer structure Sχ is Lagrangian.

Lemma 3.5. For any character χ in C(K), the Selmer structure Sχ defined above is
Lagrangian.

Proof. First assume that p = 2. Then each Aχ(Kv)/2Aχ(Kv) maps to a Lagrangian
subspace of H1(GKv , Aχ[2]) by [10, Propositions 4.9 and 4.11]. Then the GK-
isomorphism A[2] � Aχ[2] identifies the canonical global metabolic structures on
A[2] and Aχ[2] by [16, Theorem 5.10], so that the image of Aχ(Kv)/2Aχ(Kv) maps
isomorphically to a Lagrangian subspace of H1(GKv , A[2]).

Now assume that p > 2 is an odd prime. For each place v, H1
S1K

(GKv ,A[p]) is its own

orthogonal complement in H1(GKv , A[p]) by Tate’s local duality, while if χ , 1K , then
H1
Sχ

(GKv , A[p]) is its own orthogonal complement by [6, Proposition 4.4]. They are
then Lagrangian subspaces by the definition of the unique global metabolic structure
on A[p]. �

For any place v of K and any character χ ∈ C(K), define the local invariant δv(A, χ)
as

δv(A, χ) := dimFp (H1
S1K

(GKv , A[p])/(H1
S1K

(GKv , A[p]) ∩ H1
Sχ

(GKv , A[p]))).

Applying Theorem 3.3 to this situation gives the following result.

Theorem 3.6. For any character χ ∈ C(K),

dp(A) − dp(Aχ) ≡
∑

v

δv(A, χ) mod 2,

where the sum is taken over all places v of K.

3.4. Local conditions. In this final preliminary part, we will list a number of results
that allow us to compute the local invariants δv(A, χ) in certain situations. Fix a
nontrivial character χ in C(K) and a place v of K. Let F := K̄Ker(χ) be the associated
extension of K and Fw be the localization of F at a place w lying above v.

Lemma 3.7. Let N : A(Fw) → A(Kv) be the norm map. Then the identification
H1
S1K

(GKv , A[p]) � A(Kv)/pA(Kv) identifies

H1
S1K

(GKv , A[p]) ∩ H1
Sχ

(GKv , A[p]) = N(A(Fw))/pA(Kv).
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Proof. This is shown in [16, Proposition 2.17] for p = 2 and in [6, Proposition 5.2] for
odd p. �

Lemma 3.8. Let v be a finite place of K not lying above p at which A has good reduction
and F/K is unramified. Then H1

S1K
(GKv , A[p]) = H1

Sχ
(GKv , A[p]) and thus δv(A, χ) = 0.

Proof. It is known that the norm map N : A(Fw)→ A(Kv) is surjective under our
assumptions (see [5, Corollary 4.4]). The claim then follows from Lemma 3.7. �

Lemma 3.9. Let v be a finite place of K not lying above p at which A has good
reduction and F/K is ramified. Then H1

S1K
(GKv , A[p]) ∩ H1

Sχ
(GKv , A[p]) = 0 and thus

δv(A, χ) = dimFp (A(Kv)[p]).

Proof. The natural map A(Kv)/pA(Kv)→ A(Fw)/pA(Fw) is an isomorphism by [16,
Lemma 2.11(ii)] when p = 2 and by [6, Lemma 5.5(ii)] when p > 2. Hence
N(A(Fw)) = pA(Kv), so that δv(A, χ) = dimFp (H1

S1K
(GKv , A[p])) by Lemma 3.7. The

claim then follows by [16, Lemma 2.11(i)] when p = 2 and by [6, Lemma 5.4] when
p > 2. �

4. Periodicity of Selmer rank parity

In this section we use the preliminary results of the above section to show that the
p-Selmer rank parities of certain p-twists of the Abelian variety A are periodic with
an explicit period. Recall from the previous section that for any character χ ∈ C(K) or
any element d ∈ K∗/(K∗)p, Aχ or Ad denotes the corresponding twist, respectively. For
any place v of K, the local invariants δv(A, χ) or δv(A, d) are defined as in Section 3.3.

For any finite place v of K, let mv be defined as

mv :=


ev/p

p − 1
p + 1 if v|p,

1 otherwise,

where ev/p is the ramification index of v over p. Note that mv is an integer asQ(µp) ⊂ K
implies (p − 1)|ev/p. It can be easily checked that

∏
v|p vmv divides 8 (respectively, p2)

when p = 2 (respectively, p > 2).

Lemma 4.1. Let v be a finite prime of K. Then a nonzero element α in Ov is a pth power
provided that ordv(α − 1) ≥ mv.

Proof. For v not lying over p this follows from Hensel’s lemma. So let v|p and consider
an element α = 1 + βπn, where π is a uniformizer for v, n ∈ N and β ∈ Ov. Then we
have the binomial expansion

α1/p = (1 + βπn)1/p =

∞∑
i=0

(
1/p

i

)
βiπin.
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This series converges in Kv so long as the valuations of the terms appearing in the
right-hand series tend to infinity. Now, by definition we have(

1/p
i

)
=

1(1 − p)(1 − 2p) . . . (1 − (i − 1)p)
pii!

.

Using Legendre’s formula, we can bound the valuation of this term by

ordv

(1(1 − p)(1 − 2p) . . . (1 − (i − 1)p)
pii!

)
≥−

(
i +

i − 1
p − 1

)
ordv(p)

=−
ip − 1
p − 1

ev.

Hence, we want

lim
i→∞

(
in −

ip − 1
p − 1

ev

)
→∞.

But this holds precisely when n ≥ mv. �

Remark 4.2. The above statement can be proven using local class field theory, but the
given proof is direct and easy!

Corollary 4.3. Let v be a finite place of K. Then two units c, d ∈ O∗v have a pth power
ratio if and only if they project to the same element in (Ov/(πv)mv )∗/((Ov/(πv)mv )∗)p.

Proof. One direction is trivial. For the other, first suppose that c and d project to
the same element in Ov/(πv)mv . Then ordv(c/d − 1) ≥ mv and thus the ratio c/d is
a pth power by Lemma 4.1. The general case then follows as every pth power in
(Ov/(πv)mv )∗ has a pth power preimage in Ov, hence all of its preimages are pth powers
by the previous case. �

We are now ready to prove the following theorem, which leads to the periodicity of
p-Selmer rank parities. For ease of notation, we first introduce a function as follows.
For two integers a and b, (a ?| b) takes the value 0 if b is divisible by a and the value 1
otherwise.

Theorem 4.4. Let c, d ∈ K∗ be such that, for all finite places v in Σ:

• ordv(c) ≡ ordv(d) mod p;
• c/(πordv(c)

v ) and d/(πordv(d)
v ) have the same projection in (Ov/(πv)mv )∗/

((Ov/(πv)mv )∗)p.

If p = 2, assume further that c and d have the same signs at all real embeddings. Then

dp(Ac) − dp(Ad) ≡
∑

v|cd,v<Σ

((p ?| ordv(c)) + (p ?| ordv(d)))dimFp (A(Kv)[p]) mod 2. (4.1)
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Proof. As dp(Ac) − dp(Ad) = (dp(A) − dp(Ad)) − (dp(A) − dp(Ac)), it suffices by
Theorem 3.6 to compute ∑

v

(δv(A, d) − δv(A, c)).

For v in Σ, the assumptions on c and d allow us to apply Corollary 4.3 and deduce that
c = xpd for x ∈ K∗v . Therefore, for every v ∈ Σ, we have Ac � Ad over Kv and hence
δv(A, c) = δv(A, d).

For v < Σ, A has good reduction at v. On the other hand, v is unramified in Kv( p
√

c)
if and only if p|ordv(c). Therefore, using Lemmas 3.8 and 3.9, we have

δv(A, c) = (p ?| ordv(c))dimFp (A(Kv)[p]).

Applying the above equality for all v, and the same equalities with c replaced by d, we
get∑

v

(δv(A, d) − δv(A, c)) ≡
∑
v<Σ

((p ?| ordv(c)) + (p ?| ordv(d))) dimFp (A(Kv)[p]) mod 2.

But (p ?| ordv(c)) = (p ?| ordv(d)) = 0 when v does not divide cd. So we can restrict the
right-hand sum to v|cd, which completes the proof. �

Remark 4.5. In this remark, we show that the right-hand side of (4.1) can actually be
effectively computed. Indeed, for any v|cd outside of Σ, A has good reduction at v and
so we get a commutative diagram with exact rows as follows:

0 // Â((πv)) //

p

��

A(Kv) //

p

��

Ã(kv) //

p

��

0

0 // Â((πv)) // A(Kv) // Ã(kv) // 0

where Â is the formal group associated to A, Ã is the reduction of A at v, and kv is the
residue fieldOv/(πv). Since p is a unit at v, multiplication by p on Â is an isomorphism.
The snake lemma then implies that A(Kv)[p] � Ã(kv)[p], and so∑

v|cd,v<Σ

((p ?| ordv(c)) + (p ?| ordv(d))) dimFp (A(Kv)[p])

=
∑

v|cd,v<Σ

((p ?| ordv(c)) + (p ?| ordv(d))) dimFp (Ã(kv)[p]).

But for each of the finitely many v in the latter sum, calculating Ã(kv)[p] requires a
finite amount of calculation.

For p = 2 and a one-dimensional Abelian variety A over Q (i.e. an elliptic curve
over Q), we can pursue this even further as follows. Let y2 = f (x) be a Weierstrass
equation for A, where f is a nondegenerate cubic polynomial with integer coefficients.
Then for any prime of good reduction l, dimF2 (A(Fl)[2]) is odd if and only if f has
exactly one solution modulo l. But this happens if and only if (∆ | l) = −1, where ∆ is
the discriminant of f .
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Theorem 4.6. Let G := Gal(K(A[p])/K) and S := {σ ∈ G : dimFp (A[p]σ=1) is even}.
Suppose that either

(1) S = G, or
(2) p = 2 and [G : S ] = 2.

Then for all c and d satisfying the hypotheses of Theorem 4.4, dp(Ac) and dp(Ad) have
the same parity.

Proof. First note that, for v < Σ, K(A[p])/K is unramified at v and A(Kv)[p] =

A[p]Frobv=1. Thus, dimFp (A(Kv)[p]) is even if and only if Frobv ∈ S . So, if condition (1)
holds, dimFp (A(Kv)[p]) is even for all v outside of Σ and we are done by Theorem 4.4.

Now assume that condition (2) holds, and let K(
√
α) be the fixed field of S , where

α ∈ K. For each v < Σ, define βv := α/(πordv(α)
v ). Since K(A[2]) is unramified outside

of Σ, K(
√
α)/K is unramified outside of Σ as well, so βv ≡ αmod (K∗v )2. Then for any

v < Σ, dimFp (A(Kv)[p]) is even if and only if Frobv acts trivially on
√
α, which is if and

only if (βv | v) = 1. We have∑
v|cd,v<Σ

(
(2 ?| ordv(c)) + (2 ?| ordv(d))

)
dimF2 (A(Kv)[2]) ≡ 0 mod 2

⇐⇒
∑

v|cd,v<Σ

ordv(cd) dimF2 (A(Kv)[2]) ≡ 0 mod 2

⇐⇒
∏
v<Σ

(
βv

v

)ordv(cd)
= 1.

Now for each place v of K, let

ρv : K∗v → Gal(Kv(
√

cd)/Kv) ↪→ {±1}

be the local reciprocity map for the extension Kv(
√

cd)/Kv. For all v < Σ, we have
ρv(α) = ρv(βv) because the image of ρv has exponent dividing 2, and

ρv(βv) =

(
βv

v

)ordv(cd)

because the Legendre symbol is the only nontrivial quadratic character of (OK/v)∗.
Hence ∏

v<Σ

(
βv

v

)ordv(cd)
=

∏
v<Σ

ρv(α)

=
∏

v

ρv(α)

= 1

where ρv is trivial for all v ∈ Σ because then Kv(
√

cd) = Kv(
√

c/d) = Kv, and where the
last line follows by the Artin reciprocity law. �

https://doi.org/10.1017/S1446788716000306 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000306


[12] On Selmer rank parity of twists 327

Corollary 4.7. If A satisfies the hypotheses of Theorem 4.6, then for nonzero d ∈ OK

such that ordv(d) < p for all primes v ∈ Σ, the parity of dp(Ad) depends only on the
signs of d at all real embeddings (if p = 2) and the residue class of d modulo(∏

v|p

vmv+p−1
)( ∏

v∈Σ,v-∞p

vp
)
.

Remark 4.8. If A[p] ⊂ A(K), then hypothesis (1) of Theorem 4.6 is satisfied.

Remark 4.9. Let p = 2. Then by assumption, A is the Jacobian of a curve C defined
by an affine equation of the form y2 = f (x), where f (x) is an odd-degree separable
polynomial. Then hypotheses (1) and (2) of Theorem 4.6 are always satisfied. Indeed,
let deg( f ) = 2g + 1. We know that A[2] is a 2g-dimensional F2-vector space spanned
by divisors of the form [(ai, 0) − O] for ai a root of f (x) and O the point at infinity of
C, subject to the constraint

2g+1∑
i=1

[(ai, 0) − O] = 0.

Hence K(A[2]) = K(a1, a2, . . . , a2g+1) is the splitting field for f (x) over K, so that
there is a canonical inclusion Gal(K(A[2])/K) ⊂ S2g+1. By [16, Lemma 2.12],
dimFp (A[2]σ=1) is even if and only if σ ∈ S2g+1 consists of an odd number of orbits.
Since deg( f ) is odd, this is the case if and only if σ ∈ A2g+1. Hence, in the notation of
Theorem 4.6, S = Gal(K(A[2])/K) ∩ A2g+1, which is a subgroup of index 1 or 2.

Remark 4.10. In the situation of Remark 4.9, we additionally gain information about
the rank parity of twists. Indeed, the Cassels–Tate pairing on the Shafarevich–Tate
group is alternating (see [11, Corollaries 4 and 7], noting that A has a K-rational point
at infinity). Hence assuming the Shafarevich–Tate conjecture,

rank(Ad/K) ≡ d2(Ad) − dimF2 (A(K)[2]) mod 2.

Now dimF2 (A(K)[2]) is computable, using the above description of A[2]. Then since
the conditions of Theorem 4.4 partition the d ∈ K∗ into finitely many classes, we
can, assuming the Shafarevich–Tate conjecture, classify the rank parity of Ad/K as
a function of d after a finite calculation.

Example 4.11. When hypotheses (1) and (2) of Theorem 4.6 are not satisfied, it is
possible for its conclusion to fail. For example, let p = 3, K = Q(µ3), and E/K be
the elliptic curve y2 = x3 − 7x + 3. Using SAGE [13, 15], we find that E has bad
reduction at 2, −35ζ3 − 32, and −35ζ3 − 3. Also,

∏
v|p vmv divides 9, so c = 1 and d =

(1 + ζ3) · 9 · 2 · (−35ζ3 − 32) · (−35ζ3 − 3) + 1 satisfy the hypotheses of Theorem 4.4.
By Theorem 4.4 and Remark 4.5, d3(E) − d3(Ed) ≡

∑
v|d dimF3 (Ẽ(kv)[3]) mod 2. But

using SAGE again, we find that
∑

v|d dimF3 (Ẽ(kv)[3]) = 1.
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Table 1. 2-Selmer rank parities for positive squarefree twists of y2 = x3 − x.

d mod 8 1 2 3 5 6 7
d2(Ed) mod 2 0 0 0 1 1 1

5. Some examples

In this final section, we give two examples to demonstrate our results when p = 2
and A is an elliptic curve, which will be denoted by E. Note that hypotheses (1) and
(2) of Theorem 4.6 are always satisfied in this case by Remark 4.9.

Example 5.1. Let K = Q, and let E/Q : y2 = x3 − x be the congruent number curve.
We wish to classify the 2-Selmer rank parities of twists by positive squarefree d.
The only prime of bad reduction is 2, so by Corollary 4.7, the parity of d2(Ed) for
positive squarefree d depends only on the residue class of d modulo 16. In fact,
Theorem 4.6 shows that when d is also odd, d2(Ed) only depends on the residue class
of d modulo 8. By explicit computation using SAGE [13, 15], d2(E) ≡ d2(E3) ≡ 0
modulo 2 and d2(E5) ≡ d2(E7) ≡ 1 modulo 2, so all twists by 1 or 3 modulo 8 have even
2-Selmer rank while all twists by 5 or 7 modulo 8 have odd 2-Selmer rank. Similarly,
d2(E2) ≡ d2(E10) ≡ 0 modulo 2 and d2(E6) ≡ d2(E14) ≡ 1 modulo 2, so all twists of E
by 2 or 10 modulo 16 have even 2-Selmer rank while all twists by 6 or 14 modulo 16
have odd 2-Selmer rank. In summary, we have Table 1.

Note that because d2(E2) ≡ d2(E10) modulo 2 and d2(E6) ≡ d2(E14) modulo 2, the
2-Selmer rank parities have period 8 instead of 16. In particular, this gives a new proof
that, assuming the Shafarevich–Tate conjecture, all positive d ≡ 5, 6, 7 modulo 8 are
congruent numbers.

Example 5.2. Let K = Q(
√
−2), and let E/K : y2 + xy + y = x3 + x2 − 3x − 1 be the

elliptic curve in [3, Example 7.11]. The finite primes of bad reduction for E are
√
−2

and 29, with m√
−2 = 5 and m29 = 1. Then the conditions of Theorem 4.6 divide the

elements d of K∗ into 64 classes, indexed by a choice of:

• ord√
−2(d) mod 2 ∈ {0, 1};

• ord29(d) mod 2 ∈ {0, 1};

• d
(
√
−2)

ord√
−2(d) ∈

(O√
−2/(
√
−2)5)∗

((O√
−2/(
√
−2)5)∗)2 = {±1,±3,±(1 −

√
−2),±(3 +

√
−2)}; and

• d
29ord29(d) ∈

(O29/(29))∗

((O29/(29))∗)2 = {1, 7 + 12
√
−2}.

Using SAGE again, we find that the four classes in Table 2 have 2-Selmer rank parity
0, while the rest have 2-Selmer rank parity 1.

In summary, for squarefree d ∈ OK , d2(Ed) ≡ 0 mod 2 if and only if d is a unit at√
−2 and a square modulo (

√
−2)5.

This agrees with the distribution results of [3, Example 7.11], as follows. For real
numbers X > 0, let

C(K, X) := {d ∈ OK : d is squarefree and divisible only by primes q with Nq ≤ X}.
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Table 2. Classes of twists of E/Q(
√
−2) : y2 + xy + y = x3 + x2 − 3x − 1 with even 2-Selmer rank.

ord√
−2(d) mod 2 0 0 0 0

ord29(d) mod 2 0 0 1 1

d

(
√
−2)ord√

−2(d)
∈

(O√
−2/(
√
−2)5)∗

((O√
−2/(
√
−2)5)∗)2

1 1 1 1

d
29ord29(d) ∈

(O29/(29))∗

((O29/(29))∗)2 1 7 + 12
√
−2 1 7 + 12

√
−2

For X ≥ 2, half of the d ∈ C(K, X) are units at
√
−2. To count how many of these

units are squares modulo (
√
−2)5, let L be the ray class group of (

√
−2)5 over K, so

that (OK/(
√
−2)5)∗ � Gal(L/K) via the Artin map. Since |((O√

−2/(
√
−2)5)∗)2| = 2 and

|(O√
−2/(
√
−2)5)∗| = 16, it follows from the Chebotarev density theorem applied to L/K

that

lim
X→∞

|{d ∈ C(K, X) : d is a unit at
√
−2 and d ∈ ((O√

−2/(
√
−2)5)∗)2}|

|{d ∈ C(K, X) : d is a unit at
√
−2}|

=
1
8
.

Hence,

lim
X→∞

|{d ∈ C(K, X) : d2(Ed) is even}|
|C(K, X)|

=
1
16
,

as expected.
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