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Abstract
Given α > 0 and an integer � ≥ 5, we prove that every sufficiently large 3-uniform hypergraph H on n
vertices in which every two vertices are contained in at least αn edges contains a copy of C−

�
, a tight cycle

on � vertices minus one edge. This improves a previous result by Balogh, Clemen, and Lidický.
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1. Introduction
A k-uniform hypergraph H consists of a vertex set V(H) together with a set of edges E(H)⊆
V(H)(k) = {S⊆V(H) : |S| = k}. Throughout this note, if not stated otherwise, by hypergraph we
always mean a 3-uniform hypergraph. Given a hypergraph F, the extremal number of F for
n vertices, ex(n, F), is the maximum number of edges an n-vertex hypergraph can have with-
out containing a copy of F. Determining the value of ex(n, F), or the Turán density π(F)=
limn→∞ ex(n,F)

(n3)
, is one of the core problems in combinatorics. In particular, the problem of deter-

mining the Turán density of the complete 3-uniform hypergraph on four vertices, i.e., π
(
K(3)
4

)
,

was asked by Turán in 1941 [13] and Erdős [4] offered 1000$ for its resolution. Despite receiving a
lot of attention (see for instance the survey by Keevash [8]) this problem, and even the seemingly
simpler problem of determining π

(
K(3)−
4

)
, where K(3)−

4 is theK(3)
4 minus one edge, remain open.

Several variations of this type of problem have been considered, see for instance [1, 7, 12] and
the references therein. The one that we are concerned with in this note asks how large the min-
imum codegree of an F-free hypergraph can be. Given a hypergraph H and S⊆V , we define the
degree d(S) of S (in H) as the number of edges containing S, i.e., d(S)= |{e ∈ E(H) : S⊆ e}|. If S=
{v} or S= {u, v} (and H is 3-uniform), we omit the parentheses and speak of d(v) or d(uv) as the
degree of v or codegree of u and v, respectively. We further write δ(H)= δ1(H)=minv∈V(H) d(v)
and δ2(H)=minuv∈V(H)(2) d(uv) for the minimum degree and the minimum codegree of H,
respectively.

Given a hypergraph F and n ∈N, Mubayi and Zhao [11] introduced the codegree Turán number
ex2(n, F) of n and F as the maximum d such that there is an F-free hypergraph H on n vertices
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with δ2(H)≥ d. Moreover, they defined the codegree Turán density of F as

γ (F) := lim
n→∞

ex2(n, F)
n

and proved that this limit always exists. It is not hard to see that

γ (F)≤ π(F) .

The codegree Turán density is known only for a few (non-trivial) hypergraphs (and blow-ups
of these), see the table in [1]. The first result that determined γ (F) exactly is due to Mubayi [9]
who showed that γ (F)= 1/2, where F denotes the ‘Fano plane’. Later, using a computer assisted
proof, Falgas–Ravry, Pikhurko, Vaughan, and Volec [6] proved that γ

(
K(3)−
4

)
= 1/4. As far as

we know, the only other hypergraph for which the codegree Turán density is known is F3,2, a
hypergraph with vertex set [5] and edges 123, 124, 125, and 345 [5]. The problem of determining
the codegree Turán density of K(3)

4 remains open, and Czygrinow and Nagle [2] conjectured that
γ

(
K(3)
4

)
= 1/2. Formore results concerningπ(F), γ (F), and other variations of the Turán density

see [1].
Given an integer � ≥ 3, a tight cycle C� is a hypergraph with vertex set {v1, . . . , v�} and edge set

{vivi+1vi+2 : i ∈Z/�Z}. Moreover, we define C−
� as C� minus one edge. In this note, we prove that

the Turán codegree density of C−
� is zero for every � ≥ 5.

Theorem 1.1. Let � ≥ 5 be an integer. Then γ
(
C−

�

) = 0.

The previously known best upper bound was given by Balogh, Clemen, and Lidický [1] who
used flag algebras to prove that γ

(
C−

�

) ≤ 0.136.

2. Proof of Theorem 1.1
For singletons, pairs, and triples, we may omit the set parentheses and commas. For a hypergraph
H = (V , E) and v ∈V , the link of v (inH) is the graph Lv = (V \ v, {e \ v : v ∈ e ∈ E}). For x, y ∈V ,
the neighbourhood of x and y (in H) is the set N(xy)= {z ∈V : xyz ∈ E}. For positive integers
�, k and a hypergraph F on k vertices, denote the �-blow-up of F by F(�). This is the k-partite
hypergraph F(�)= (V , E) with V =V1∪̇ . . . ∪̇Vk, |Vi| = � for 1≤ i≤ k, and E= {vi1vi2vi3 : vij ∈
Vij and i1i2i3 ∈ E(F)}.

In their seminal paper, Mubayi and Zhao [11] proved the following supersaturation result for
the codegree Turán density.

Proposition 2.1 (Mubayi and Zhao [11]). For every hypergraph F and ε > 0, there are n0 and δ > 0
such that every hypergraph H on n≥ n0 vertices with δ2(H)≥ (γ (F)+ ε)n contains at least δnv(F)
copies of F. Consequently, for every positive integer �, γ (F)= γ (F(�)).

Proof of Theorem 1.1. We begin by noting that it is enough to show that γ
(
C−
5
) = 0. Indeed,

we shall prove by induction that γ
(
C−

�

) = 0 for every � ≥ 5. For � = 6, the result follows since C−
6

is a subgraph of C3(2). Hence, by Proposition 2.1, we have γ
(
C−
6
) ≤ γ (C3(2))= γ (C3)= 0. For

� = 7, note that C−
7 is a subgraph of C−

5 (2). To see that, let v1, . . . , v5 be the vertices of a C−
5 with

edge set {vivi+1vi+2 : i 
= 4}, where the indices are taken modulo 5. Now add one copy v′
2 of v2 and

one copy v′
3 of v3. Then v1v3v2v4v′

3v5v
′
2 is the cyclic ordering of a C

−
7 with the missing edge being

v′
3v5v

′
2. Therefore, if γ

(
C−
5
) = 0, then, by Proposition 2.1, we have γ

(
C−
7
) = 0. Finally, for � ≥ 8,

γ
(
C−

�

) = 0 follows by induction using the same argument and observing that C−
� is a subgraph of

C−
�−3(2).
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Figure 1. A nice picture (v, S, b, P).

Given ε ∈ (0, 1), consider a hypergraph H = (V , E) on n≥ ( 2
ε

)5/ε2+2 vertices with δ2(H)≥ εn.
We claim that H contains a copy of a C−

5 .
Given v, b ∈V , S⊆V , and P ⊆ (V \ S)2, we say that (v, S, b, P) is a nice picture if it satisfies the

following (see Figure 1):

(i) S⊆NLv(b), where NLv(b) is the neighbourhood of b in the link Lv.
(ii) For every vertex u ∈ S and ordered pair (x, y) ∈ P, the sequence ubxy is a path of length 3

in Lv.

Note that if (v, S, b, P) is a nice picture and there exists u ∈ S and (x, y) ∈ P such that uxy ∈ E,
then ubvxy is a copy of C−

5 (with the missing edge being yub)
To find such a copy of C−

5 inH, we are going to construct a sequence of nested sets St ⊆ St−1 ⊆
. . . ⊆ S0, where t = �5/ε2 + 1
, such that for 1≤ i≤ t there are nice pictures (vi, Si, bi, Pi) satisfy-
ing vi ∈ Si−1, |Si| ≥

(
ε
2
)i+1n≥ 1 and |Pi| ≥ ε2n2/5. Suppose that such a sequence exists. Then by

the pigeonhole principle, there exist two indices i, j ∈ [t] such that Pi ∩ Pj 
= ∅ and i< j. Let (x, y)
be an element of Pi ∩ Pj. Hence, we obtain a nice picture (vi, Si, bi, Pi), vj ∈ Si and (x, y) ∈ Pi such
that vjxy ∈ E (since xy is an edge in Lvj). Consequently, vjbivixy is a copy of C

−
5 in H.

It remains to prove that the sequence described above always exists. We construct it recur-
sively. Let S0 ⊆V be an arbitrary subset of size εn/2. Suppose we already found the sets Si
for 0≤ i< k≤ t, with the respective nice pictures (vi, Si, bi, Pi) for 1≤ i< k. Now we want to
construct (vk, Sk, bk, Pk). Pick vk ∈ Sk−1 arbitrarily. The minimum codegree of H implies that
δ(Lvk)≥ εn and thus for every u ∈ Sk−1, we have that dLvk (u)≥ εn. Observe that

∑
b∈V\vk

|NLvk (b)∩ Sk−1| =
∑

u∈Sk−1\vk
dLvk (u)≥ εn

(|Sk−1| − 1
) ≥

(ε

2

)k+1
n2

and therefore, by an averaging argument there is a vertex bk ∈V \ vk such that the subset Sk :=
NLvk (bk)∩ Sk−1 ⊆ Sk−1 is of size at least |Sk| ≥

(
ε
2
)k+1n. Let Pk be all the pairs (x, y) ∈ (V \ Sk)2

such that for every vertex v ∈ Sk, the sequence v, bk, x, y forms a path of length 3 in Lvk . Since
|Sk| ≤ εn/2 and δ(Lvk)≥ εn, it is easy to see that |Pk| ≥ (εn/2)(εn/2− 1)≥ ε2n2/5. That is to say
(vk, Sk, bk, Pk) is a nice picture satisfying the desired conditions. �

3. Concluding remarks
A famous result by Erdős [3] asserts that a hypergraph F satisfies π(F)= 0 if F is tripartite (i.e.,
V(F)= X1∪̇X2∪̇X3 and for every e ∈ E(F) we have |e∩ Xi| = 1 for every i ∈ [3]). Note that if H
is tripartite, then every subgraph of H is tripartite as well and there are tripartite hypergraphs H
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with |E(H)| = 2
9
(|V(H)|

3
)
. Therefore, if F is not tripartite, then π(F)≥ 2/9. In other words, Erdős’

result implies that there are no Turán densities in the interval (0, 2/9). It would be interesting to
understand the behaviour of the codegree Turán density in the range close to zero.

Question 3.1. Is it true that for every ξ ∈ (0, 1], there exists a hypergraph F such that
0< γ (F)≤ ξ ?

Mubayi and Zhao [11] answered this question affirmatively if we consider the codegree Turán
density of a family of hypergraphs instead of a single hypergraph.

Since C−
5 is not tripartite, we have that π(C−

5 )≥ 2/9. The following construction attributed
to Mubayi and Rödl (see e.g. [1]) provides a better lower bound. Let H = (V , E) be a C−

5 -free
hypergraph on n vertices. Define a hypergraph H̃ on 3n vertices withV(H̃)=V1∪̇V2∪̇V3 such that
H̃[Vi]=H for every i ∈ [3] plus all edges of the form e= {v1, v2, v3} with vi ∈Vi. Then, it is easy
to check that H̃ is also C−

5 -free. We may recursively repeat this construction starting withH being
a single edge and obtain an arbitrarily large C−

5 -free hypergraph with density 1/4− o(1). In fact,
those hypergraphs are C−

� -free for every � not divisible by three. The following is a generalisation
of a conjecture in [10].

Conjecture 3.2. If � ≥ 5 is not divisible by three, then π
(
C−

�

) = 1
4 .
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