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FAITHFUL, IRREDUCIBLE ^REPRESENTATIONS FOR GROUP
ALGEBRAS OF FREE PRODUCTS

by M. J. CRABB and C. M. MCGREGOR
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Let G be the free product of groups A and B, where \A\ > 3 and \B\ > 2. We construct faithful, irreducible
•-representations for the group algebras C[G] and l'(G). The construction gives a faithful, irreducible
representation for F[G] when the field F does not have characteristic 2.

1991 Mathematics subject classification: 22D10, 22D20.

1. Introduction

Let G be the free product of groups A and B, where \A\ > 3 and \B\ > 2. Let IF be
any field and let C be the complex field. Denote by F[G] the group algebra over F
consisting of the finite sums of the form Y11 ai9i (" e N, a, € F, g, € G), and denote by
i\G) the group algebra over C consisting of the infinite sums of the form £i°ai0<
(a,eC.0,eG,2:r> |«i l<oo).

The primitivity of F[G] was established by Formanek in [1] using comaximal ideals.
In certain special cases, faithful, irreducible representations have been constructed: in
[5] for C[G] and ^'(G) where G is the free group on a countable set with at least two
elements; and by Irving in [2] and [3] for F[G] in the cases where A is infinite and
residually < \B\, and where A and B are finite with B cyclic. A related topic was dealt
with by Paschke and Salinas in [6] where it was shown that the C*-algebra C'r(G)
generated by the regular representation of G is simple and therefore primitive.

Here we construct faithful, irreducible ^-representations n of C[G] and lx(G) ° n inner
product spaces L. In particular, this guarantees the primitivity of £'(G) which was not
covered in [1]. The method also gives explicit faithful, irreducible representations of
F[G] when F is any field not of characteristic 2.

Our construction technique has two variations which we refer to as the character
method and the identification method. The essential difference lies in the way they yield
irreducibility. We use the first in Sections 2 and 3 to deal with C[G] in two cases when
d2 — 1 for all d e B. Then B is abelian and so admits a non-trivial homomorphism into
C, i.e. a character. The second method, which is applied in Sections 4 and 5 to the
two remaining C[G] cases, involves identifying certain pairs of basis vectors from the
earlier cases. The constructions for l\G) are essentially the same as those for C[G] but
the proofs require modification. These are dealt with in Section 6.
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560 M. J. CRABB AND C. M. MCGREGOR

For g = dtd2... dm e G\{\}, where d, e A\{1} (i odd) and d, e B\{\] (i even), or vice
versa, define

= du e(g) = dm, A(g) = m, /?(1) = £(1) = 1, 1(1) = 0.

We call dtd2.. .dm the reduced form of g. A subset H of G, containing 1, is right closed
if right segments of g G H are also in /J, i.e. ge f f with reduced form dt.. .dm implies
dk...dmeH(k=l,...,m).

In each case we construct a subset W of G which acts as an orthonormal basis for
L. So expressions of the form £ °W where a, e C and y, e G may represent vectors in
L or elements of the algebra C[G] or il(G). For x = JZ01!^ an<l y = 5Z^/Wi m L, where
a,, fa e C and w, are distinct in W, the inner product on L is given by

For / = X! a.0. i n QG] o r ^'(G). w h e r e a. e C and 3, 6 G, define

It is with respect to this involution that n is a ^representation, i.e. for x, y e L,

For a subset AT of the vector space L, write —A" for {—x: x e X}, ±X for
X U (—X), lin(A') for the linear span of X, and supp(X) for the support of X, i.e. the
set of w e W such that, for some x e X, (x, w) / 0.

2. Character method - first case

Assume that d2 = 1 for all rf e B and fix b e B\{1}. Assume also that there exists
a e A with a2 / 1. Fix this a and let c — ba. Construct the inner product space L
consisting of sums of the form $Z" ofjW, (n e N, a, G C, W, G W) with orthonormal basis

where

T = {g(ba2f-l)/2 :neN,geG, X(g) < 2n, e(g) e A},

S = {giba2)*"-"'2 :neN,geG, Kg) = In, e(g) eA,g^ (ba2)"},

UB = {ckv:veS,k> 0}, UA = aUB,

VA = {a'u : a' e A\{1, a], u e UB), VB = {b'u : b' G B\{\,b], u G UA}.
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Observe that 1 e T (take n — 1 and g = 1). Also, /?(w) e B for all w e S, and so for all
weUB.lt follows that 0(w) e A for w e t/̂  U VA and j?(w) e B for w e KB. The sets T,
t^> ^ B . VA a n d *B a r e pairwise disjoint except that TC\UB — S. Also, UB\S = bUA.
Since c e S (take n = 1 and g = c) it follows that c* 6 £/B\S for k > 1. We further define
l/B c UB and ^ c F^ by

UB = {c2" : n e N} and VA* = a2UB.

Lemma 2.1. The sets Wand Tare right closed.

Proof. Let w e W have reduced form dx... dm. It is enough to consider the right
segment w' = d2... dm. This is straightforward for w e UAU (UB\S) UVAUVB and for
w = g(baY"-])/2 e T with k{g) > 0. If w = (fca2)"("-')/2 = (ba2)"-1(ba2)(n-1)('-2)/2, where
n > 2, then w' = g'(fea2)(""l)(""2)/2. where A(g') = 2« - 3. Hence w' e T. •

Lemma 2.2. Le/ w G W. Then

either (A\{\))w <ZW or (^\{l})w c G\W, and

either (B\{l})w c W or (B\{l})w c G\W.

Proof. Let w = 0(ba2)n("~1)/2 e T. Without loss suppose that g ^ (ba2)". For
deAUB, \k(dg) - k(g)\ < 1, and if k{dg) = In + 1 then dweUAUVA. Hence dw e W if
k(g)>0. If A(gr) = O (i.e. g = \) and n > l then (X\{l})wCT, and writing
w = (ba2)"-1^2)*"-1""-2'72 we see that (B\{l})w c T. If g = 1 and n = 1, then w = 1, so
that O4\{1})1 = 'AU} c T and (J3\{1})1 = B\{1} c G\W.

Let w e l | , U VA, so that w = a'u with a' e /1\{1} and u e UB. If d e A then iw =
da'u eUAUVAUUB with the last case if d~l = a'. Similarly, dw e W if w e (UB\S) U VB

and d e B.
If w G UA and d e B\{1} then dw€UBU VB. If w e t/B and d e /1\{1} then dweUAU VA.
Let w e VA and d e B \ { l } . So w = a'u with a ' e / l \ { l , a } and u e UB. Now iw =

da'u ^ T since its right segment a'u e P^. Since a'u & UA> dw & UB U KB. Since jS(dw) e B,
dw ^ L̂  U VA. Hence dw ^ W.

Similarly, if w e VB and d G A\{1} then dw ^ W. • D

Since d2 = 1 for all d e B, we can fix a homomorphism j ; : B - > ( - l , l ) c C with
X(b) — — 1. For d e A U B, let 7t(d): L -> L be the linear mapping defined, for w e W,
by

if dw e W,
n(d)w = { x(d)w if w e V*A and d e B\{1},

in other cases when dw & W.
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Note that 7i(l) is the identity operator on L. For weFJ and dx, d2 e B we have

n(dx)n(d2)w = n(dx)x(d2)w = x(d,)x(d2)w = x(dld2)w = Jr(d,d2)w.

It is straightforward to verify that n(dl)n(d2) — n(dtd2) if dt and d2 are both in A or
both in B. So we may extend n to G and thence to a representation of C[G].

Let weW with w = dm...d2d, in reduced form. Since d{eW, 7t(d,)l = dx and,
similarly, 7i(<i2<i,)l = d2dx. Continuing, it follows that n(w)l = w. Also,

Tt(w-')W = 7t(w-')7t(w)l = 71(1)1 = 1 (WE W). (2.1)

From the proof of Lemma 2.2 we have, for d e A U B and w e W,

n(d)w = •

dw if dw e W,
w if d e y4 and w € VB,
w ifdeBandwe(VA\v;)\J{\},
X(d)w if d e B and w 6 K;,

(2.2)

which separates the cases when dw ^ W.
For rf e A U B, n(d)T(^~') = t(l) and (̂<i) acts on Ĥ  as a permutation followed by

scalar multiplication by ±1. Therefore n(d) is a unitary operator on L, 7t(d~') = n(d)*
and 7t is a *-representation of C[G].

Proposition 2.3. 77ie representation n is faithful.

Proof. Let / e C[G]\{0}. Then f = '£,"xigi where a, 6 C and & e G. Choose an
integer k > max{A(gf,) : i — 1 n}. Consider w = g(ba2)k(k~x)a € T where 3 e G is such
that 2(gf) = k and £(#) € A. For i = 1, . . . , n, we have 0 < X(gtg) < 2k and e(g,g) — e(g).
So gtw e T and each right segment of gtw is in T. Hence n(g,)w — gtw and
n(f)w = / w ^ 0 since/ww"1 = / # 0. Thus 7t(/) / 0. •

Notes 2.4. (1) With the notation of the above proof, if gt are distinct in G then
gjW are distinct in T. This will be used in the proof of Proposition 6.1.

(2) In the proof, the restrictions imposed on A and B at the beginning of Section 2
are not invoked. Hence, the proposition holds for the cases in Sections 3, 4 and 5. The
same is true of the next lemma.

Lemma 2.5. (i) Let w e UB. Then n(c)w e UB\S.

(ii) Let w e T. Then n(c")w € UB for all sufficiently large n.

Proof, (i) This follows directly from the definitions which give n(c)w = cw.
(ii) Write w = g^a1)^^'2 with k(g) < 2m, e(g) e A and g / (ba2)m.
(a) Let k(g) = 2m. Then w e S and n(c")w = cnw e UB for all n 6 N.
(b) Let X(g) be even and < 2m. Then f}(g) e B, and k = m — j 2(#) gives TC(C(C)W =
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ckw e S and n(c")w e UB for all n > k, by (a).
(c) Now suppose that k{g) is odd. Then fi(g) e A and we can write w = c~pw' where

p > 0, )S(w') e X and w / c~V with g € G and /?(#') € /I. Since each right segment of w
is in T, 7t(cp)w = d'w = w' and w' e T. Hence we can reduce to the case w e T,
/?(w) e A and w / c~V with g e G and /?(#') e .4. If A(w) > 3, c does not cancel
completely into w and so /?(cw) e B. Since A(cw) < k(w) + I, cw e T and so 7t(c)w = cw.
Now cases (a) and (b) give n(c")w e UB for all sufficiently large n.

Finally, if l(w) — 1 then w = a ' e / l \ { l } . If a' / a"1 then 7t(a)w = aa' and
7t(c)w = fcaa' 6 T which gives n(c")w e UB for all sufficiently large n, by (a) and (b).
Also, n(a)a'1 = 1 and n(c)a'1 = n(b)\ = 1. Then n(cr)l = J e UB for all r € N which
gives the result in the last case. •

We now define

F? = {a~'u : S E N , ( I - V {I,a), u e UB),

V? = {a'u : a' e /4\{a' : - c o < t < 1}, u e t/B}.

Thus K, = K? U KT and F? n V? = 0. Note that V? may be empty.

Lemma 2.6. For d e {a, b],

and n{d)VB c K8.

Proof. Consider w e K̂ " so that w = a'u where a' e A\{a' : - c o < t < 1} and
u e UB. Then 7t(a)w = aa'u and aa' e A\{a' : - c o < t < 1}. Hence aa'u e V%°. Also,
n(b)w = ±w e ±Ff\

The case of VB follows directly from the definitions together with the assumption
that b2 — 1 which guarantees that, for b' e B\{b], bb' ^ 1. •

Lemma 2.7. Le( w e [/, U ^J. 7%e/i Tt(c")w e ±(t/B U KT)/<"- a// sufficiently large n.

Proof, (i) Assume a has finite period p. Let w e UA U V%. Write w = aru with
1 < r < p and u e l/B. Then n(c)w = n(b)ar+iu - ±ar+iu if ar+1 / 1. Continuing, we
have

n(cp-r)w = ±n(b)a?u = ±n(b)u = ±bu.

Now, if u e S then bu € T and Lemma 2.5 gives 7:(c")w e ±UB for all sufficiently large
n. If w e UB\S then u = ckv with fe € N and v e S. Hence, when w = dckv, we have
n(cp~r)w = ±bu = iac*"1!). Continuing, we have, for some m e N , that 7r(cm)w = ±m>.
Then the first part gives n(c")w e ±UB for all sufficiently large n.

(ii) Assume a has infinite period. If w = au e UA, where u e UB, then

https://doi.org/10.1017/S0013091500020526 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020526


564 M. J. CRABB AND C. M. MCGREGOR

n(c)w = n(b)a2u = ±a2u e ±VA
X

a n d s o n(c")w e ±V™ f o r a l l n e N, b y L e m m a 2 . 6 . I f w = a~'u e V%, w h e r e s e N a n d
u 6 UB, then n(c)w — n(b)al~*u = a]~'u if s > 1. Continuing, we have n(c')w = n(b)u =
bu. If u e S then b« e T, and if u e l/8\S then bu e t/^. Hence, the above gives
7r(c")w G ±(l/B U V?) for all sufficiently large n. •

Proposition 2.8. Let X be a finite subset of W and let x0 e X. Then there exists
h e C[G] such that n(h)x0 = 1 and n(h)x = Qfor all x e X\{x0}.

Proof. Consider first the case X c.UsU V™ and x0 = c"" e X. Write the distinct
elements of XnUB as cm\ . . . , c"1", c"lv c"'vfi, where m, e N, nyeNU{0} and
Vj e S\{c}. Consider X, = 7t(cp)X, where p e N. Since n(c)V? c ±1^° and n{c)UB c C7B,
we have AT, c l/B u (±V?) and

For each 7, c^"7^ / ck for any fc and so d^^Vj & U*B. Choose p such that p + w, is the
only power of 2 among the p + m,. Then y , n i T , = {c'"1"'"1} = Xx n (±C/*fl). Put A"2 =
7i(fl2)X, = n(f£<*)X. Then X2 c ± ^ since n(a2)UB c K,, and n(a)KT £ KT- Also
x0 = c " a gives aVx0 6 X2 n VA. If x e X and n(a1c")x e ±V*A then K(a-2)n(a2c")x =
7i(cp)x e X, n (±1/B). Hence TC(CP)X = ^XQ = n(c")x0 which gives x = x0. So, if x e A"\{x0}
then 7c(oV)x € i C ^ X ^ ) , and hence, by (2.2), 7t(l - h)7t(aV)x = 0. Also

7t((l - b)aV)x0 = TE(1 - fc)a2c'x0 = 2aVx0 = 2a2cp+m',

since aVx0 e VJ. Hence, if we take h = i(a2cp+l"')"1(l - i )aV, we have 7t(fc)x0 = 1 and
n(h)x = 0 for all x e X\{x0}.

Now consider any finite X c W and any x0 e X. By replacing X with 7r(xo ')X we
may assume, by (2.1), that x0 = 1. By Lemmas 2.5, 2.6 and 2.7 we have, for some
pen,

X3 = n(c")X c ±(UB U V? U 7B).

Then

X4 = 7i(l - a)XJ c HnCt/4 U(/,U F,,00)

since n(a)UB = UA and 7i(l - a)VB = {0}. By Lemmas 2.6 and 2.7, for some q € N,

AT5 = 7r(c«)X4 c lin(t/B U 7~).

So, putting /J, = c'(l — a)^, we have
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X5 = n(ht)X = {n(cq+p)x - 7t(c«acp)x : x e X}.

Suppose that cq+p e s u p p ^ ) . Then, for some xeX, n(cq+p)x = ±cq+p or n(dlacf)x =
±cq+p. In the first case, applying n(c~q~p) gives x = 1. In the second case, applying
n(a~*c-p) gives n{cq)x = ±a']c" e X3 n(±V%), which is impossible. Thus x , = c " " p

appears in supp(X5) only as n(cq+p)l. The first part now gives h2 e C[G] such that
7t(/i2)x, = 1 and 7i(/i2)x = 0 for all x 6 supp(Z5)\{X|}. Also, 7i(/i,)l = x, ± x2 with
x2 € supp(X5)\{x,} and 7i(/i,)x e lin(supp(X5)\{x,}) if x e X\{\}. Hence 7i(/i2/j,)l = 1 and
n(h2hx)x = 0 for all x e X\{1}. So h = h2hx has the desired effect. •

Corollary 2.9. The representation n is irreducible.

Proof. Let x = £ " a,w, G L with a, G C, a, ^ 0 and w, distinct in W. By Proposition
2.8, there exists h € C[G] such that n(/i)w, = 1 and 7t(h)w, = 0 for i e {2 , . . . . n}. Hence
7i(̂ i)x = a, 1. Since 7t(w)l = w for all w e W, 1 in L is cyclic. Hence x is cyclic and it
follows that n is irreducible. •

3. Character method - second case

Assume that d2 — 1 for all d e A and all d e B. Fix alta2e A\{\] with a, / a2, and
fix b G B\{1}. Let a3 = ata2 and observe that if [i,j, k) = [I, 2, 3} then a,a; = ak. Modify
the construction of W in Section 2 as follows. In the definitions of T, S, UA, t/B, Kx,
VB, U'B and P̂ J1, where a2 appears replace it with a2, replace the other occurrences of a
with a,, and take c to be bax. Thus, in this case, UA — a{UB and V\* = a2U*B. For
i = 2, 3, let Kj = a,t/B and K̂  = K,\(J^2 U V\). Define 7t as in Section 2. Then, arguing
as before, we have that n is a *-representation of C[G].

Proposition 3.1. The representation n is faithful.

Proof. Follow the proof of Proposition 2.3, replacing a2 with a2. •

Lemma 3.2. Let w e T U UA. Then n(c")w e UBfor all sufficiently large n.

Proof. For w G T, the proof follows that of Lemma 2.5.
Let w = axc

kv e UA where k > 0 and v e S. If k > 0 then n(c)w = a^'v, which gives
7i(c*)w = a}v and 7r(ct+1)w = toeT. Apply the first part. •

Lemma 3.3. For d e {a,, b) and w e VA,

n(d)VA <^±VA, n(d)VB C VB, n(c2)w = ±w.

Also,
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<c)V} c Vl, n(c)V\ c ±Vl 7t(c)V'A<zVA.

Proof. These follow directly from the definitions. D

Proposition 3.4. Let X be a finite subset of W and let x0 e X. Then there exists
h e C[G] such that n(h)x0 = 1 and n(h)x = Ofor all x e X\[x0}.

Proof. Without loss, take x0 = 1. By Lemmas 3.2 and 3.3, for some p e N ,

X, = n(c")X c ±(UB UF,U VB).

As in Proposition 2.8, choose p such that supp(AT,) n UB — {cp}. Then

X2 = niaJX, c ±(UA U UB U V} U VA U FB).

In view of Lemmas 3.2 and 3.3, again as in Proposition 2.8 we can choose q sufficiently
large, and here odd, such that

X3 = n(c")X2 c ±([/B u V\ U V'A U FB)

and such that supp(X3) n U*B — 0. Then

Z4 = n{a2)X, C ±(1/, U Ki U ^ U KB)

and

X5 = 7t(l - b)X, c l i n ^ Ul/jU FB),

since supp(X4) C\VA* = 0. Then

X6 = 7i(a3)Z5 c Hn(K? U Ki U FB).

Suppose « e N and a2c
n e supp(AT6). Then one of 7i(a3)a2c" = atc" and n(baJ)a2c'' —

c"+I is in supp(X4). Since supp(AT4) n UB — 0, we have a,c" 6 supp(X4). Hence
n(a2c~''a2)aic

n e ±supp(X,), i.e. c" e suppCX,). For m e N, if cm e X, then its image
in X6 is i ^ i f l j c " * ' . Hence

c"1 e supp(X,) •«• a2c
m e supp(AT6).

Since supp(X,)P\U*B = {cp}, we have supp(X6)n V*A — {a2d\, and a2c* in supp(A"6)
appears only in the image of 1 in X. Let t; = a2c

p. By Lemma 3.3,

X7 = n(l - b)X6 c Hn({»} U VB),
Xs — n{\ - a,)Z7 c lin({u - atv}).
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It is straightforward to verify that 1 in X maps to v — a^^ in X6, then to 2v in X-,
and to 2(v — a,i>) in Xs. Other elements of X map into lin((T^\VJ) U VB) in X6, then to 0
in Xs. We have 7i(l — b)(v — a}v) = 2u since a,» = ajC* G KAKT- Hence

/J = -D (1 — &)(1 — "i)0 — b)a^\ — b)a^q^2^

gives 7t(/i)l = 1 and n{h)x = 0 for all x e X\{\). •

Corollary 3.5. T/ie representation n is irreducible.

Proof. Follow the proof of Corollary 2.9. •

4. Identification method - first case

Assume there exists a e A with a2 ^ 1 and i e B with infinite period. Fix such a
and b and let c = ba. Define sets T, S, UA, UB, VA, VB and U*B exactly as in Section 2.
Define also

VAB = {a2u :ueUB}<zVA and VBA = {b2au : u e £/B} c KB.

We identify each element of K̂ g with an element of ±VBA. Specifically, for u e UB, we
identify a2u with Xub

2au, and write

a2u = /lub
2aM)

where Xu e R is given by

1 ifuGl/B\[TB >

- 1 if u G U'B.

Thus, for all u 6 UB, a2u = ±b2au. Here we take L to be the inner product space with
orthonormal basis

W = T U UA U UB U (K,\K,B) U (KB\KB,) U K«.

For d e /4 U B, let n(d) : L -»• L be the linear mapping defined, for w e WX^a, by

dw if rfw e W,
n(d)w - ,

I w if dw # W,

and, for w = a2u = kub
2au e t^B where u e UB, by

. . frfa2w if d 6 /1 ,

1 Xudb2au it deB.
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Lemma 2.2 remains valid, so we may extend n to G and thence to a representation of
C[G]. As in Section 2, for d e A U B, n(d) is a unitary operator on L, and n is a *-
representation.

Proposition 4.1. The representation n is faithful.

Proof. Follow the proof of Proposition 2.3. •

It follows, directly from the definitions, that

7 r ( l - a> = 0 (a'eA,weVB\VBA),

n(\-b')w = 0 (b'eB, we VA\VAB),

, , [0 if w e UB\UB,
n(a2 - b2a)w = \ (4.1)

I 2a2w if w e UB.

Lemma 2.5 remains true since vectors in VAB do not appear in the calculation, and
the proof is the same.

Define subsets of VA and VB as follows.

V* = {a-'u : s € N, a~s £ {1, a, a1}, u e UB),

V? = {a'u : a' e A\{as:-oo < s <2),u e UB),

V£ = {Zrsw : s e N, ue UA],
Kfl°° = {b'u : b' € B\{b': -oo < s < 2}, u e l/J.

These four sets are disjoint. Their union is (^\K4fl)U(KB\7B/4). Note that V% and ^°°
differ slightly from the corresponding sets in Section 2.

Lemma 4.2. For d e {a, b),

Proof. Consider w = a'u e V^ where a' e /4\{as: -oo < s < 2} and u e UB. Then
7t(a)w = aa'u e F̂ 00 since aa' e /4\{aJ : —oo < s < 2}. Also, n(b)w — w. The case w e KB°°
is similar. •

Lemma 4.3. (i) Let w e UA U V%. Then n(c")w e ±VB
X for all sufficiently large n.

(ii) Let w e K? U VAB. Then n(c")w € ±(t/s U KD/or a// sufficiently large n.

Proof, (i) Consider w — au G UA where u e t/B. Then
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it(c)w = n(b)a2u = ±n(b)b2au = ±b3au e ±VB
X

since 9 G B\{bs : s < 2}. Hence 7i(c")w e ±VB
X for all n G N.

Consider w = b~'ueVJ} where S G N and u e UA. Then n(a)w = w and 7r(c)w =
7t(b)w = ft'"5u. Continuing, we get n(c')w = w. By the first part, 7r(c")w G ±V£° for all
n>s+l.

(ii) Consider w = a"5u where s G N, u e UB and, if a has finite period p, s < p - 2.
This includes any w € V%, together with w G VAB in the case of a having finite period.

Take first the case u e S. If s > 1 then 7t(c)w = 71(6)0'~*u = ax~'u, and continuing we
get n(c')w = n(b)u = bu, which also holds if s = 1. Since bu G T, this gives 7t(c")w e [/B
for all sufficiently large n.

Now suppose that u 6 C/B\S, so that w = a~sw = a~scfeu where IceN and u € S. As
above,

7t(cJ)w = bu = b2ack-lv = i a V - ' t ; G iF^s .

Now, 7c(c)a2cfc~'i7 = 7t(fc)aV~'t>. If a has infinite period then jt(ft)a3c*"'«; = a'c*"1!; e Ff3,
and so 7i(c")w e ±KT for all n > s. If a has finite period then 7r(c*)w is of the same form
as ±w, with k — 1 in place of /c. Repetition gives some m e N such that
7r(cm)w = ±a2v. Now the first part gives n(c")w e ±UB for all sufficiently large n.

Finally, if a has infinite period and w € VAB then w — a2u with u e UB. Hence,
n(c)w = a*u G V? and 7t(c")w e K~ for all n G N. D

Proposition 4.4. Le/ X be a finite subset of W and let x0 e X. 7%e/i //zerg exists
h e C[G] JWC/I f/ia/ T:(/I)X0 = 1 anrf n(h)x = Ofor all x e X\{x0}.

Proof. Without loss, take x0 = 1. By Lemmas 4.2 and 4.3, and results corresponding
to Lemma 2.5, for all sufficiently large p G N,

AT, = %{c")X c ±(UB U V? U V£°).

The vector 1 in X has image c" in A",. As in Proposition 2.8, we choose p such that
supp(A,) nirB = {c"). Let hx = \{a2 - b2a)c". Then JI(JI,)1 = a2c" = -b2ac". Consider any
XGAT\{1} . Since c" G supp(A,) can arise only from 1 G X, we have that n(c?)x e
±((UB\UB) U l^° U KB°°). Since n{a2 - b2a)w = 0 if w G UB\U'B, and using Lemma 4.2,
we deduce that 7t(fc,)x G linCl^0 U ̂ ° ) - Let /i2 = (1 - a)(l - b). If w G Kf then
7i(l - b)w = 0. If w G Kg30 then 7t(l - fc)w e lin(FB°°) and n(h2)w = 0. Hence, n(h2)w = 0 if
w G KT U VS". Also, since a V = -fc^c ' , 7i(b)aV = -fe3ac" and hence

7i(li2)aV = n(l - a)(a2c" + b'ac^) = a2c" - t?<*.

Let Ji3 = ^2/i,. Then, by above, n(h})\ = a V - a V and 7I(/J3)X = 0 for all x G A"\{1}.
Also, 7t(a-2)(aV - a V ) = d>-ac". Next,
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7 t ( c - V = n(a-lb-l)ac" = n(a~l)b-1 af = b^acf e V%
and

n{c-')b-'acp = n{aTxb^)b-latf = n{a-l)b-2acr = b^ac".

Continuing, we get n(c~p)a(f = b~f'ad". Since n(c~p)cp = 1, we have i ( 0 ( c p - o c 0 =
1 - b-'ad". Then n(l - a)(l - b^ac") = I - a, and n(b)(l - a) = 1 - c since rc(fc)l = 1.
Further, since a2c = b2ac and a2c2 = —b2ac2,

n((a2 - b2a)c)(l - c) = n(a2 - b2a){c - c2) = -2a2c2.

c-"cr% Then n(h)l = -2a2c2Let /J4 = (a2 - b2a)cb(\ - a)c-"cr%. Then n(h4)l = -2a2c2 and 7i(/i4)x = 0 for all
i 2 2 'x € X\{1}. Thus, if we take h = -i(a2c2)"'/i4, we get n(h)l = 1 and n(h)x = 0 for all

Corollary 4.5. The representation n is irreducible.

Proof. Follow the proof of Corollary 2.9. •

5. Identification method - second case

Assume that there exist a e A and b e B with finite periods pa > 2 and pb > 2,
respectively. Construct L and define n as in Section 4. Then, arguing as before, we have
that 7i is a *-representation of C[G].

Here we define

K? = {a'u :2<s<Pa,ue UB],

V% = {b'au :2<s<pb,ue UB],

V™ = {a'u : a' e AW :seZ},ue UB],

Kfl°° = {b'u : V e B\{b' :seZ),ue UA],

so that, as in Section 4, VA\VAB = K? U V™ and VB\VgA - V% U VB°°. Note that Lemma
4.2 holds in the present case.

Proposition 5.1. The representation n is faithful.

Proof. Follow the proof of Proposition 2.3. •

Lemma 5.2. (i) Let w e V% u VAB. Then n(c")w e ±UBfor all sufficiently large n.
(ii) Let weUAL)V^. Then n{c2ph-*)w = w.

Proof, (i) Follow the proof of Lemma 4.3 (ii) in the finite period case, where the
definitions of V% and V^ agree with those in this section.
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(ii) First, consider w = au e UA where u e UB. Then n(a)w = a2u = ±b2au, and so
7i(c)w = ±n(b)b2au = ±biau, and tfau e V% if pb > 3. If 2 < s < pfc then Tr^b'au =
nib)n(a)bsau = n(b)bsau = b^lau. It follows that nCc""2)w = ±bnau = ±au = ±w, and
this also holds if pb = 3. Hence TC(C2H~4)W = w.

Secondly, if w e 1^ so that w — b'au where 2 < s < pb and u e UB, then as above,
n(c»-)w = bPhau = aueUA. So 7r(c2;"-4)w = n^-'Wc'-^au = n(c'-'"')n(c2''b-A)au =
n{cs'Ph)au = w. D

Proposition 5.3. Let X be a finite subset of W and let x0 6 X. Then there exists
h e C[G] such that n(h)x0 = 1 and n(h)x = Ofor all x e X\{x0}.

Proof. Without loss, take x0 — 1. By Lemma 5.2, for all sufficiently large p e N ,

xl = n(cp)xc ^

If we replace p by p + k(2pb — 4) where k e N, then each element of supp(X,) n ([/^ U ¥%)
is unaltered while the elements of s u p p ^ , ) n (C/B U V™ U K~) remain in UB U VJ° U t£°.
Since ad1 & UA, we may choose p such that acp & supp(Z,). Then

X2 = TC(1 - a)X, C linCL^ U UB U KJ,

since 7:(1 - a)w = 0 if w e V% U KB°°, and 7t(a)w e VAB <ZVA if w e C/̂ . By Lemma 5.2,
we may choose q to be a sufficiently large multiple of 2pb — 4 that

X3 = n(c")X2 c lin(t/, U (l/B\S) U V?)

since t/B is mapped into UB\S and each element of UA is mapped to itself. Then

since n(b)(UB\S) c ±I^ B . By Lemma 5.2, we may choose r e N such that

and then

X6 = JI(1 - b)X5 c lin(C/B U K,B)

since, again here, n(b)(UB\S) c i J^B. For all sufficiently large s e N,

X7 = n^Xi c lin(C/B).

Thus A", = n{hx)X where

/i, = c'O - b)c'bc\\ - ay.

https://doi.org/10.1017/S0013091500020526 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020526


572 M. J. CRABB AND C. M. MCGREGOR

Let u = cp+r+5+l and suppose that u e supp(A"7). This arises only from n{c~')u =
cp+r+l e supp(X6) which, in turn, can come from either cp+r+l or n{b~x)c?+r^ equalling
acp+r in supp(Xs). Since supp(X5) n [ / , = 0, only cp+'+1 e supp(X5) is possible. Then this
is the image only of 7i(Ocl>+r+l = c^1 in supp(Ar

4), then of n(J>-l)cp+l = a<? in
supp(X3), and so of K(c~q)ac1' = acf in supp(A"2), since n(cq) fixes the elements of UA.
Now acp e supp(X2) comes from ad" or n(a'1)acp equalling (f in s u p p ^ , ) . Since
ad" $ supp(AT,), (f is the only precursor in X,, and this arises only from n(c~p)cp = 1 in X.

For x e W, n{h^)x is a linear combination of four basis vectors, one of which is
n(h2)x where h2 = -c$Jr'bcqacp. The above shows that if xeA"\{l} then u&
supp({7r(h|)x}) while n(h2)l — —u, as may be easily verified, and the other vectors in
n(/j,)l involve elements of l/B\(u}.

As in Proposition 2.8, choose s sufficiently large that supp(A"7) n U*B — {u}. Then
n((a2 - b2a)hx)x = 0 if x € X \ { l } , since then supp({7i(/i,)x}) c UB\U'B, while ;c((a2-
b2a)/j,)l = -7i(a2 - b2a)u = -2a2u by (4.1). Thus, taking

gives n(h)\ = 1 and n(h)x = 0 for all xgX\ ( l ) . •

Corollary 5.4. The representation n is irreducible.

Proof. Follow the proof of Corollary 2.9. •

6. Extending to tl(G)

Here we consider the algebra l\G) which consists of the sums J^'a,3, (a, e C,
9i e G, ^X |a,| < ex). The four cases for G dealt with in Sections 2 to 5 still apply but,
for the most part, they can be treated together. The construction of L and the
definition of n are the same as in these earlier sections except that L now consists of
the sums of the form x = J2T °W- (a. e c- w. e w< T.T KI < °°) wi th IWI = T.T M
when w, are distinct.

Since, for d e A U B, n(d) acts on W as a permutation followed by multiplication
by ± 1 , it follows that

||n(ff)w|| = l, \\n{g)x\\ = ||x|| ( g e G . w e W , x € L ) . (6.1)

Then arguing as before, we have that n is a ^representation of l\G).

Proposition 6.1. The representation n is faithful.

Proof. Let / = £ " «,•&•€ £'(G) with %•, e C, a, ^ 0 and g, distinct in G. Choose
n e N such that Y17+i M < lail- Let w be as in the proof of Proposition 2.3 with
corresponding modifications for the other cases. Then
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n+l n+l

and, in view of Note 2.4 (1),

Hence

N/HI >

Thus n(f) ± 0. D

The elements li defined in the proofs of Propositions 2.8, 3.4, 4.4 and 5.3, when
regarded as elements of i\G), have the property that

\\n(h)w\\ < 8 (we W). (6.2)

[In some cases, 8 can be replaced by a smaller integer.] For example, in the case of
Proposition 4.4, we have

h = -\{a2c2Y\a2 - b2a)cb{\ - a)C-pa'2{\ - a)(l - b)\{a2 - b2a)c"

where a, = ±1 e C and gt € G. Hence, using (6.1), for w e W,

\\n(h)w\\ < \(\\n(gi)w\\ + •••+ | | 7 t ( g 3 2 ) w | | ) < 8 .

The assumption in the proof of Proposition 4.4 that x0 = 1 does not affect this
argument.

Proposition 6.2. The representation n is irreducible.

Proof. Let x — £ " a,w, e L with a, e C, a, ^ 0 and w, distinct in W. Let e > 0.
Choose n e N such that x = ]T", |aj < e|a, |/8. Let h be as in the proof of Corollary
2.9 with corresponding modifications for the other cases. Then

= a l ai7t('')vvi-
n+l
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Hence, using (6.2),

1 n+1 n+1 ' >' n+1

Since 7r(w)l = w for all w 6 W, it follows that 1 in L is cyclic. This together with the
above gives x topologically cyclic. Hence, since L is complete, every non-zero vector in L
is cyclic (see, for example, McGregor [4, proof of Theorem 5]) and n is irreducible. •

7. Concluding remarks

(1) Combining the results of Sections 2 to 6, we have constructed faithful,
irreducible *-representations of C[G] and lx{G) for all cases of G the free product of
groups A and B with \A\ > 3 and \B\ > 2. The cases not dealt with explicitly all have
\B\ > 3 and are covered by interchanging the roles of A and B.

(2) The constructions and conclusions obtained for C[G] and £'(G) hold for R[G]
and the corresponding t1 -algebra over R. They also hold, apart from the *-condition,
for ¥[G] where F is any field not of characteristic 2.

(3) The character method can be used for some cases covered by the identification
method. The essential requirement for the character method is the existence of a non-
trivial homomorphism from B to C, and this does not require d2 — 1 for all d e B.

(4) In all cases, the space L is a subspace of the Hilbert space 12(W) consisting of
the sums of the form £ ~ a.w, (a,- e C, wt e W, ~£™ |a,|2 < oo).
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