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Linear instability and resonance effects in
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Opposition flow control is a robust strategy that has been proved effective in turbulent
wall-bounded flows. Its conventional set-up consists of measuring wall-normal velocity
in the buffer layer and opposing it at the wall. This work explores the possibility of
implementing this strategy with a detection plane in the logarithmic layer, where control
could be feasible experimentally. We apply control on a channel flow at Reτ = 932,
only on the eddies with relatively large wavelengths (λ/h > 0.1). Similarly to the buffer
layer opposition control, our control strategy results in a virtual-wall effect for the
wall-normal velocity, creating a minimum in its intensity. However, it also induces a
large response in the streamwise velocity and Reynolds stresses near the wall, with a
substantial drag increase. When the phase of the control lags with respect to the detection
plane, spanwise-homogeneous rollers are observed near the channel wall. We show that
they are a result of a linear instability. In contrast, when the control leads with respect
to the detection plane, this instability is inactive and oblique waves are observed. Their
wall-normal profiles can be predicted linearly as a response of the turbulent channel flow
to a forcing with the advection velocity of the detection plane. The linearity, governing
the flow, opens a possibility to affect large scales of the flow in a controlled manner, when
enhanced turbulence intensity or mixing is desired.

Key words: turbulence control, channel flow

1. Introduction

One of the important aspects of fluid dynamics research from a practical point of view
is the control of the near-wall turbulence in wall-bounded flows. Industrial devices
where such flows appear can benefit significantly from reduction in friction, or, when
necessary, increase in turbulent mixing. In the last three decades, significant effort has
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been made to understand the mechanisms of control in canonical turbulent flows (including
flows in pipes, channels and boundary layers). One of the most successful control
strategies is to interfere with the near-wall turbulent cycle, suppressing the formation of
streamwise vortices close to the wall and their interaction with streaks of streamwise
velocity. This strategy can be implemented via modification of the wall surface by
riblets (García-Mayoral & Jiménez 2011), active modification of the near-wall flow by
blowing and suction (opposition control; Choi, Moin & Kim 1994), or near-wall spanwise
oscillations (Quadrio & Ricco 2004, among others). Despite the theoretical progress,
practical implementation of these strategies is scarce. In the case of riblets, their technical
maintenance is difficult and their relative efficiency reduces with increasing Reynolds
number (Spalart & McLean 2011). Spanwise wall oscillations give promising 40 % drag
reduction (Quadrio & Ricco 2004), but there is evidence that secondary circulation at
the sidewalls impedes reaching this value in experiments (Straub et al. 2017). Opposition
flow control consists of measuring wall-normal (or spanwise) velocity at the detection
plane yd and opposing it at the wall, and gives up to 20 % friction drag reduction (Choi
et al. 1994). This robust control method creates a ‘virtual-wall’ effect, manifested by a
minimum in the turbulent intensity profile of the controlled velocity component. The
virtual wall expels small quasi-streamwise vortices away from the wall (Jiménez 1994) and
reduces the vertical transport of streamwise momentum near the wall, diminishing drag
(Hammond, Bewley & Moin 1998). Kim & Lim (2000) identified a possible linear physical
mechanism of this reduction, relating the suppression of the spanwise variation of velocity
in opposition control to weakening of the linear coupling between wall-normal velocity
and vorticity near the wall. The control strategy proposed by Choi et al. (1994) soon
became a benchmark for optimal flow control strategies (Bewley, Moin & Temam 2001),
as well as other physics-motivated methods employing wall-based sensors of shear stress
or vorticity fluxes (Lee et al. 1997; Koumoutsakos 1999). Early experiments approached
its implementation by blocking sweep and ejection events near the wall with wall-normal
jets (Rebbeck & Choi 2001, 2006), but these were limited to just one spatially localized
pair of a detector and an actuator.

The principal difficulties in the practical implementation of opposition flow control
are the actuation times and the need for flow reconstruction. Consider, for example, the
classic set-up of Choi et al. (1994). It requires observations of the velocity field in the
buffer layer (y+ ≈ 10) and actuation at the wall on the same scales. Here superscript ‘+’
denotes wall units, defined in terms of kinematic viscosity ν and friction velocity uτ . The
characteristic energetic length scales at this height are λ+x ≈ 1000 (streamwise) and λ+z ≈
100 (spanwise). The passing time of these eddies is of the order of milliseconds and they
are too fast to be detected and opposed in experiments due to the resolution restrictions
of the measuring sensors and actuators. Also, a grid of sensors and actuators with spacing
less than a millimetre between them renders the control scheme impracticable. This
draws our attention away from the buffer layer to the logarithmic layer control, where
turbulent structures, with lifetimes of the order of seconds, could indeed be detected and
controlled. The recent work of Ibrahim, Guseva & Garcia-Mayoral (2020) showed that
complete removal of large scales in the logarithmic layer results in a positive, outward
shift of the mean velocity profile, equivalent to drag reduction. Also, the recent Monte
Carlo experiment of Pastor, Vela-Martin & Flores (2020) suggests that a single actuator,
localized in space and located above y+ = 50, could reduce drag by 3–4 %, by opposing
vertical motions near the wall.

The second difficulty in implementing opposition flow control is that, unlike in
experiments or numerical simulations, information about the flow above the wall is usually
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Figure 1. (a) Instantaneous snapshot of wall-normal velocity at y/h = 0.1. (b) Wall-normal velocity from
panel (a) filtered with a low-pass Gaussian filter on the controlled wavelengths (shaded) with the LSE
reconstruction from Encinar & Jiménez (2019) on top (contours). Reτ = 932.

not available in the real world. This constrains our knowledge about the velocity field
above the wall to flow reconstructions based only on the wall measurements (Oehler,
Garcia-Gutiérrez & Illingworth 2018; Encinar & Jiménez 2019). The main problem of
such flow reconstructions is the lack of fidelity far from the wall. The wall is impacted
mostly by attached eddies, and their size grows with the distance from the wall. The linear
stochastic estimation (LSE) of Encinar & Jiménez (2019) showed that, the farther from
the wall, the less information about small-scale flow structure is accessible. Only scales
of wall-normal velocity comparable to the channel height h can be reconstructed with less
than 50 % error in the logarithmic layer. As an illustration of this problem, figure 1(a)
shows a typical instantaneous snapshot of the wall-normal velocity at y/h = 0.1, where
small structures exist alongside large ones. In figure 1(b), that snapshot has been filtered
with a Gaussian low-pass filter at the length scales λx/h > 1 and λz/h > 0.6. On top of
it, the contours of the LSE reconstruction done with the algorithm of Encinar & Jiménez
(2019) are added, and they coincide with the large velocity structures reasonably well.

Despite the need of a control strategy for the structures in the logarithmic layer of
wall-bounded turbulent shear flows, its implementation is non-trivial. It has long been
known that the performance of opposition control deteriorates if the detection plane is
lifted above an optimal location of y+

d = 15 (Choi et al. 1994; Hammond et al. 1998),
which can even result in drag increase. Hammond et al. (1998) related this effect to the
inability of the control to establish a virtual wall by allowing high-momentum fluid to
be drawn into the region between the detection plane and the wall. This effect can be
understood by considering linear mechanisms supporting turbulence in the flow, since a
significant part of the dynamics originates from the interaction of turbulent fluctuations
with the mean shear through transient growth (Butler & Farrell 1992; Del Alamo &
Jiménez 2006).

For a channel flow subject to opposition control, Lim & Kim (2004) showed that the
transient growth weakened when yd was located in the buffer layer close to the wall, and
significantly increased if yd was chosen too far away from it. Chung & Talha (2011) showed
that this effect could be mitigated partially by decreasing the amplitude of actuation. Lee
(2015) later introduced an upstream spatial shift between detection and actuation which
improved control performance.

On the other hand, modifying the boundary conditions at the wall can also affect
the stability properties of the flow. Introducing wall transpiration permits momentum
exchange in the y-direction, often destabilizing otherwise linearly stable flows. An early
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study of drag increase in turbulent flows over porous surfaces relates the appearance of
large spanwise rollers to an inviscid Kelvin–Helmholtz instability (Jiménez et al. 2001).
The same effect destroys the drag-reducing behaviour of riblets when their characteristic
size and spacing are more than 10–15 wall units (García-Mayoral & Jiménez 2011). Toedtli,
Yu & McKeon (2020) reported the presence of spanwise rollers and linear instability in a
channel flow with opposition control of the buffer layer for certain parameters of actuation.

Furthermore, Jiménez et al. (2001) opens a discussion about another mechanism of
drag increase in turbulent flows with transpiring walls, which can be active even if
the flow is linearly stable. If the flow is forced at a frequency close to the real part
of one of its linear eigenvalues, the response of the system can be quite large. The
‘response–forcing’ framework was generalized for turbulent pipe flow by the resolvent
analysis of McKeon & Sharma (2010), who proposed to decompose the velocity field into
a series of optimal response and forcing modes with different frequencies, and to rank
them by their importance. Later, resolvent analysis was adapted to the study of opposition
control by Luhar, Sharma & McKeon (2014), who found that opposition control with the
detection plane at y+

d = 10 suppresses slow response modes localized near the wall, but
amplifies faster detached modes. To counteract the latter, Luhar et al. (2014) proposed to
employ a phase lag φ between sensor and actuator. It was shown by Luhar et al. (2014)
that negative phases, equivalent to shifting control downstream with respect to ‘classic’
opposition, result in some improvement of performance. On the contrary, shifting control
positively in phase (i.e. upstream) results in unwanted increase of drag.

Toedtli, Luhar & McKeon (2019) confirmed the capability of the resolvent model to
predict friction drag in direct numerical simulations (DNS), showing that an optimal
negative phase φ = −π/4 allows the detection plane to be slightly shifted up to y+

d = 24.
The results of Luhar et al. (2014) and Toedtli et al. (2019) are also in agreement with
the conclusion of Pastor et al. (2020) that locating a localized sensor upstream improves
control performance. This improvement is probably produced by cancelling an additional
streamwise lag between the control and the detection plane, introduced by the downstream
advection of velocity structures by the flow. The advection velocity of the large flow scales
is approximately equal to the mean velocity at their wall-normal location (Jiménez 2018).

The motivation of this work is to extend opposition flow control to the large scales
of the flow with the detection plane in the log layer, i.e. to the scales that can be both
observed and controlled. We analyse the effect of the control on the large scales with DNS
in fully turbulent channel flow (Reτ = 930). We explore the possibility to affect the eddies
of relatively large wavelengths (λ/h > 0.1) by acting from the wall, and thus to alter the
friction created by their presence. As a side note, we do not attempt to perform linear
optimal flow control. There exists a substantial body of work on linear optimal control for
flows that are close to transition to turbulence (Bewley & Liu 1998), but application of this
theory to fully turbulent flows is not straightforward. The aim of the optimal linear control
is to return the flow back to a (low-drag) unstable state. The turbulent mean profile is
the result of nonlinear interactions of turbulent flow fluctuations, and is a high-drag state.
Linearization around it will not necessarily yield the same results as in near-transitional
flows. Nevertheless, Oehler & Illingworth (2020) applied this technique to the turbulent
mean profile in a channel and found that the best performance is achieved when the
actuator and sensor planes are both located at y/h = 0.3. While this location is feasible
for measurement, it is not very practical for actuation, which is most easily implemented
at the wall.

This paper is structured as follows. We begin by describing the computational set-up
and the numerical methods used in the DNS and the linear stability analysis in § 2.
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Then § 3 presents the DNS results of the flow affected by the large-scale control. In § 4 we
show how the presence of the control affects the linear stability of the simplified channel
flow without viscosity, including the theoretical implications of imposing the control.
A more realistic linear model including turbulent viscosity is analysed in § 5. In § 6 we
exploit linearized flow dynamics to explain part of the DNS results from § 3. To clarify the
rest, we employ amplified responses of the linearized flow to the control in § 7. Finally, § 8
presents a discussion of the results and conclusions.

2. Numerical experiments

2.1. Direct numerical simulations
To assess the possibility of large-scale flow control, we simulate turbulent flow in a
channel with DNS. In the following, u, v, w (and ωx, ωy, ωz) denote the velocity (and
vorticity) components in the streamwise (x), wall-normal (y) and spanwise (z) directions,
respectively. Our numerical scheme is similar to that of Kim, Moin & Moser (1987). We
solve equations for the Laplacian of the wall-normal velocity ∇2v and for the wall-normal
vorticity ωy, which are coupled in the nonlinear terms. The advantage of this formulation is
that the pressure is eliminated from the equations, and no boundary conditions for pressure
are needed. The computational box is periodic in the wall-parallel directions, and this
periodicity allows solutions to be represented in the form of Fourier harmonics in x and z,

v(x, y, z, t) =
∑
kx,kz

v̂(t, y, kx, kz) exp(i(kxx + kzz)),

ωy(x, y, z, t) =
∑
kx,kz

ω̂y(t, y, kx, kz) exp(i(kxx + kxz)),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.1)

where v̂ and ω̂y represent complex Fourier coefficients of particular Fourier modes,
and t represents time. Wavenumbers kxn = 2πn/Lx and kzm = 2πm/Lz are proportional
to integer multiples n and m, and inversely proportional to the length and width of
the computational domain Lx and Lz. In the wall-normal direction, y, the equations
are discretized with compact finite differences. Unlike in Kim et al. (1987), the flow
is integrated in time with fourth-order Runge–Kutta scheme. For more details on the
numerical method, see Flores & Jiménez (2006).

In the code formulation, the flow mass flux is kept constant and the pressure gradient
is allowed to vary. This way, if a control is applied, the total shear stress τw =
−u′v′ + ν(∂u/∂y), the friction velocity uτ = √

τw/ρ and the friction Reynolds number
Reτ = uτ h/ν vary too (here ρ is the fluid density). This becomes important later for
the definition of the friction factor Cf = τw/(0.5ρU2

b), which is used to assess control
performance; here Ub = (1/2h)

∫ h
−h U dy denotes the bulk velocity. Since uτ changes, the

normalization of the flow in wall units also changes. The majority of our DNS results
are non-dimensionalized with the respective uτ of each case, unless stated otherwise. The
uncontrolled flow parameters are identified as uτ0, Reτ0, Cf 0, etc.

Further details of the computational set-up can be found in table 1. The friction Reynolds
number of the uncontrolled base flow Reτ0 = 932 is relatively large, allowing enough
statistics to be gathered in the logarithmic layer. The size of the computational domain
is 2πh × πh, which is large enough to accommodate the structures prevalent at the
target location for control yd = 0.1h (Flores & Jiménez 2010; Lozano-Durán & Jiménez
2014). The longest wavelengths λx,z = 2π/|kx,z| that our simulations can accommodate are
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Channel flow parameters Control parameters

Reτ0 932 Control gain |A| [0, 1]
Lx/h × Lz/h 2π × π Streamwise shift x0/(πh) [−1, 1]
Nx, Ny, Nz 512 × 385 × 512 Controlled wavelengths λx,z/h [π/3, ∞], [π/5, ∞]
�x+, �z+, �y+

max 11.5, 5.7, 7.7 Controlled wavenumbers kx,zh [0, 6], [0, 10]
— Detection plane height yd/h 0.1

Table 1. Parameters of the DNS and control: Lx and Lz are streamwise and spanwise sizes of the computational
domain, respectively, compared to the half-height h of the channel; Nx, Ny and Nz are the numbers of grid points
in physical space in each direction; and �x+, �z+ and �y+

max are the spatial resolutions in wall units before
dealiasing. The phase of the complex coefficient A is related to the streamwise shift x0 in (2.3). The (0, 0) mode
was not controlled (E00

vv = 0 from continuity).

(2π, π) in the x- and z-directions, respectively, with kx,z denoting a wavenumber pair. The
two left columns of table 1 give information about the mesh in collocation space, and the
coarsest mesh resolutions in the three directions, indicating that the baseline simulations
are well resolved.

We implement a variation of the opposition control set-up that affects only large scales
of the flow. At each time step of the simulation, the wall-normal velocity v is recorded at
the detection plane yd/h ≈ 0.1, which corresponds to y+

d ≈ 100 for the base uncontrolled
flow. Although here we focus on the effects of full opposition and do not employ LSE,
we use the conclusions from the LSE analysis of Encinar & Jiménez (2019) to guide
our choice of controlled length scales. Their flow reconstructions suggest that only the
largest structures of v with wavelengths of π/3 < λx/h < ∞ and π/5 < λz/h < ∞ can be
reconstructed with at least 50 % accuracy at this wall-normal location (figure 1b). Thus the
measurement and actuation are performed only for Fourier modes with these wavelengths,
with the corresponding wavenumbers kx,z given in table 1. To avoid direct forcing of the
mean flow, the mode with kx, kz = (0, 0) is omitted in the control.

In the next step, this measurement is used to oppose the vertical velocity. The control
law can be written as a boundary condition at the wall,

v̂w(t, kx, kz) = −Av̂(t, yd, kx, kz), (2.2)

where the control coefficient in general can be a complex number: A = |A| exp(iφ). The
control gain |A| shows the relationship between the magnitudes of the control input and
output. The gain |A| and the phase φ of the control coefficient are parameters that can be
optimized separately for each flow mode, as suggested by Luhar et al. (2014). The phase of
control can be interpreted as a shift of the Fourier harmonic in the streamwise direction:
φ = −kxx0. In an average sense, positive values of x0 correspond to a rightwards shift
along the x-axis of the control with respect to the detection (i.e. downstream), and negative
ones to a leftward shift (i.e. upstream). In summary,

v̂w(t, kx, kz) = −|A| exp(iφkx)v̂(t, yd, kx, kz) = −|A| exp(−ikxx0)v̂(t, yd, kx, kz), (2.3)

where a different phase φkx is assigned to each kx to make sure that the same shift x0
is applied to all harmonics, and the control wave train moves as a whole backwards or
forwards in x with respect to the measurement. See table 1 for the compilation of control
parameters.

Relating streamwise and phase shifts requires some care. For example, any non-zero
phase shift will automatically become a spanwise shift for modes with kx = 0, kz /= 0,
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which is detrimental for control and causes drag increase (Chung & Sung 2003). In our
implementation, however, the modes with kx = 0, kz /= 0 are not affected by phase shifts,
since their phases are zero for any x0 in (2.3). In addition, an instantaneous phase shift
with mixed arguments in x and z can arise due to the lack of kz → −kz symmetry in the
instantaneous DNS flow, which can be removed by setting equal actuation amplitudes for
kz and −kz modes (Toedtli et al. 2019). As this results in leaving the mixed-argument
term uncontrolled, and the DNS flow is nevertheless statistically invariant to kz → −kz,
we did not implement this correction here. However, it could be potentially important
for quantitative comparison of the friction behaviour between the controlled DNS and
linearized flow models (Toedtli et al. 2019).

2.2. Linearized flow
For linear analysis we employ the numerical method from Schmid & Henningson (2012),
augmented with turbulent viscosity (Reynolds & Hussain 1972; Del Alamo & Jiménez
2006; Pujals et al. 2009). The linearized Navier–Stokes operator, written in terms of
wall-normal velocity v and wall-normal vorticity ωy = ∂u/∂z − ∂w/∂x, transforms into
the Orr–Sommerfeld and Squire equations,[(

∂

∂t
+ U

∂

∂x

)
∇2 − U′′ ∂

∂x
− νt( y)∇4 − 2ν′

t( y)∇2 ∂

∂y
− ν′′

t ( y)
(

2
∂2

∂y2 − ∇2
)]

v = 0,

(2.4)[
∂

∂t
+ U

∂

∂x
− νt( y)∇2 − ν′

t( y)
∂

∂y

]
ωy = −U′ ∂v

∂z
, (2.5)

with the mean turbulent velocity profile U( y) and boundary conditions (2.2),
supplemented by ∂v/∂y|y=0,2h = 0 and ωy|y=0,2h = 0. The primes in (2.4) and (2.5)
denote wall-normal derivative, and v at the wall is a function of v at the detection plane in
(2.2).

Note that the linearization of the Navier–Stokes equation was done around the
uncontrolled flow profile, although the mean velocity profile changes when control is
applied. The eddy viscosity profile νt, suggested by Cess (1958), is an analytic function
of y. The idea behind it is that, for every spatial harmonic, the background turbulence
acts directly through Reynolds stresses and indirectly through the turbulent mean profile.
Turbulent viscosity, introduced into the viscous term, is merely a closure for the mean
Reynolds stresses (see Appendix A). Periodicity of the flow in wall-parallel directions
allows one to represent solutions in the form of Fourier harmonics (2.1) with wavenumbers
kx and kz as the input parameters of the problem.

It is common to study (2.4) and (2.5) by introducing a forcing term, accounting for
turbulent fluctuations, nonlinearities or noise (McKeon & Sharma 2010), and to simplify
the notation by introducing operators D ≡ ∂/∂y, LOS and LSQ, the vector of variables q
and κ2 = k2

x + k2
z as

q =
(

v̂

ω̂y

)
, M =

(
κ2 − D2 0

0 1

)
, L =

⎛
⎝ LOS 0

ikz
dU
dy

LSQ

⎞
⎠ . (2.6a–c)

See Appendix A for more details. Introducing the unknown forcing f , we can write (2.4)
in matrix form,

M
∂

∂t
q = −Lq + f . (2.7)
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We consider solutions of the form q = qr( y)e−iωt, implying the forcing f = qf ( y)e−iωt.
Equation (2.7) can be rewritten as

− iωMqr = −Lqr + qf . (2.8)

Note that there are two ways of representing the role of the boundary condition (2.2). In the
first one, we could absorb the boundary conditions in the forcing f , leaving the original
force-less system and its eigenvectors untouched. However, on a closer look, (2.2) affects
not only the values of v̂ near the wall, but also the shape of the eigenvectors above the
wall. Therefore, here we constrain the eigensolutions of (2.8), as well as its responses to
the forcing qf , to the condition v̂|y=0,2h = −Av̂|y=yd,2h−yd by modifying the operators M
and L, as shown in Appendix B.

If there is no forcing, qf = 0, the problem is converted into a generalized eigenvalue
problem ωqr = M−1(−iL)qr and the complex eigenvalues ω ∈ C are sought. In agreement
with commonly used notation, we will use c = ω/kx = cr + ici as a measure of the
stability of the system, cr = ωr/kx being the phase speed of the disturbance in the
x-direction, and ci = ωi/kx representing its growth rate. The criterion for instability is
ci > 0. The numerical method employed here for linear analysis is detailed in Schmid
& Henningson (2012, Appendix A). In short, we consider the generalized eigenvalue
problem obtained by setting qf = 0 in (2.8). This problem contains derivatives in y up
to a fourth order and is further discretized in y with the spectral Chebyshev collocation
method, resulting in an N × N matrix, with N eigenvalues and eigenvectors. Here we
used N = 256, or N = 512 for large values of |A|, but we also tested our results with
higher N to ensure the absence of spurious eigenvalues. It is straightforward to reduce
(2.4) and (2.5) to an inviscid problem by eliminating viscosity νt. The new second-order
differential equation in y only requires two boundary conditions on vw, one for each wall of
the channel. The conditions ∂v/∂y = 0 and ωy = 0 at the wall no longer hold in an inviscid
flow where wall-parallel velocities are not required to be zero, and therefore should be
removed from the system.

2.2.1. Response to a forcing
Consider the problem (2.8) in a more general form, where the forcing is non-zero qf /= 0,
but its shape is not known apriori. In a noisy nonlinear system such as turbulent shear
flow, this choice is reasonable. If ω is real (let us denote it ωf ), it appears as an additional
parameter in (2.8). The response of the system to this general forcing can be derived as

qr = (M−1L − iωf I)−1M−1qf = H{M−1qf }, (2.9)

where H is the resolvent operator of (2.8). The spectral norm of the operator H represents
the maximum amplification of the response to a forcing with frequency ωf ,

‖H‖ ≡ sup
qf /= 0

‖qr‖
‖M−1qf ( y)‖ . (2.10)

This norm, weighted by the total energy of the flow, can be computed as the first (largest)
singular value, σ0, of the singular value decomposition (SVD) of the operator H = UΣV T.
Here the diagonal matrix Σ contains the singular values (relative amplitudes of the
response), and the matrices U and V are the optimal responses and forcings, respectively,
ranked by the amplitude of response. In the following we consider only the flow responses
related to the largest singular values, as in the so-called rank-one model introduced by
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McKeon & Sharma (2010). They proposed two amplification mechanisms: the first one
through the shear U′ and related to it transient growth, and the second one through
amplification at the critical layer where the phase speed of the forcing cf = ωf /kx matches
the local mean velocity.

3. Large-scale control in DNS

3.1. Virtual-wall effect for large scales
The effect of wall modification is reflected in the turbulent mean profile in the log layer
(Nikuradse 1933). In wall units, U+ = γ −1 log( y+) + B, and the wall modifications such
as roughness or control preserve the slope of the logarithmic law, γ −1, but change the
intercept constant of the profile B (Townsend 1976). A decrease in B is related to an
increase in friction factor Cf , as in flows above rough walls; while an increase in B is
related to a drag-decreasing effect (Jiménez 1994). Figure 2(a) compares the mean velocity
profiles of the flow subject to large-scale control, yd/h = 0.1, with ‘classic’ opposition
flow control, y+

d = 10, and with the uncontrolled flow. The classic opposition control
results, as expected, in a shift of the mean profile upwards with a corresponding decrease in
drag, �Cf = (Cf − Cf 0)/Cf 0 ≈ −0.17. On the contrary, opposing only large wavelengths
results in the shift of the mean velocity profile downwards, and a significant drag increase
of �Cf ≈ 50 %.

A possible physical explanation for the success of opposition flow control in the first
case is that opposing flow at the wall creates a so-called virtual-wall effect for small
eddies with sizes approximately 10–15 wall units (Luchini, Manzo & Pozzi 1991; Jiménez
1994). These ideas were also proven useful in the application to drag reduction with riblets
(García-Mayoral & Jiménez 2011). Figure 2(b) illustrates this effect using the root mean
square (r.m.s.) of the wall-normal velocity component, referred to as v+

rms from now on.
In the case of ‘classic’ opposition control with y+

d = 10, the minimum of v+
rms appears

at y+
0 = 5, midway to the detection plane. There is an expected peak at the wall due to

the non-zero boundary condition on v, but away from the wall the overall intensity of v

decreases with respect to the uncontrolled flow. On the contrary, the large-scale opposition
control strategy enhances v+

rms for all y. At first sight, there is no visible minimum of v

near the wall. To find out whether the chosen control strategy affects large structures, we
determine their contribution to v+

rms from the spectrum of the wall-normal velocity, and
denote this quantity as v+

rms(λctrl). It is calculated by adding only the values corresponding
to controlled wavelengths from table 1 for each wall-normal location. Figure 2(c) shows
v+

rms(λctrl) for the uncontrolled case, for classical opposition control and for the opposition
control of the large wavelengths. Both control strategies increase the contribution to v+

rms
from the large structures of v, but the large-scale opposition produces a minimum near
the wall for those structures. This minimum is located at y+

0 ≈ 50, which corresponds,
approximately, to half of the wall-normal distance to the detection plane. The analogous
minimum for the classic opposition control is much less pronounced since there is little
energy in large scales of v at yd = 10.

If v is assumed to vary linearly between the wall and the sensor location, then, given
(2.2),

v̂/v̂( yd) = ( y/yd)(1 + A) − A. (3.1)
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Figure 2. (a) Influence of the control on the mean velocity profile U+: black dashed line, without control;
orange dash-dotted line, opposition control with all flow scales involved and y+

d = 10; and green solid
line, opposition control with only large scales and yd/h = 0.1. (b) The r.m.s. of wall-normal velocity. The
virtual-wall effect of control with y+

d = 10 produces a minimum at y+ = 5, in contrast to the large-scale
control at yd/h = 0.1. (c) The contribution to the r.m.s. of v from the large scales (see text for more details).
(d) Wall-normal coordinate of the local minimum in panel (c) for the large-scale control as a function of the
control gain, together with the fit (3.2). Control parameters in panels (a–c) are |A| = 1 and x0 = 0.

The location of the virtual wall can be defined as a minimum of |v/vd|, reached at

y0/yd = Re(A) + (Re(A))2 + (Im(A))2

(1 + Re(A))2 + (Im(A))2 , (3.2)

where Re and Im denote the real and imaginary parts. It reduces to
y0

yd
= A

1 + A
, (3.3)

when Im(A) = 0, i.e. when the control coefficient A is purely real. It follows from (2.3) that
this happens when −kxx0 = 2πn, with n = 0, 1, . . . . One specific case of this condition
is when no phase shift is introduced, i.e. x0 = 0. In figure 2(d) we test if the assumption
of linearity is valid for the large-scale control. The control gain |A| is varied while the
phase of control is kept zero, and the location of the minimum in v+

rms(λctrl) is recorded.
For small values of |A| ≤ 0.25 the location of the minimum in v is predicted quite well
by (3.2), while for larger control gain the trend, while still increasing, no longer exactly
follows the linear prediction.

3.2. Introducing streamwise offset between sensing and actuation
In the spirit of (2.3) we modify the control by shifting it upstream or downstream,
creating an offset between sensing and actuation. Figure 3(a) presents results of a control
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Figure 3. (a) Friction factor cf as a function of streamwise shift x0 of the control normalized with the friction
factor of the uncontrolled flow, |A| = 1. Shaded regions denote the areas with a sharp increase in friction
where the resolution in table 1 is insufficient to converge. (b) Friction factor as a function of the control gain
|A|. Symbols: •, x0 = −0.3; �, x0 = 0; �, x0 = 0.55.

experiment in which x0 is varied in order to search for an optimal control delay. The results
of control are relatively insensitive to the downstream shifts: the drag increase stays at the
level of 50 % for most of the positive values of x0. Negative, upstream shifts produce much
larger drag increase, up to 300 % for x0 = −0.3. Both very large negative (x0 ≤ −0.35)
and positive (x0 ≥ 0.55) streamwise shifts result in control instability. In both cases, the
wall-normal velocity grows to levels at which the resolution of the code is insufficient
and the simulations diverge. There exists nevertheless a clear difference between the two
limits. While at large negative shifts the instability manifests itself in a gradual increase in
drag, for large positive shifts it appears suddenly.

In figure 3(b) we plot the friction factor for the two limits x0 = 0.55 and x0 = −0.3, as
well as the regular control with no shift. For all three cases, we observe that, for relatively
low control gain |A| ≤ 0.5, the introduction of large-scale opposition results in only a
mild increase in drag. The flow almost does not ‘feel’ this control. For higher control
gain, both x0 = 0 and x0 = 0.55 saturate around cf /cf0 = 1.5, with the latter performing
slightly better. As |A| → 0.95, and x0 = 0.55, the friction suddenly increases sharply, and
the transition on the right side of figure 3(a) is approached. For x0 = −0.3, which is close
to the transition on the left, the drag continuously increases beyond |A| ≈ 0.5. The large
increase in drag obtained with the large-scale control strategy is very different from what
is expected from the ‘classic’ opposition control. Together with the control instability,
it shows that large-scale structures in the logarithmic layer in the channel flow are very
sensitive to actuation.

3.3. Spanwise rollers and oblique waves
To illustrate the effect of control on the streamwise velocity, we show in figure 4
instantaneous snapshots of the streamwise velocity fluctuations in the buffer layer
(y+ = 10). Figure 4(a) shows a ‘normal’ snapshot of uncontrolled flow. The flow is
populated with buffer-layer low- and high-velocity streaks with footprints of two larger
u-structures, possibly logarithmic-layer streaks. Figure 4(b) also contains a streamwise
velocity snapshot, but now for the case with large-scale control and negative streamwise
shift x0 = −0.3. This case corresponds to the sharp increase in drag on the left side of
figure 3(a). The streaky structure of the flow is completely lost and, instead, five or six
spanwise rollers appear that are almost homogeneous in the spanwise direction. Figure 4(c)
also shows u but for the case of control with no streamwise shift x0 = 0. In this case the
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Figure 4. Instantaneous snapshots of streamwise velocity fluctuations near the wall (y+ = 10), normalized
with the bulk velocity. (a) Uncontrolled flow. (b) Large-scale control with negative phase shift, x0 = −0.3.
(c) Large-scale control, x0 = 0. The colour bar is the same for all the snapshots.

streaky structure of the uncontrolled flow is also lost, but spanwise-homogeneous rollers
do not appear. Instead, oblique-like waves with inclination in the x–z plane occur. As is
visible from the snapshot, the (x, z) lengths of the waves are approximately (2h, h), which
is within the range of controlled wavelengths in table 1.

To identify the length scale of the oblique waves chosen by the flow in figure 4(c) more
precisely, we plot in figure 5(a,b) the spectrum of the streamwise velocity component,
Euu, as a function of λx, λz and the distance from the wall. It is clear from the spectra
that applying opposition flow control on the large scales creates a significant footprint not
only on the spectrum of the wall-normal velocity component, Evv , at the wall, as seen in
figure 5(c), but also on the spectrum of u. This response, although distributed over various
length scales, peaks near λx/h, λz/h ≈ 2, 1, corresponding to the structures visible in the
snapshots. The wall-normal location of the maximum of the streamwise energy component
is in the buffer layer at y+ ≈ 10. With non-zero Evv at the wall and Euu peaking in the
buffer layer, the Reynolds stress spectrum Euv also has a maximum in that area (figure 5d).
As a result, we observe a significant increase in friction, which is reflected in an increase
of the effective friction velocity and of Reτ of the controlled flow. Notice a local minimum
in the stress contours at about y+ ≈ 50, corresponding to the location of the minimum in
r.m.s. of v in figure 2(c). At the same time, some of the energy contours of the controlled
flow are shifted towards the left from the uncontrolled case. This is most visible in the
spectrum of the wall-normal component of energy (figure 5c).

The waves observed in figure 4 are not found in regular channel flows, suggesting that the
applied control strategy can best be understood as a forcing on v at the wall. This forcing
can be deleterious in terms of drag reduction, even if it creates a positive virtual-wall effect
for large scales (figure 2c). The increase in drag created in DNS by large-scale control
could signal the presence of either a linear instability, or an amplified linear response of
the system to the control. In the next sections we employ the methods of § 2.2 to show that
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Figure 5. (a,b) Spectrum of u as a function of wall-normal distance and streamwise (a) and spanwise
(b) wavelength. (c) Spectrum of v as a function of y and λx. (d) The same for −uv. The spectrum in panel
(b) was premultiplied with kz, while the rest were premultiplied with kx. All data are normalized with uτ and
integrated in the third spatial direction. Curves: dashed line, uncontrolled flow; solid line, controlled flow. The
contours contain 97.5 %, 80 %, 45 %, 23 % and 4 % of the total spectral mass. Control parameters are |A| = 1
and x0 = 0; and the shaded regions denote controlled wavelengths from table 1.

the oblique waves and spanwise rollers induced by the large-scale control can be explained
by the linearized dynamics of the Navier–Stokes equations.

4. Linear stability of the inviscid channel flow

4.1. Analysis of the Rayleigh equation
We begin by exploring the stability of the inviscid flow subject to control, as it is the
most simplified linear model of channel flow. The inviscid flow, linearized about the
uncontrolled mean profile, is governed by the Rayleigh equation, which is (2.4) without
viscosity,

(U − c)(D2 − κ2)v̂ = U′′v̂, (4.1)

where c = ω/kx = cr + ici. This is a second-order problem with y → −y symmetry. Any
general solution to (4.1) can be expressed as a linear combination of a symmetric and
an antisymmetric solution. In the uncontrolled flow, the coefficients of (4.1) are real, and
if v̂ is an eigenfunction of (4.1) with eigenvalue c, so is its complex conjugate v̂∗ with
eigenvalue c∗. The boundary conditions (2.2), involving the complex coefficient A, destroy
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this property of the flow. Making the change of variables v̂ = Ṽ(U − c), multiplying
by the complex conjugate and integrating over the wall-normal coordinate (Schmid &
Henningson 2012, pp. 23–24), we get∫ 2h

0
(U − c)2 (|DṼ|2 + κ2|Ṽ|2)︸ ︷︷ ︸

Q≥0

dy = Ṽ∗(U − c)2DṼ
∣∣2h
0 , (4.2)

where Ṽ∗ denotes the complex conjugate of Ṽ . The real and imaginary parts of (4.2) are∫ 2h

0
[(U − cr)

2 − c2
i ]Q dy = Re

[
Ṽ∗(U − c)2DṼ

∣∣2h
0

]
, (4.3)

−2ci

∫ 2h

0
(U − cr)Q dy = Im

[
Ṽ∗(U − c)2DṼ

∣∣2h
0

]
, (4.4)

respectively.
In the case of homogeneous boundary conditions, v̂ = Ṽ

∣∣2h
0 = 0, the right-hand side in

(4.4) is equal to zero. Since Q is non-negative, (U − cr) must change sign in the interval
[0, 2h] for non-trivial solutions. It follows that, in the case of impermeable walls, the
advection speed of perturbations cr is bounded by the mean velocity profile,

Umin < cr < Umax. (4.5)

However, in the case of inhomogeneous boundary conditions, like those introduced by
our control, the right-hand side in (4.4) is non-zero and we get

∫ 2h

0
(U − cr)Q dy = −

Im
[
Ṽ∗(U − c)2DṼ

∣∣2h
0

]
2ci

≡ CIm (4.6)

from (4.4). If CIm > 0, then cr ≤ Umax, or the integral would be negative, but cr can
be smaller than Umin. On the contrary, if CIm < 0, the integral cannot be positive, and
cr ≥ Umin. Restriction (4.5) is not applicable here. Once we have non-zero vertical velocity
at the wall, the lower (or the upper) boundary on the phase speed of perturbations in (4.5)
is relaxed. As we will see below, this will result in cr < Umin or cr > Umax for some
parameters of opposition flow control.

Assume a symmetric mean velocity profile U( y) such that U0 = U2h = 0. With (2.2) in
mind, the boundary conditions on Ṽ become

Ṽ0 = AṼyd

Uyd − c
c

, Ṽ2h = AṼ2h−yd

Uyd − c
c

. (4.7a,b)

With the help of (4.7a,b), the right-hand side of (4.2) can be rewritten as

Ṽ∗(U − c)2DṼ
∣∣2h
0 = c2

(
A

Uyd − c
c

)∗
{Ṽ∗

2h−yd
[DṼ]2h − Ṽ∗

yd
[DṼ]0}. (4.8)

It is not straightforward to figure out the sign of the real and complex parts of (4.8),
since c2 and A∗ are complex numbers, and Ṽ∗ and DṼ are complex variables themselves.
Some insight can be gained in a special case with φ = ±π, which makes the control
coefficient real, A = A∗ = −|A|. Further simplification comes from considering neutrally
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stable eigenvalues, ci = 0, related to control. When ci = 0, the right-hand side of (4.4)

should be zero, i.e. Im
[
Ṽ∗(U − c)2DṼ

∣∣2h
0

]
= 0, but this does not give us any information

about cr. Instead, (4.3) becomes the only condition on cr. With the help of (4.8) this
condition reads ∫ 2h

0
(U − cr)

2Q dy = −cr(Uyd − cr)|A|CRe,

where CRe = Re{Ṽ∗
2h−yd

[DṼ]2h − Ṽ∗
yd

[DṼ]0}.

⎫⎪⎬
⎪⎭ (4.9)

Since the left-hand side of (4.9) is always non-negative, CRe ≥ 0 if cr < 0 or cr > Uyd .
Expanding (4.9), we get a quadratic equation for cr,

c2
r

[∫ 2h

0
Q dy − |A|CRe

]
︸ ︷︷ ︸

I1

+ cr

[
−2

∫ 2h

0
UQ dy + Uyd |A|CRe

]
︸ ︷︷ ︸

I2

+
∫ 2h

0
U2Q dy︸ ︷︷ ︸
I3

= 0,

(4.10)
with roots

c±
r =

−I2 ±
√

I2
2 − 4I1I3

2I1
. (4.11)

For the eigenvalues with c±
r to exist, the discriminant of (4.11) must be non-negative,

I2
2 − 4I1I3 ≥ 0. To make further progress in understanding the roots of (4.10), we need to

know Q( y) and CRe for the eigenvectors at each particular |A|, and therefore we have to
invoke the numerical stability analysis of (4.1). The case ci = 0 will be important later on.

4.2. Inviscid stability: numerical results
We begin by considering the stability of the longest wavelength of the flow, which, in our
simulations, is kxh = 1, which does not vary in the z-direction (kz = 0), employing the
Chebyshev collocation method described in § 2.2. Figure 6(a,b) shows how the control
influences the stability of this wave mode for |A| = 1 as a function of the control phase φ.
Without control, all the eigenvalues of (4.1) are neutrally stable (ci = 0) and their phase
velocity is restricted to cr ∈ [Umin, Umax]. Pure opposition control with φ = 0 does not
change this property of the flow, which remains neutrally stable. With the introduction of
a non-zero control phase, two eigenvalues depart from the real axis, while the rest remain
unaffected. Recall that, since A becomes complex when φ /= 0, these eigenvalues are not
necessarily complex conjugate pairs. In fact, they appear together in either the ci > 0 or
the ci < 0 half-planes. They correspond to a symmetric and an antisymmetric eigenmode
with respect to y. In the case of increasing positive phase, φ > 0, the eigenvalues move
anticlockwise in the plot, their imaginary part grows and the flow becomes unstable. If
φ < 0, the eigenvalues move clockwise as the phase decreases, symmetrically with respect
to the φ > 0 case, but have negative imaginary parts and the eigenvectors associated with
them are stable.

Near the threshold of instability, the dependence of the phase velocity seems to be
parabolic, but, when a wider range of φ is considered in figure 6(b), it becomes obvious
that the affected eigenvalues execute a quasi-circular motion in the (cr, ci) plane. The
horizontal axis of this motion lies on the neutral stability line ci = 0. The absolute value
of ci grows with |φ| for both stable and unstable branches, resulting in large absolute values
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Figure 6. (a) Eigenvalue spectrum of the inviscid problem as a function of control phase φ, for |A| = 1.
Negative phases are denoted by blue �, and positive by red �. Colour intensity shows the increase in |φ|
as φ spans the interval (−π, π). The black • symbols represent the eigenvalues of the uncontrolled flow.
(b) The same as in panel (a) but with wider axes, to show the full spectral range. Both axes have
the same scale. (c) Eigenvalue spectrum for |A| = 2. Symbols and colours as in panel (a). (d) Inviscid
stability map as a function of the control gain and phase. Contours, with increasing colour intensity:
ci/Ub = [10−4, 10−3, 10−2, 10−1, 1]. Dashed line, |A| = 1 and |A| = 2 corresponding to panels (a,b) and (c),
respectively. The • symbol denotes the most unstable (|A|f , φf ) pair of control parameters. For all panels,
kx = 1 and kz = 0.

of growth rate as |φ| approaches π as well as large negative phase velocities, cr < 0. As
mentioned in the previous section, these negative phase velocities are unusual compared to
a normal channel flow, where cr is restricted by (4.5), i.e. the minimal mean velocity, which
is zero at the channel walls. However, the periodicity of the complex control coefficient
A requires A(π) = A(−π), and after reaching a maximum in ci the absolute value of the
growth rate rapidly decreases, until the stable and unstable branches join at φ = ±π and
ci = 0, and the flow recovers its neutral stability. This effect is visualized by the overlap of
symbols of the two branches on the left in figure 6(b).

If we repeat the same numerical experiment with a larger control gain, for example,
|A| = 2, the results are quite different. Figure 6(c) illustrates this on the same wave
mode with kxh = 1 and kz = 0. Similarly to |A| = 1, two unstable eigenvalues exist,
with corresponding symmetric and antisymmetric eigenvectors. Positive phases result
in unstable flow, and negative phases in stable, with corresponding increase in |ci| as
|φ| increases. This time, however, the eigenvalues move towards increasing cr as |φ|
increases, i.e. the unstable eigenvalues move clockwise and their stable counterparts move
anticlockwise until they meet at φ = ±π.

To further characterize the parametric dependence of the instability, figure 6(d) presents
a two-dimensional inviscid stability map of kx = 1 and kz = 0 as a function of |A| and φ.
The dashed lines in the figure correspond to figure 6(a–c). As expected from the previous
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discussion, the unstable region is located in the range of φ ∈ (0, π). The region with φ ∈
(−π, 0) is neutrally stable for all values of |A|. The isocontours of constant ci show that
the instability growth rate increases with φ, and peaks when φ is close to π for each |A|.
Note that, in contrast with classic opposition control (φ = 0), φ = ±π is equivalent to
‘reinforcement’ control where the flow velocity applied at the walls is in-phase with the
flow velocity at the detection plane yd. The point φ = ±π is nevertheless neutrally stable,
as we saw in figure 6(b,c). As the control gain increases, the instability becomes more
pronounced, and the maximum growth rate is attained for |A|f ≈ 1.2 and φf ≈ π. The
choice of nomenclature for this pair of control parameters, denoted by a blue circle, will
become evident shortly. With further increase in |A|, the growth rate begins to decrease,
and the flow becomes again almost neutrally stable for |A| = 102.

So far we have only been concerned with the wavenumber kxh = 1, kz = 0, but
wavenumbers as high as kx,zh = 20 are also affected by the instability and exhibit
similar circular motion. For all kx,z, the effect of control manifests itself as a pair of
eigenvalues with corresponding symmetric and asymmetric eigenvectors. However, the
difference between the eigenvalues in the pair becomes smaller as kx,z increases, and
their respective eigenvalues become identical. For example, each symbol in figure 7(a),
presenting control-related eigenvalues for kxh = 6, kz = 0, in reality stands for a pair of
almost identical eigenvalues. This simplifies the visual inspection of the data since only
one circle of the eigenvalue motion with φ has to be tracked, and we will use figure 7(a)
further for convenience.

4.3. Explaining the flip of the eigenvalue motion
We observe in figure 6(b,c) that the direction of eigenvalue motion, as well as the sign
of cr for the fastest-growing modes, depends on |A|, and we would like to understand
this dependence better. For this purpose, figure 7(a) presents the eigenvalue spectrum of
kxh = 6, kz = 0 for several values of |A|. All the eigenvalues near ci = 0, which are very
weakly affected by the control and do not exhibit quasi-circular motion, are removed for
clarity. Each circle, containing almost identical eigenvalue pairs, is analogous to those in
figure 6(b,c), but represents the eigenvalue motion as φ changes in the interval of [−π, π]
with the same symbol and colour. When |A| � 1, the radius of the circle is very small,
and so is ci. With the increase of |A|, the growth rates become larger, and, equivalently,
the circle that contains them expands. The widening of the circle goes on until |A| ≈ |A|f
(for this wave mode, |A|f ≈ 1.835). At |A|f , the numerically obtained eigenvalues reach
extremely large values, and the circle radius tends to infinity at this point. A tiny further
increase in |A| makes the eigenvalue motion flip towards the right of the imaginary axis, in
the region with cr > 0, almost symmetrically. Hence the name |A|f for this ‘critical’ gain,
short for |A|flip. After the flip, the circle begins to shrink as |A| grows, manifesting the
weakening of the instability, and the magnitude of ci decreases after |A| = |A|f . Eventually
the flow comes back to a neutrally stable state.

During the flip, the real eigenvalue at φ = ±π, which is the advection velocity of that
neutral mode (black dots in figure 7a), suddenly changes from cr < 0 to cr > 0, and
the whole circle follows it. Fortunately, we already developed the tools to explain this
behaviour in § 4.1. Since we observed that before the flip cr < 0, and after it cr � Uyd ,
it follows that CRe ≥ 0 in (4.9) during the flip. Recall that Q = |DṼ|2 + κ2|Ṽ|2 ≥ 0 from
(4.2). Then the denominator of (4.11),

I1 =
∫ 2h

0
Q dy − |A|CRe = Iq − |A|CRe, (4.12)
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Figure 7. (a) The flip of the eigenvalue motion as the control gain increases from |A| < |A|f (red) to |A| >

|A|f (blue). Here |A| ∈ [1.6, 1.75, 1.83, 1.84, 1.93, 2.1], kxh = 6 and kz = 0. The black • symbols indicate
eigenvalues with φ = ±π. (b) The numerator and denominator of (4.13), calculated from the eigenvectors
corresponding to black • in panel (a). Red solid line, F+

N ; red dashed line, F−
N ; black solid line, FD. The dotted

horizontal line marks zero. (c) Black • symbols, real part of the numerical eigenvalues with the largest |cr|
in panel (a) as a function of |A|; together with the analytical expression (4.13): solid line, c+

r ; dashed line c−
r .

The thin grey rectangle marks the interval of [Umin, Umax]. (d) Solid line: zeros of the denominator FD (see
panel b), as a function of κ . Symbols denote the control gain |A|f , resulting in the flip of the eigenvalue motion:
cyan •, inviscid flow, kxh ∈ [1, 20], kz = 0; red •, viscous flow, kxh ∈ [1, 20], kz = 0; black ×, viscous flow,
kxh = 1, kzh ∈ [1, 20]. The data can be approximated with a linear fit |A|f = 1.2 + 0.016κ2h2.

has contributions from two positive competing terms, and can change sign as |A| grows.
When I1 = 0, there is a singularity in (4.11), and the eigenvalues c±

r in (4.11) approach
infinity. It is instructive therefore to study numerically the denominator 2I1 and the

numerator −I2 ±
√

I2
2 − 4I1I3 of (4.11), together with c±

r . These quantities are functions
of eigenvectors, and do not have a meaningful amplitude, so they must be normalized with
a positive-definite quadratic function of Ṽ . The integral Iq from (4.12) provides such a
norm, and we can normalize both the numerator and the denominator of (4.11). This gives
us an equivalent expression for c±

r ,

c±
r =

−Ĩ2 ±
√

Ĩ2
2 − 4Ĩ1Ĩ3

2(1 − |A|C̃Re)
= F±

N
FD

, (4.13)

where ˜ reflects our normalization, for example, C̃Re = CRe/Iq. Note that CRe/Iq itself
depends on |A|, decreasing through the flip. This dependence reflects the change in the
shape of the eigenvector. While the integral Iq has contributions from the whole channel
height, CRe represents terms from the boundary. The smaller their ratio is, the more the
eigenvector spreads over y.
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With this in mind, we go back to the numerical solutions of (4.1) in search of eigenvalues
corresponding to (4.11). We seek the eigenvalues represented by black dots in figure 7(a).
In order to do this, the phase of control is set to φ = π for each |A|, and the full set
of real-valued eigenvalues c and eigenvectors v̂ is obtained numerically. They are then
filtered to get the eigenvalue–eigenvector pair with the largest advection speed subject to
conditions cr ≤ 0 or cr ≥ Umax. Otherwise, when 0 < cr < Umax, the eigenvalues with
φ = ±π appear in the region already populated by the rest of the neutrally stable modes
(like those marked with black dots in figure 6a,c), and it is difficult to identify them.
This also implies that the range of control gains is limited by the values of |A| near the
flip. Using the corresponding eigenvectors, it is straightforward to calculate CRe and I1,2,3
from (4.10), and c±

r using (4.13).
Figure 7(b) presents both F±

N and FD from (4.13) as functions of |A| near the flip. The
numerator F+

N is a positive increasing function of A, while the denominator FD changes
sign from negative to positive as the gain crosses |A|f ≈ 1.835. Thus, c+

r is negative when
|A| < |A|f , and positive afterwards, going through a hyperbolic infinity at |A|f . Figure 7(c)
shows an excellent agreement between c+

r from (4.13) and the eigenvalues with the largest
magnitudes of advection velocity from figure 7(a). This agreement is expected since we
used the eigenvectors of (4.1) to evaluate (4.13); however, numerical analysis of (4.1) did
not allow for qualitative explanation of the flow behaviour. With the help of (4.13), the
inflation, flip and deflation of the eigenvalue circular motion can now be inferred from the
relation between FD and F+

N in figure 7(b).
Unlike F+

N , the second numerator F−
N closely follows the behaviour of the denominator,

so the related root c−
r stays bounded across |A|f and is of the order of unity. This root is

in the range of ‘regular’ eigenvalues of the Rayleigh equation, Umin < c−
r < Umax, and

is unrelated to the eigenvalues that undergo the flip. The results in figure 7(a–c) were
given for kxh = 6, kz = 0, but qualitatively similar results can be obtained for other wave
modes. In fact, (4.1) depends only on the square of the effective wavenumber, κ2, and
not on a particular realization of kx, kz. In figure 7(d) we show the dependence of |A|f on
κ , together with the zeros of the function I1(|A|). The agreement is again very good; we
observe that |A|f increases linearly with κ2. This results in the upward shift of the unstable
regions, analogous to that in figure 6(d), as κ grows and the wavelength becomes smaller.

Further progress can be made if we relate the analytical form of the integrals in (4.10)
to the control gain through boundary conditions (4.7a,b), but that non-trivial task will
not be pursued here. From this point on, we will include viscosity in our analysis in
order to make it more comparable to channel flow in DNS. Channel flow is wall-bounded
and viscosity becomes important near the channel walls, so one can expect the inviscid
instability observed above to be modulated by viscous effects.

5. The effect of turbulent viscosity

5.1. Eigenvalue spectra and similarity with the inviscid flow
Compared to the inviscid flow, the eigenvalue spectrum of the viscous problem is more
complex. In the conventional linear stability analysis of plane Poiseuille flow close to
transition to turbulence, where linearized equations include only molecular viscosity, the
eigenvalues are located on three branches: A (cr/Umax → 0), P (cr/Umax → 1) and S
(cr/Umax ≈ 2/3 for kxh = 1, kz = 0) (Mack 1976; Schmid & Henningson 2012, p. 64).
In that case, the unstable eigenmode originates from the A branch, and is called a
Tollmien–Schlichting wave. This Y-shaped eigenvalue spectrum, typical of transitional
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Figure 8. (a,b) Eigenvalue spectrum of the viscous problem as a function of φ, for kxh = 6 and kz = 0:
(a) |A| = 1 and (b) |A| = 2. Colour and symbols are as in figure 6(a). The black • symbols indicate the
uncontrolled flow. See text for the description of the branches A, P and S, and the points 1 and 2. Some
eigenvalues from the branches P and S were removed or made more transparent for clarity. Both axes have
the same scale. (c,d) Imaginary part, ci, of the eigenvalues as a function of control phase φ: (c) |A| = 1 and
(d) |A| = 2. Solid line, viscous problem; dashed line, inviscid flow. Colour, from dark to light: kxh ∈ [1, 6].

wall-bounded flows, is preserved under the influence of the eddy viscosity in the flow
without control.

In figure 8(a), we use the eigenspectrum of the uncontrolled flow with kxh = 6, kz = 0
(black dots) to illustrate this. There are also some differences with respect to the flow
with only molecular viscosity. Only two eigenvalues remain on branch A, branch P is
slightly deformed, and branch S is shifted towards Umax (and larger cr). More importantly,
the uncontrolled turbulent mean profile is stable in the presence of turbulent viscosity,
as found by Reynolds & Tiederman (1967). With control, most of the eigenvalues move
slightly from their uncontrolled locations. If the control with |A| = 1, φ = 0 is applied, two
identical eigenvalues appear in the vicinity of the branch P (see point 1 in figure 8a). When
the phase is positive and increasing, they move towards the left in figure 8(a), and their
cr becomes smaller. As their growth rate becomes larger, they cross ci = 0, and the flow
becomes unstable. At the same time, another pair of identical stable eigenvalues appears
near the branch S (point 2 in figure 8a). When φ < 0 and is decreased further, these
eigenvalues also move to the left towards smaller cr, until they join the eigenvalues with
φ > 0 at φ = ±π, which are stable. The dependence of the eigenvalues on φ resembles a
circular motion, like in the inviscid case (figure 6b).

For |A| = 2 the circular motion of the eigenvalues changes its direction (figure 8b). Here,
the eigenvalues move towards increasing cr as |φ| increases, i.e. the unstable eigenvalues
move clockwise and their stable counterparts move anticlockwise until they meet at
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Figure 9. (a) Stability maps for the viscous problem, analogous to figure 6(d), with ci/Ub ∈ [0, 0.1, 0.5].
Solid line, kx = 1; dash-dotted line, kx = 2; and dashed line, kx = 20; with kz = 0 for all. For each kx, the red
• symbol denotes the most unstable (|A|f , φf ) pair. Vertical coloured lines represent φ = [−3π/4, 0, 3π/4] for
panel (b). (b) Eigenvalue spectrum of the viscous problem as the function of |A| along the vertical lines in panel
(a), for kx = 2, kz = 0. Symbols: red, φ = 3π/4; green, φ = 0; and blue, φ = −3π/4; with colour intensity
increasing with |A|. The black • symbols show the spectrum of the uncontrolled flow with branches A, P and S.
Stable eigenvalues from the branches P and S were made more transparent. (c) A zoom into the black rectangle
marked in panel (b). Stable eigenvalues of the branch P were removed for clarity. (d) The maximum growth rate
ci as a function of |A|: φ = −3π/4 (blue) and φ = 3π/4 (red). Solid line, viscous flow; dashed line, inviscid;
kx = 20, kz = 0.

φ = ±π. Similarly to the inviscid flow (figure 6b,c), the eigenvalues follow quasi-circular
paths that flip their direction as |A| increases. The axis of symmetry of these paths,
however, is now located below ci = 0, where the flow is stable. We observed a similar
behaviour of eigenvalues for all large wave modes of the viscous flow.

Figures 6(b,c) and 8(a,b) give a qualitative overview of the eigenvalue behaviour under
the change of control phase φ, but provide few quantitative details. To further clarify the
dependence of the instability on φ, we plot the imaginary part ci of the eigenvalue with
the largest growth rate as a function of φ and kx in figure 8(c,d). Both viscous (solid lines)
and inviscid (dashed lines) growth rates are presented. Again, we set the control gain to
be |A| = 1 (figure 8c) or |A| = 2 (figure 8d). At these values of |A|, there are no unstable
eigenvalues when φ < 0, so the data are plotted only in the half-plane [0, π]. In the case
of |A| = 1, there is a well-defined maximum in ci, which moves towards smaller φ as kx
decreases, and its amplitude decreases with kx. For example, for kxh = 1 the maximum
instability growth is attained near φmax = 3.1, while for kxh = 6 it is around φmax = 2.5.
In the case of |A| = 2, there still exists a pronounced maximum in ci, but the most unstable
phase now increases with kx. For example, φmax ≈ 2.6 for kxh = 1, and φmax ≈ 3.04 for
kxh = 6. Similar trends can be seen in the real part of the eigenvalue cr (not shown here),
with one important addition: negative values of cr are observed for |A| = 1, while |A| = 2
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results in positive cr, as expected from the eigenvalue flip in figures 6(b,c) and 8(a,b). The
similarity of the eigenvalue behaviour in the viscous and inviscid cases in figure 8(c,d) is
remarkable, indicating that we observe the same instability of inviscid origin.

To probe this similarity further, we plot in figure 9(a) the isocontours of viscous growth
rate for various kx, and kz = 0, as a function of |A| and φ. With the help of this plot,
we will first discuss the common features of the viscous and inviscid stability. Visual
inspection shows that the shape of viscous isocontours with large ci resembles the shape
of inviscid ones in figure 6(d). For each A, the growth rate increases with φ. We marked by
circles the pairs (|A|f , φf ) where the instability reaches its maximum growth. Analogously
to the inviscid case, the eigenvalue motion flips its direction at |A| = |A|f , as discussed
above. The phase φf is near π for all observed wave modes, the gain |A|f shifts upwards
with increasing kx, at the same time as the unstable region shifts upwards itself. We
search again for |A|f as a function of the effective wavenumber κ2 = k2

x + k2
z , and plot

it in figure 7(d) together with the inviscid data. Two cases are considered: first, setting
kz = 0, while varying kxh ∈ [1, 20]; and second, fixing kxh = 1, and varying kzh ∈ [1, 20].
One can appreciate that |A|f again depends linearly on κ2 in the viscous flow, with
the results being almost identical to those in the inviscid case. Therefore, the shift of
the instability region towards higher control gains at large wavenumbers is an inviscid
phenomenon, suggesting that (4.1) governs the instability behaviour in a substantial part,
even in presence of turbulent viscosity.

5.2. Saturation of eigenvalues at large control gains
Now back to the notable differences between the stability maps in figures 6(d) and 9(a).
Recall that the instability is confined to the region with φ ∈ [0, π] for the inviscid flow. In
that region, the growth rate ci → 0 when |A| � 1, and it increases with |A|. After reaching
the maximum at |A|f , ci decays, and the inviscid flow becomes neutrally stable again when
|A| � 1. In contrast to this, viscosity has a damping effect on the instability at low values
of |A|, and no eigenvalue has a positive growth rate in the bottom half-plane of figure 9(a).
The viscous flow becomes unstable when |A| ∼ O(1), and the instability is confined to
the region with φ ∈ [0, π] for low |A|. As |A| increases further, the instability does not
cease to exist for most of the wave modes, except for the special case of kxh = 1. Unlike
in inviscid flow, unstable eigenvalues also appear for the negative phases, φ ∈ [−π, 0],
where inviscid flow would be stable, as indicated by the neutral isocontours of ci = 0. In
other words, some parameter regions in figure 9(a), characterized by large |A|, are unstable
for allφ.

Concerned with this issue, we fix three phases φ = [−3π/4, 0, 3π/4] and compute the
eigenvalue spectrum, now as a function of |A|. The results are presented in figure 9(b)
for kxh = 2 and kz = 0. For each amplitude, the eigenvalues again come in pairs. In this
case, kxh = 2 is large enough and the eigenvalues of these pairs are not identical, but
the difference between them is already much smaller than, say, for kxh = 1. It becomes
apparent that the eigenvalues affected by control at φ = ±3π/4 are connected to the
branch A rather than branch P of the uncontrolled flow. At first, the real part of the
eigenvalues decreases with the increase of |A|, indicating the motion of eigenvalues
towards the left half of the complex plane, and the expansion of the eigenvalue circle.
As |A| passes through |A|f , this dynamics is reversed and the real part of the eigenvalue
begins to increase. The difference between φ = 3π/4 and φ = −3π/4 is, obviously, that
the growth rates of the eigenvalues exhibiting circular motion become positive in the first
case, and even more negative in the second. In the inviscid flow, the case of φ = 0 is
neutrally stable and the eigenvalues do not depart from ci = 0. In the viscous flow, φ = 0
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eventually becomes unstable, although its eigenvalues have increasing cr for all |A|, unlike
when φ = ±3π/4.

Figure 9(c) shows a zoom in an area where the unstable eigenvalues for all φ approach
each other asymptotically as |A| → 102 (the rest of the eigenvalues have been removed
for clarity). As this happens, the eigenvalues for all three values of φ saturate at a small
but positive value. These eigenvalues are not spurious, as our numerical resolution tests
confirm in Appendix C. The case of φ = −3π/4 has a particularly interesting behaviour.
There, the unstable eigenvalues originate from the branch P rather than the branch A
moving upwards as |A| increases. Note that φ = 0 is still connected to the branch |A|,
and an approximate threshold of the change in the origin from the branch A to the branch
P is at about φ = −π/16.

Finally, in figure 9(d) the phenomenon of eigenvalue saturation is addressed
quantitatively, with the maximum growth rate ci as a function of |A|. The growth rates
are calculated for kx = 20 and kz = 0, to highlight that shorter wavelengths have a similar
behaviour, and also because the maximum in ci is weaker, and therefore fits better for
visualization purposes. We can think of the solid curves in figure 9(d) with respective
colours as following the red upper path in figure 9(b) and the blue path in figure 9(c)
(except for the small values of |A|, when the growth rates on branch P are larger). For
φ = 3π/4, the peak in ci correlates well in the viscous and inviscid cases, with ci decaying
asymptotically to zero in the latter, and saturating at a small value in the former. In contrast
to this, when φ = −3π/4, the inviscid case is always neutrally stable, as expected, and the
viscous ci slowly saturates to a positive level with the increase in |A|. This saturation
indicates that when magnitude of the input at the walls is very strong, the flow becomes
relatively insensitive to the control phase.

5.3. The effect of control on the shape of the eigenvectors
Finally, we show the influence of the control gain on the wall-normal shape of the
eigenvectors as |A| increases, and φ remains fixed. It is reasonable to track the evolution
of the eigenvectors with |A| along one of the paths in figure 9(b,c), rather than by a
simple criterion of the maximum growth rate, where eigenvectors can belong to different
branches. We consider here the eigenvectors with kxh = 2, kz = 0, associated with the
eigenvalues along the red upper path with φ = 3π/4 in figure 9(b), as it is the most
unstable one. For simplicity, only symmetric eigenmodes are presented, because the
near-wall behaviour of the antisymmetric modes is quite similar.

Figure 10(a) shows the absolute value of |v̂| close to the wall, normalized with its
maximum, for |A| < 1. Small values of the gain barely affect the eigenvector, which is
very similar to the respective uncontrolled eigenvector from the A branch. For |A| = 0.05
the flow is still stable. As |A| increases to 0.5, the flow becomes unstable, and |v̂| increases
at the wall and the bulk of the flow. The shape of the eigenvector at the wall flattens when
|A| is increased further.

Figure 10(b) shows the evolution of eigenvectors for larger |A|. Now v̂ decreases in the
bulk of the flow, and at large enough |A| changes sign with respect to its value at the
walls. In the plot for |v̂|, it is reflected by a developing minimum between the wall and
the middle of the channel, which tends to yd/h = 0.1 when |A| � 1. Apparently, for these
extreme gains, the linear system adjusts the velocity at yd to be zero, following condition
(2.2). Effectively, this creates a ‘narrower’ channel and the instability is weakened as the
control gain increases; the respective growth rate saturates at ci = 0.03 for |A| = 100 (see
figure 9c).
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Figure 10. (a) Normalized eigenvectors of wall-normal velocity as a function of y along the red upper path
in figure 9(b), for φ = 3π/4, kxh = 2 and kz = 0. Colour intensity increases with |A| ∈ [0.05, 0.52, 0.91].
The black dashed line shows the eigenvector of the uncontrolled flow from the A branch (|A| = 0). (b) As
in panel (a) but for |A| ∈ [0.91, 1.9, 5, 100]. The vertical dash-dotted line in panels (a) and (b) denotes the
detection plane yd/h = 0.1. (c) The unstable eigenvectors of the viscous problem (solid lines) as a function of
wavenumber kxh ∈ [1, 2, 4, 6, 8, 12, 20] (decreasing), for kz = 0, φ = 3π/4 and |A| = |A|f (kx) (see figure 7d).
The dotted lines are the eigenvectors of the inviscid flow at the same control parameters. Only symmetric
eigenvectors are shown.

A note of caution must be placed here: the eigenvectors fill the whole height of the
channel because the harmonic we show here is quite long (kxh = 2). This does not happen
to shorter modes with larger kx, which peak near the walls and decay towards the centre of
the channel. We show this effect in figure 10(c) comparing the shape of eigenvectors at the
control gains |A|f (kx) that result in the largest growth, and φ = 3π/4, as in the previous
plot. The choice of |A|f to represent the behaviour of eigenvectors with kx is motivated by
the fact that the instability is the strongest there and the instability isocontours for different
wavenumbers scale better with |A| = |A|f (figure 9a). The eigenvector with kxh = 1 fills
the entire channel, as in the previous case. The eigenvectors with kxh = 2, 4 still fill the
entire channel, but their absolute value in the bulk of the flow decreases with kx. As kx
is further increased, the eigenvectors no longer occupy the middle of the channel, and
are bounded to a region near the wall. The width of this region decreases with kx. The
eigenvectors of the viscous flow are in reasonable agreement with those of the inviscid
flow, and this agreement becomes better with increasing kx, indicating again that the
instability is largely inviscid at its peak.

5.4. Wavenumbers affected by the instability
The above discussion emphasizes the effect of large control gains |A| > 1, but gains larger
than O(1) are unlikely to be beneficial in terms of drag reduction. Besides the negative
effects of the linear instability discussed above, large gains imply a large energy input at the
walls and therefore a large cost of the control. In the following, we perform an optimization
that aims to find out which wavenumbers are the most affected by the instability of
the viscous flow for reasonably small values of |A| ∈ [10−2, 1]. The importance of this
optimization stems from the necessity to exercise caution with these length scales in future
numerical and laboratory experiments. We seek the wavenumbers that have the maximum
growth rate in this range of |A|, and also maximize ci over φ ∈ [−π, π].
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Figure 11. (a) Contours of the maximum imaginary part of the eigenvalue ci/Ub as a function of wavenumbers,
kx and kz. (b) Contours of corresponding cr/Ub. For each kx,z pair we search for the maximum growth rate and
its respective cr in a range of amplitudes A ∈ [10−2, 1] and phases φ ∈ [−π, π]. The dash-dotted line is the
neutral stability curve with ci = 0.

Figure 11(a) shows the resulting stability map as a function of kxh, kzh ∈ [0, 15],
each point of it corresponding to a pair of (|A|, φ) that results in maximum ci for the
wave mode of kx, kz. The control appears to be more dangerous for longer waves with
smaller kx. The contours of ci are centred around kxh = 1, kz = 0, indicating that the
instability there grows faster. Large wavenumbers are not affected by the instability
when the gain is small enough, and the wavenumbers with kxh ≥ 13, kzh ≥ 7 remain
stable.

Figure 11(b) shows the phase velocity cr of the modes with the largest ci. As discussed in
§ 4, the unusual effect of this instability is the appearance of negative phase velocities. For
the most unstable modes, they are up to four times faster than the maximum of the mean
profile (which on the scale of the colour bar is approximately 1). These upstream-travelling
modes, in the form of spanwise rollers, can be observed in the DNS during the linear
growth phase in the corresponding parameter regimes. Lastly, we see in figure 11 that high
kx harmonics with infinite spanwise extent (kz = 0) are more affected by the instability
than harmonics with higher kz. In fact, the growth rates of wavenumbers with kz > 0
are smaller than those with kz = 0. We note that the range of unstable wavenumbers in
figure 11 partially coincides with the wavenumbers controlled in our DNS (kxh ∈ [0, 6],
kzh ∈ [0, 10] in table 1).

In the following, we will compare the linearized controlled flow to the DNS results,
employing the wavelengths with kz = 0 as a proxy for the linear dynamics of the channel.
This comparison will be done for |A| ≤ 1, as discussed above. But before we move on, we
should emphasize the potential importance of our results with |A| > 1 in §§ 4.3 and 5.2.
Large control gains, although not very promising for drag reduction, are not unphysical
and should be explored for enhancement of friction and mixing. In addition, the flip of the
eigenvalue motion happens for gains just slightly above |A| = 1 for very large wavelengths,
which are of the same order of magnitude as in the ‘classic’ opposition control, and
therefore may potentially affect its experimental implementations. More importantly, the
flip itself is an exciting physical phenomenon of the linearized controlled flow, which has
not been explored before.
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6. Reconciling DNS and linear dynamics.

6.1. Instability and the drag increase in the DNS
Equipped with the findings from the previous section, we are in a position to explain some
of our DNS results. In the DNS, we focused on relatively small control gains |A| ≤ 1,
where the instability is active for positive phases and does not exist for negative ones
(figure 9a). Positive control phases correspond to negative streamwise shifts, and therefore
a drag increase at large upstream shifts, x0 < 0, in figure 3(a) is intuitively expected. It is
more surprising that the simulations also diverge on the right of figure 3(a) where x0 >

0.55, without a preceding gradual increase in friction. This seemingly odd result can be
explained if the 2π-periodicity of the control coefficient A is taken into account, namely, a
negative phase −π < φ1 < 0 and a positive phase φ′

1 = 2π + φ1 result in the same value
ofA.

To eliminate this redundancy, we project the phases of the streamwise modes controlled
in our DNS on the (−π, π) unit circle and plot them in figure 12(a) as a function of the
streamwise shift x0. Let us first focus our attention on the left half of the plot, x0 < 0.
As the shift decreases from x0 = 0, the phase applied to the controlled harmonics grows,
indicating that they may become unstable. The unstable interval of x0 for each kx is drawn
dotted in figure 12(a), computed for |A| = 1 with linear stability analysis from § 5. The
exact threshold depends on kx, but the dashed horizontal line φ = 0.06π approximately
separates the stable and unstable regimes. The first wavenumbers to become unstable are
kxh = 3, 4 and 5 at the shift xcr ≈ −0.05, immediately followed by kxh = 6. Longer modes
with kx = 1, 2 become unstable one after the other shortly after as x0 decreases further.

To simplify the following discussion, let us focus on the wavenumber kxh = 6 with the
most rapidly growing phase (larger kx implies larger φ for the same x0). With further
decrease of x0, the phase of kxh = 6 reaches φ = π at x0/h ≈ −0.5, beyond which the
phase of A becomes negative (bottom left corner in figure 12a), and kxh = 6 becomes
stable again. The situation is different for x0 > 0. As expected, the phase of kxh = 6 is
negative at first and further decreases as x0 increases, until it reaches −π at x0 ≈ 0.5.
When the streamwise shift is increased further, the value of φ changes from −π to π. Now
it is equivalent to a large positive phase shift and the flow becomes unstable again. The
phases of the rest of the streamwise wavenumbers vary in a similar manner.

It is worth mentioning here that approaching the instability on the left side in figure 12(a)
is different from approaching it on its right-hand side, because the behaviour of the two
limits of the instability range is different. Figure 12(b) shows how the growth rate ci of the
most unstable eigenvalues varies for each wavenumber kx along the lines in figure 12(a).
Linearly unstable wavenumbers are those for which ci > 0, corresponding to the dotted
segments in figure 12(a). Note that this plot is similar to figure 8(c) in § 5.1, but with
x0 instead of φ as an argument, so that the ci curves are shifted with respect to each
other. If we again follow kxh = 6 as we make x0 increasingly negative (i.e. approaching the
instability on the left), the instability growth rate changes slowly, progressively increasing
from negative to slightly positive values.

A different picture emerges if we begin to increase x0, starting from x0 = 0 (i.e.
approaching the instability on the right). Here at the onset of instability, x0 = 0.55, the
ci curve is almost perpendicular to the x-axis and grows sharply. This reflects an abrupt
transition of the flow to the instability when the phase of control changes from −π to π. A
further small increase in x0 brings the flow to its maximum ci. In fact, the unstable ‘bumps’
in ci on the left and on the right of the plot are exactly the same, arising from control
with identical φ (and A), and it is their asymmetry that matters for the development of
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Figure 12. (a) The control phase φ as a function of streamwise wavenumber and the shift x0/h. The red
dotted lines highlight the presence of the instability for |A| = 1. The horizontal thin dashed black line is the
minimum phase for the onset of the instability. Colour, from dark to light, represent: kxh ∈ [1, 2, 3, 4, 5, 6].
Shaded regions are the same as in figure 3(a). (b) Plot of ci as a function of x0 and kx; dashed line, ci = 0;
colours as in panel (a); |A| = 1. (c) The • symbols are the friction factor normalized with its minimum (DNS
results). Linear instability growth rates: solid line, kxh = 6; dash-dotted line, kxh = 5; dotted line, kxh = 4.
Blue colour is |A| = 1, and red is |A| = 0.7. The horizontal dashed black line is the neutral stability line
ci = 0. The x-axis is shifted by the minimum x0 required to trigger the instability, xcr = (−0.05, −0.15) for
|A| = (1, 0.7). (d) The dashed lines show the most rapidly growing wavenumbers in the diverging DNS cases.
The blue circles correspond to the wavenumbers with maximum growth rate in the linear stability analysis. In
all cases, kz = 0.

the instability. This asymmetry is also visible in figure 8(a), where the growth rates
increase progressively as the control phase is increased from zero, but would rapidly reach
their maximum if the control phase is decreased from π.

Another important observation is that whether we approach instability on the left or
on the right, at its onset the growth rate of kx = 6 is larger than that of the rest of the
controlled wavenumbers. This is either because the control phase of kx = 6 grows faster
as x0 decays (on the left), or because its phase has a shorter period on x0 (on the right), as
seen in figure 12(a). Besides that, kxh = 6 has the largest effective growth rate, ωi = kxci,
given comparable values of ci for the rest of the unstable wavenumbers in figure 12(b).
Therefore, one would expect the unstable flow to be dominated by this wavelength close
to the onset of instability. For example, the onset of the instability of kxh = 6 on the right
correlates with the unexpected increase in friction on the right in figure 3(a), and the
resulting divergence of our DNS.

In figure 12(a,b), the onset of the instability on the left correlates with the steep friction
increase on the left in figure 3(a). Thus, we next focus our attention on the relation between
the instability growth and the increase in friction in the DNS at negative streamwise shifts.
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Figure 12(c) presents both Cf and ci as functions of streamwise shift, similarly to
figure 3(a). But unlike in figure 3(a), the x-axis is shifted by the minimum x0 leading
to the instability. In the following, we will refer to this minimum as the critical value
of the streamwise shift xcr. Its value is not universal and depends on the most unstable
wavenumber and on the control gain. In the linearized flow corresponding to our DNS,
xcr ≈ −0.05 for |A| = 1 and xcr ≈ −0.15 for |A| = 0.7. Presented in this way, positive
values on the x-axis are linearly stable, and negative ones are unstable. When the flow
is linearly stable, ci stays at a relatively constant level, which depends more on kx than
on the control gain. We focus on kxh = 6 again, as it quickly attains the largest growth
due to its fastest-growing control phase, and dominates the flow dynamics. Approaching
x0 − xcr = 0 from the right, the imaginary part of the eigenvalue begins to increase shortly
before the critical point until the flow becomes unstable. After a further growth, ci reaches
its maximum and then quickly decays to the previous stable levels. The DNS behaviour
is remarkably similar. Although the friction rises slightly before ci experiences growth
itself, i.e. before xcr, the pronounced growth in friction factor for |A| = 1 on the left of the
plot correlates well with the increase in ci. After some point, however, we are unable to
advance our DNS further and the behaviour of Cf past the growth rate maximum is unclear.
Figure 12(b) suggests that the instability at kx = 6 would be subsequently overtaken by
kx = 5, then by kx = 4 and so on as we shift the control further upstream, towards more
negativex0.

To support this conjecture, we performed additional simulations with |A| = 0.7. Here
the linear analysis predicts a slower instability growth (compare the red and blue solid
lines in figure 12c), and, indeed, we can explore a wider range of x0 in the DNS. The Cf
curves collapse well both in the stable regime and close to the onset of instability for the
two values of control gain. Again, the friction factor growth correlates with the onset of
instability. The instability at |A| = 0.7, kxh = 6 is observed in a narrower range of x0, its
growth rate reaches its maximum at smaller |x0 − xcr| than when |A| = 1, and also decays
faster with x0. As the control shifts towards more negative x0, the phase of the next longer
mode, kxh = 5, becomes positive enough so that eventually its growth rate becomes larger
than that of kxh = 6. When ci(6) reaches its maximum and begins to decay, ci(5) is still
growing, and kxh = 5 becomes the dominant mode. This is reflected in the change of slope
in Cf at about this location, and also in the spectrum of v (not shown here). At even larger
shifts, kxh = 4 becomes dominant.

Finally, to confirm that the linear instability is the cause of significant drag increase and
the failure to converge the DNS at larger x0, we show in figure 12(d) the wavenumbers
that grow faster as the DNS diverges, and compare them to the controlled wavenumbers
with the largest linear growth rate. Those wavenumbers should outgrow the rest when
the instability develops, and this is indeed observed in the DNS. As explained above,
the wavelength governing the instability becomes longer for larger |x0|. Note that all
these wave modes have kz = 0 and therefore represent a spanwise roller, similar to that
in figure 4(b).

6.2. The influence of control gain on transition to instability
Further comparison between the linear stability analysis and the DNS gives valuable
information about the nature of the flow transition to a new state at both stability edges of
figure 12(a,b). We draw our attention again to the relation between friction levels in DNS
and the linear instability growth rates, but now as a function of|A|.

Figure 13(a) shows the DNS time history of Reτ for x0 = −0.3, close to the onset
of instability on the left-hand side of figure 12(b). The initial growth of Reτ is stronger
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Figure 13. (a,b) Friction Reynolds number, normalized with Reτ0 of the uncontrolled case, as a function
of time. Time is normalized with the eddy turnover time h/uτ0. The control gain |A| grows with colour
intensity. (c,d) The largest growth rates of eigenmodes as a function of controlled kx, φ and |A|, with
kz = 0. The horizontal dashed line is the neutral stability border with ci = 0. The smaller the symbol
size, the larger is |A|. The x0 and A values are as follows: (a,c) x0 = −0.3, A ∈ (0.5, 0.6, 0.7, 0.8, 1);
(b) x0 = 0.55, |A| ∈ (0.5, 0.9, 0.95, 0.96, 0.97); and (d) x0 = 0.55, •, |A| ∈ (0.5, 0.9, 0.95, 0.96, 0.97), and
©, |A| ∈ (1.0, 1.1, 1.15).

with increasing |A|. It can be clearly discerned for A = 1.0 and 0.8, accompanied by less
robust but still noticeable initial increase in Reτ at |A| = 0.7 and 0.6. After the initial
growth phase, the flow saturates to a new turbulent state with higher Reτ than that of the
uncontrolled flow. The amplitude of the Reτ fluctuations also intensifies, compared to the
uncontrolled flow or parameter regimes where the instability is inactive, i.e. |A| = 0.5. The
saturation of the initial growth takes place on a time scale of the order of the eddy turnover
time (uτ0t/h ≈ 1), which explains the choice of normalization factor in this plot.

Now let us compare the behaviour of Reτ to the growth rates obtained with linear
analysis. In figure 13(c) these growth rates are calculated at x0 = −0.3, for the same values
of |A| as in figure 13(a). The growth rates of the longest, most unstable wavenumbers
continuously increase with |A| and cross the neutral stability line ci = 0 when |A| ∈
[0.5, 0.6]. This interval correlates with the onset of drag increase in the DNS in figure 3(b).
The gradual increase in wall friction in figure 13(a), attributed to the presence of instability
in figure 13(c), indicates a supercritical transition occurring at negative streamwise shifts.

In figure 13(b), we show the time history of Reτ for x0 = 0.55, the right-hand side limit
in figure 3(a). The initial growth of Reτ here is much shorter than in figure 13(a). When
|A| is relatively small, the simulations saturate on a low friction level, where Reτ increases
only by 10–20 % with respect to the base flow, as opposed to the 100–200 % increase in
figure 13(a). At |A| ≈ 0.95, two well-discernible frequencies appear and modulate the flow
evolution. Further increase in |A| makes the flow wander away from this modulated state.
Although we cannot reach the final high-frequency flow state with our DNS, during the
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transition we observed that the most rapidly growing wavelengths are roller-type structures
(figure 12d). This suggests that the final state is also dominated by large-scale rollers,
similar to those in figure 4(b).

Again, we continue by plotting the growth rates corresponding to x0 = 0.55, as a
function of kx and |A| (figure 13d). Here the flow remains linearly stable at the amplitudes
corresponding to figure 13(b), and there is no noticeable change in ci until |A| ≈ 1.
This control gain value is higher than |A| = 0.96, already resulting in transition to a
high-frequency state in the DNS in figure 13(b). If we keep increasing |A|, the longest
wavenumber kx = 6 becomes unstable, as the only wavenumber with positive phase. Its
ci grows more rapidly with |A| than for x0 = −0.3, reaching similar levels with a smaller
relative increase in the control gain. The appearance of additional frequencies, modulating
the flow, and also the fact that the transition occurs earlier in the DNS, suggest that the
transition to the new state for x0 = 0.55 in figure 12(a,b) is subcritical.

7. Response to the forcing

Figure 12 shows that the flow is linearly stable in the range of 0 ≤ x0 < 0.55 for the
control parameters corresponding to our DNS. Therefore, the near-wall oblique waves
from figure 4(c) are caused by another physical mechanism. We explore here the possibility
of their amplification through a response of the linear system to forcing at a certain
frequency. Using the mathematical formalism outlined in the end of § 2.2, we consider
the norm (2.10) of the resolvent operator (2.9) as the maximum amplification factor for the
responses of the linearized controlled flow, and corresponding to it the most amplified flow
modes. A necessary modification to the approach in § 2.2 is needed before we compare
it to the DNS results. Before, we took the mean profile and the turbulent viscosity of
the uncontrolled flow as the base state for the linear analysis. Now, since we consider
time-periodic responses with real frequencies ωf , neither growing nor decaying, we need to
replace the uncontrolled base state with the parameters of the statistically steady controlled
flow. This was achieved by extracting the mean velocity Uc and total shear stress profiles
from the DNS with control, and replacing νt in (A1) with the ratio of the total shear stress
and the y-derivative of Uc. The turbulent mean profile and viscosity are different for each
|A| and x0. We considered here x0 = 0 for brevity, although the conclusions of this section
hold for the entire interval of 0 ≤ x0 < 0.55.

The operator (2.9) requires a frequency ωf , or phase velocity of the forcing cf , as a
parameter. Our control method acts by measuring large scales of v at yd/h = 0.1 and
applying them with a corresponding constant factor at the wall. Thus v structures at the
wall must have the same advection velocity as the structures of v at yd. The advection
velocity of different flow modes varies with their size, but for large structures in the
logarithmic layer it can be approximated by the mean velocity at their wall-normal location
(Jiménez 2018). In the following, we adopt cf = Uc( yd/h = 0.1) as the phase speed of
resolvent forcing. This translates into relatively fast advection, cf /Ub ≈ 0.75–0.78, when
scaled with the bulk velocity. This approach is different from approximating the response
velocity field through a sum of the left singular vectors of the operator (2.9) with different
phase speeds (Luhar et al. 2014; Toedtli et al. 2019). Rather than observing a cumulative
effect of the forcing with all possible phase speeds, we want to capture responses to the
specific phase speed of the detection plane.

In figure 14 we compare the wall-normal profile of the most amplified response to the
wall-normal distribution of energy in the DNS. The length of the harmonic is set to λx/h =
2, λz/h = 1, corresponding to the approximate size of the oblique wave in figure 4(c). The
critical layer for each of the modes is located at yd = 0.1 (y+

d ≈ 100) for the uncontrolled
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Figure 14. Responses to forcing of the linearized Navier–Stokes operator for the mode with λx ∼ 2h, λz ∼ h
and cf = U( yd): (a) energy of the streamwise velocity component; (b) energy of the wall-normal velocity
component; and (c) tangential Reynolds stresses. Dashed line, without control; solid line, with control; •, the
energy of the corresponding mode in the DNS. Results for |A| = 1, in blue; |A| = 0.7, in red; with x0 = 0. The
horizontal black dotted line, y+

d , is the location of the critical layer for the uncontrolled flow. All energies are
normalized with the maximum of Euu, and y+ is normalized with the wall units of each case.

flow, and is only slightly shifted upwards in wall units when the flow is controlled. In the
uncontrolled case, the response modes peak near the critical layer, where the advection
velocity of forcing is equal to the advection velocity of the mean profile. In the controlled
case, the linear response to the forcing, besides the expected peak at y+ ≈ 100, has a
second peak in Euu around y+ ≈ 10 (figure 14a). Figure 14(b) shows that both the linear
response in v and the energy of the selected mode in the DNS exhibit a minimum in v

around y+
0 = 50, as already indicated by the minimum in the contribution to the r.m.s. of v

from the large scales in figure 2(c). There is also a maximum of v in the logarithmic layer
as in the uncontrolled case.

Finally, figure 14(c) shows the contribution to the Reynolds stress by this particular
mode. Unlike in the uncontrolled case, where the Reynolds stress has only one pronounced
maximum in the logarithmic layer, in the controlled flow interaction of the new peak in Euu
in the buffer layer and non-zero Evv at the wall generates a second peak in Euv . This peak
is also located in the buffer layer and its magnitude is comparable to the logarithmic-layer
maximum (compare to the two-peak distribution in figure 5d). Responses obtained with
our linear amplification model capture the shape of the DNS energies reasonably well for
both |A| = 1 and 0.7, indicating that oblique waves observed in the DNS are indeed the
amplified linear responses of the flow subject to the forcing with cf = Uc( yd). Note that
the resolvent analysis will give the same amplification and modal structure for modes with
±kz, due to the symmetry of the linearized Navier–Stokes operator under transformation
kz → −kz, and therefore cannot predict whether the waves will be travelling in the
positive or the negative direction of the z-axis in the DNS. However, maximum resolvent
amplification, quantified by the largest singular values, could explain the energy build-up
on the scale of oblique waves, λx/h ≈ 2, λz/h ≈ 1.

Figure 15 shows contours of the first singular values σ0 of the operator in (2.9), or
equivalently its norm (2.10), as a function of kx and kz. In the linear analysis, we can
employ much larger wavelengths than permitted by our computational domain in DNS.
This allows us to capture the general trend in σ0 for very large structures. Note that
neither infinitely long waves, kx = 0, nor infinitely wide waves, kz = 0, are included in this
logarithmically scaled plot. The gradual increase in the response intensity with increase of
the length scale indicates that the large scales are more sensitive to the forcing through the
nonlinearity, which represents an additional challenge for their control. The contours shift
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Figure 15. Maximum amplification of the resolvent response σ0 as a function of streamwise and spanwise
wavenumbers. The controlled DNS wave band is kxh ∈ [1, 6], kzh ∈ [2, 10], which is highlighted by the dashed
rectangle. The × marks the length scale of oblique waves from figure 4(c) (λx,z/h ≈ 2, 1). Control parameters:
cf = U( yd), x0 = 0 and |A| = 1.

towards smaller kz as kx decreases, meaning that the most amplified response gets wider
as it gets longer. At very long wavelengths, of the order of kx ≈ 0.1 or λx/h = 2π/0.1 =
O(102), this trend saturates at kz ≈ 1.5 (λz/h ≈ 4.2), which is larger than the width of the
computational box in our DNS. The wavenumbers that are observed and controlled in the
DNS are highlighted by the dashed rectangle in figure 15. The distribution of σ0 contours
in this area indicates that the amplification maximum should happen on the largest possible
flow scale, especially in x. This prediction is in agreement with the mechanism of transient
growth, which predicts larger amplification and longer lifetimes of the perturbations with
longer streamwise wavelengths (Del Alamo & Jiménez 2006). However, the wavelengths
λx/h ≈ 2, λz/h ≈ 1, marked by the black cross in figure 15, are smaller than the largest
controlled streamwise length scale, in contradiction with the linear prediction.

In figure 15, all scales are affected by control, while only a limited range of scales is
controlled in the DNS. To compare the resolvent analysis to the DNS, let us take a closer
look at these scales. Figure 16(a) gives the values of σ0 for the wavenumbers that are
contained in the dashed rectangle in figure 15, augmented with kx = 0, kz ∈ [2, 10] and
kz = 0, kxh ∈ [1, 6], which were also controlled. The flow produces a very large linear
response at kx = 0, which is equivalent to a non-periodic in time forcing with kxcf = 0.
For the rest of the controlled scales, the response energy is gradually increasing with scale,
which is highlighted by the logarithmically spaced colour map. Since the resolvent norm
(2.10) was weighted by the kinetic energy of the flow, as in Schmid & Henningson (2012),
a reasonable quantity to compare with it is the total kinetic energy of the DNS flow. Figure
16(b) presents this quantity, Etot = Euu + Evv + Eww, integrated over the channel height.
The maximum in Etot does not capture the location of oblique waves in figure 5, because
the energy spectra of u and v in figure 5 were premultiplied and integrated over λx or λz
instead of y. Although figure 16(b) shows a preference of the flow towards larger scales,
the trend is not very clear, and infinitely long or wide wavelengths are less energetic than
suggested by figure 15.

Alternatively to the resolvent analysis, we can also view the resulting controlled DNS
flow in an input–output framework, as a system forced with the wall-normal velocity from
the wall. The amplitude of this forcing is unevenly distributed across the scales, since the
r.m.s. of v at the detection plane increases as the length scale becomes smaller. This way, a
particular energy distribution in the flow favouring oblique length scales could stem from
the inhomogeneous distribution of control intensity over scales. Figure 16(c) shows the
distribution of the wall-normal component of the energy at the wall, Evv,wall, acting on
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Figure 16. (a) Maximum linear response σ0 to forcing at cf = U( yd) as a function of wavenumbers. The
dashed rectangle contains the same wavenumbers as in figure 15. (b) Total kinetic energy of the flow Etot,
integrated over channel height. (c) Energy contribution Evv,wall of wall-normal velocity at the wall. (d) Plot of√

Etot/Evv,wall, the ratio of (b) to (c). Here kx,z = 0 was not controlled in the DNS and was removed from the
plots for clarity. Energies in (b,c) were normalized with u2

τ . Here x0 = 0 for all panels.

the flow. It shows a tendency of energy increase towards short scales in x, and a peak
at kx,zh = (3, 2). We take the energy of v at the wall in figure 16(c), and normalize the
total energy response Etot with it. The square root of this result, estimating the response
amplification, is given in figure 16(d), and the tendency of the flow to produce an amplified
response at larger scales becomes much more apparent.

Moreover, the DNS responses, normalized this way, also allow for a weighted
comparison with our resolvent model. The latter relates vw and v( yd) in a way where
all wavenumber pairs (kx, kz) are treated equally, without taking into account that different
scales of wall-normal velocity receive different amounts of energy at the wall through
control, as in the DNS. Normalizing the total DNS flow response with the wall-normal
velocity distribution at the wall allows one to correct for this factor. The distribution of
response magnitudes in figure 16(d) is similar to figure 16(a), with a preference of the flow
response towards the large scales in both cases. There is an intense peak at kx = 0, kzh = 2,
which can be a signature of the σ0 maximum in figure 15, but a larger computational
domain would be required to prove this point. Overall, figures 16(d) and 16(a) correlate
reasonably well and support the hypothesis of the proportionality of flow response to the
intensity ofv.

8. Discussion and conclusions

In this work, we performed an analysis of large-scale opposition control targeting
structures in the logarithmic layer of the fully turbulent channel flow. The control, applied
on the largest Fourier modes of wall-normal velocity in the DNS, creates a virtual-wall
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effect on these modes, and simultaneously provokes a large response in streamwise
velocity in the buffer layer. This effect is accompanied by the appearance of a near-wall
peak in Reynolds stresses and therefore a pronounced and undesired increase of friction.
Since advancing the detection upstream with respect to actuation was shown to be
beneficial for drag reduction in opposition flow control by Lee (2015), we introduced a
streamwise shift between sensing and control input as a new parameter. Shifting control
in the streamwise direction, as depicted in figure 3(a), divides the flow behaviour into two
parameter regions. The first one, of approximately x0/h ∈ [0, 0.55), features a moderate
and roughly constant drag increase, approximately 50–100 % more than in the uncontrolled
flow. It is accompanied by the appearance of oblique waves. In the second parameter
region, of approximately x0/h ∈ [−0.35, 0), spanwise rollers develop. The drag here
increases dramatically, up to four times larger than in the uncontrolled flow. Outside these
regions, the turbulence was enhanced to such an extent that the simulations diverged. To
explain this behaviour, we explored the linear dynamics of the channel flow with boundary
conditions adapted for opposition flow control.

We have shown that in the second parameter region, x0/h ∈ [−0.35, 0), all wavelengths
of the channel flow, with or without viscosity, are affected by a linear instability. The
instability is manifested as a pair of unstable eigenvalues that migrate along a circular
path in the complex plane, as the phase of the complex control coefficient A changes.
The direction of the eigenvalue motion in the complex plane depends on the control gain
|A|. When |A| is small, the control-related eigenvalues move towards the left, and we
observe eigenmodes with unusually large negative phase speeds, cr < 0. As |A| increases,
the eigenvalues experience a hyperbolic growth, going from −∞ to ∞ when |A| = |A|f ,
φ = ±π. At |A|f , the circle containing the eigenvalue motion flips to the right in the
complex plane.

We revisited the analysis of the Rayleigh equation for inviscid channel flow, and
derived a semi-analytical expression for cr(|A|, φ = ±π) explaining this behaviour. In
the inviscid case, unstable eigenvalues are encountered for positive phases φ = (0, π) for
all |A|. The presence of viscosity modulates the instability, dampening it for small control
gains (figure 9a). The instability behaviour is also different at large |A| as the instability
eventually weakens; the inviscid flow becomes marginally stable, while the growth rates
of the viscous problem saturate at small but positive levels. Physically, the large gains
force the eigenvectors to be zero at the detection plane (figure 10b), effectively creating
a narrower channel. As the effective wavenumber κ increases, and the related structures
become smaller, the instability region is displaced towards larger values of |A|, as indicated
in figure 9(a). Therefore, long and wide wave modes are more dangerous for control than
short and narrow ones, given the same control gain. Considering moderate |A| ≤ 1, as
in our DNS, we find that only the largest flow scales remain a concern and may become
unstable (figure 11).

These findings are easily applied to the DNS results if the linear relation φ = −kxx0
between the streamwise shift and the phase of the control coefficient is considered. Since
the instability region is defined by φ instead of x0, and the control coefficient A is
2π-periodic, the instability can be approached in two ways in the DNS. The obvious way
is to shift control upstream, applying negative x0, until one of the controlled wavenumbers
becomes unstable at the ‘critical’ control shift xcr. In the case of |A| = 1, several controlled
wavenumbers become unstable simultaneously, but kxh = 6 has the largest growth rate
among them, and therefore defines the flow evolution near the onset. We relate its growth
rate to the steep increase in friction at x0/h ∈ [−0.35, 0) in figure 12(c). As x0 decreases
further, kxh = 6 becomes stable again, but the instability is overtaken by lower kx, so the
friction remains high.
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On the other hand, it is also possible to approach the instability by shifting control
downstream, i.e. beyond x0/h > 0.55 (figure 12a,b), where the phase for kxh = 6 changes
from −π to π. Periodicity of A also implies that the regions of stability and instability
are repeated periodically as the control is moved further upstream or downstream. As
the result of the linear instability, the altered steady-state flow takes the form of spanwise
rollers while remaining turbulent (figure 4b). The flow gradually approaches this high-drag
state at negative streamwise shifts, indicating a supercritical transition in figure 13(a).
The positive streamwise shift x0/h ≈ 0.55 features abrupt transition to the high-drag state,
accompanied by two modulating frequencies as |A| increases, and occurs at smaller |A|
than predicted by the linear analysis. This suggests the presence of a subcritical bifurcation
in figure 13(b), although more data are needed to confirm this. Our results are in agreement
with the recent work of Toedtli et al. (2020), who link the deterioration of the ‘classic’
opposition control with the detection plane in the buffer layer, y+

d = 15, to the formation
of spanwise rollers. Toedtli et al. (2020) find unstable eigenmodes of the linearized
Navier–Stokes equations for control phases φ ∈ [π/4, 3π/4], and they are probably of
the same physical origin as those reported here.

The uniform structure of the high-friction flow state in the form of spanwise rollers in
figure 4(b) resembles an instability of Kelvin–Helmholtz type. Such instabilities have a
profound effect on wall-bounded flows that allow wall transpiration, for example, channels
with porous walls or riblets (Jiménez et al. 2001; García-Mayoral & Jiménez 2011). As
in the case of Kelvin–Helmholtz instability, the advection of vorticity with v̂ in (4.1)
(U′′v̂) is the necessary ingredient for the instability observed here, and if it is removed
from equations, the positive growth rates are no longer observed. However, the control
instability has two important differences. First, a Kelvin–Helmholtz instability requires
two interacting eigenvalues to form a complex conjugate pair, as illustrated by a simple
example of the piecewise-linear mixing layer (Schmid & Henningson 2012, pp. 26–29).
In our case, each of the two control eigenvalues is associated with control at one of the
channel walls. The control eigenvalues do not interact, and only one of them appears if the
control is applied only to one wall. Second, when the eigenvalues go through a hyperbolic
infinity in (4.13), they become essentially independent from the only velocity scale of the
flow, Ub. The simplest interpretation is that the instability observed here is the instability of
the control, in the sense of an unstable feedback loop. This is supported by the observation
that the growth rates become larger as φ → π, which represents reinforcement instead of
opposition, since the control at the wall is in phase with the detection plane.

In the region of x0/h ∈ [0, 0.55), the linear instability is inactive, but the friction is
still increased, and oblique waves with a large contribution to the Reynolds stress near
the wall appear (figure 4c). We used a linear resolvent model to explore the possibility of
these waves arising from amplified responses of the linearized Navier–Stokes operator to
forcing. Our model captures correctly the shape of oblique waves in the DNS on the length
scales λx, λz = 2h, h, if the advection speed of the forcing is set the same as the advection
speed of structures at the detection plane yd/h = 0.1, supporting the suggestion above.

On the other hand, resolvent analysis does not predict the largest responses on the
scale of oblique waves (figure 15). We rescaled the total kinetic energy of the flow by
the energy of the wall-normal velocity at the wall to obtain a weighted magnitude of
the flow response at each flow scale. Normalized this way, the magnitude of response
increases with the length scale, and the maximum response is obtained at the largest
possible scales, in line with the linear prediction of the response norm in figure 15.
Therefore, the visually apparent build-up of energy at this particular scale is an artefact
of the distribution of the r.m.s. of v at the detection plane. In our work, the focus was

935 A35-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.34


A. Guseva and J. Jiménez

on phase velocities of cf /Ub ≈ 0.75–0.78, or c+ ∈ [11, 13] in wall units, corresponding
to ‘detached’ resolvent modes. Luhar et al. (2014) showed that the ‘detached’ modes
with 12 < c+ < 16 will be amplified but create significant blowing and suction at the
wall, i.e. are in principle controllable. A comprehensive analysis of the principal forcing
frequencies in the controlled DNS, together with a more involved resolvent model with
varying cf , treating controlled and uncontrolled length scales separately, could clarify
further questions.

Unfortunately, reducing the control gain and therefore inhibiting the possible
instabilities does not reduce drag, as shown by the DNS results in figure 3(b). A
successful control strategy therefore should optimize both control gain and control phase,
as suggested by Luhar et al. (2014) and Toedtli et al. (2019). It should also take into account
the contribution to friction from all flow length scales, because nonlinearity transfers
energy from the large scales affected by control to the uncontrolled small scales. In the
current set-up, at least two routes for optimization are possible: first, minimizing the
total stress of each resolvent response, and second, reducing the maximum of u near the
wall. Our preliminary results (not shown here) indicate that the first strategy results in a
relatively smaller drag increase in comparison to the second one. Nevertheless, we leave
this optimization for a future work, which should ideally be tailored to approximate an
experimental flow. In a real experimental set-up, the opposition control is implemented
via local blowing and suction (Abbassi et al. 2017). This requires an adaptation of
wave-opposition control, which is global and occupies the whole spatial domain, to
spatially local opposition, and, as a result, a different type of optimization problem (Pastor
et al. 2020).

We note here that the most straightforward way of relaxing turbulence is to reduce the
non-normality of the linearized Navier–Stokes operator at the wall. The non-normality is
responsible for the near-wall cycle, generating streaks of u from quasi-streamwise vortices.
It is known that, if the non-normal coupling between ωy and v in the operator is removed or
weakened, the turbulence decays (Jiménez & Pinelli 1999). Kim & Lim (2000) compared
the results of this weakening to classic opposition control of Choi et al. (1994) and
suggested that it acts on the flow in a similar manner. In the large-scale opposition control
implemented here, the forcing is too large to interfere with quasi-streamwise vortices of the
near-wall cycle, and therefore this physical mechanism of drag reduction is inactive. Our
results suggest executing caution in applying large-scale control, especially with a lagging
delay between sensors and actuators, equivalent to shifting control upstream. Nevertheless,
the increase of near-wall activity in the form of oblique structures of streamwise and
wall-normal velocities and resulting momentum transport opens the possibility of using
this form of control when enhancing turbulence is beneficial, such as in mixing or in
separation control.
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Appendix A. The role of turbulent viscosity

In turbulent flows, momentum transport induced by Reynolds stresses modifies the
velocity profile to adopt a flatter shape, compared to a laminar one. There have been
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attempts to explain the specific shape of the turbulent mean profile using the principle
of maximum dissipation rate and the assumption of neutral stability of the mean profile
(Malkus 1956). Nevertheless, later linear stability analysis of experimentally observed
mean profiles in channels showed that these profiles are far from being neutrally stable
and their perturbations decay (Reynolds & Tiederman 1967), if the turbulent viscosity
is taken into account. Reynolds & Hussain (1972) demonstrated that including turbulent
viscosity gives a much better prediction of experimental results.

In this work, we also incorporate it into the linear stability analysis. The idea behind
it is that, on a single wave harmonic, the background turbulence acts directly (through
Reynolds stresses) and indirectly (through the turbulent mean profile). Turbulent viscosity,
introduced into the viscous term, is merely a closure for the mean Reynolds stresses arising
in the perturbation equations, and represents the interaction between the wave harmonic
and background turbulence. In simple closures, it acts on the wave as an additional
damping. Note that, in the resolvent analysis of McKeon & Sharma (2010) and many
further works, turbulent viscosity is not included in the linear model since nonlinear terms
are treated as unknown forcing to the linear part of the Navier–Stokes equations. Morra
et al. (2019) show, however, that the resolvent model based on turbulent viscosity performs
much better at predicting the velocity spectrum. This suggests that, in the absence of
additional information about the forcing shape or amplitude, it is justified to incorporate
the turbulent viscosity in the linear model to get more precise results.

Below we give the Cess analytic approximation for turbulent viscosity,

νt = ν

2

{
1 + K2Reτ

9
[2η − η2][3 − 4η + η2]2

[
1 − exp

(−ηReτ

A

)]2
}0.5

+ 1
2
, (A1)

where ν is the kinematic viscosity, η = y/h, and A = 25.4 and K = 0.426 are parameters.
The turbulent viscosity is later incorporated into (2.6a–c), where the Orr–Sommerfeld
(LOS), Squire (LSQ) and wall-normal derivative (D) operators are given by:

LOS = ikxU(κ2 − D2) + ikxU′′ + νt(κ
2 − D2)2 + 2ν′

t(D
3 − κD) + ν′′

t (D2 + κ2),

LSQ = ikxU + νt(κ
2 − D2) + ν′

tD

D = ∂

∂y
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(A2)

Here primes denote derivatives of U and νt with respect to y, and κ2 = k2
x + k2

z . The mean
profile U can be reconstructed using turbulent viscosity, as well as obtained empirically
from the DNS.

Appendix B. Boundary conditions for the linearized problem

Imposing boundary conditions for the eigenvalue problem (2.8) is equivalent to
implementing additional algebraic constraints on the system. Consider a generalized
eigenvalue problem ωMv = Lv. Suppose v ∈ Cn, where n corresponds to the spatial
discretization of the domain in y-direction, and assume finite-difference discretization for
simplicity. The most general boundary conditions for the Orr–Sommerfeld problem are

935 A35-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.34


A. Guseva and J. Jiménez

0.95 1.00 1.05 1.10
–0.10

–0.05

0

0.05

0.10

0.8 0.9 1.0 1.1
–0.2

–0.1

0

0.1

c i/
U

b

cr/Ub cr/Ub

(a) (b)

Figure 17. Numerical resolution test for the linear stability problem with viscosity. (a) Eigenvalue spectrum
for kx = 2, kz = 0: blue, |A| = 60, φ = −3π/4; red, |A| = 10, φ = 3π/4. (b) Eigenvalue spectrum for kx =
20, kz = 0 and |A| = 100: blue, φ = −3π/4; red, φ = 3π/4. The number of Chebyshev polynomials is N ∈
[256, 512, 800, 1024], indicated by decreasing symbol size and colour intensity.

the clamped boundary conditions:

v0,n = 0, (∂v/∂y)0,n = 0. (B1a,b)

Recalling that the left-hand side of the problem ωMv is related to the time derivative
∂v/∂t, a way to implement conditions (B1) is to set the first and the last row of M to
zero. This operation, however, reduces the rank of matrix M and makes the problem
ill-conditioned. Moreover, it produces two infinite eigenvalues corresponding to conditions
(B1), since physically these conditions mean that the perturbation on the boundary
propagate infinitely fast.

To avoid numerical issues, by manual filtering of the infinite (not spurious) eigenvalues,
or developing manual matrix-reduction algorithms, Goussis & Pearlstein (1989) and
Schmid & Henningson (2012) offer a mapping of the infinite eigenvalues to an arbitrary
point in the eigenvalue space. Instead of setting the corresponding rows of M to zero, the
respective rows of the problem are set to satisfy an equation for v0,n with exponentially
decaying solutions:

ωM0,...v0 = −|C|iv0. (B2)

The constant |C| is set large enough to map infinite eigenvalues related to boundary
conditions into the stable part of the complex plane, way below the line ωi = 0. For
the controlled problem, condition (B2) reads as ωM0,...(v0 − vd) = −|C|i(v0 − vd), which
sets the difference between the perturbation at the wall and the detection plane to decay
exponentially. The resulting eigenvectors satisfy the control law (2.2).

Appendix C. Numerical resolution test for § 5.2

It is important to make sure that the numerical resolution of the linear stability analysis is
sufficient for the large control gains in § 5.2, and that the saturation of eigenvalues is not
a spurious effect. We performed resolution tests on various wavenumbers, increasing the
number of Chebyshev polynomials N used to discretize the matrices M and L in (2.7). The
tests in figure 17 show consistency in eigenvalue positions above ci = 0 of the unstable
wavenumbers for both small and large kx with increasing N. Since a small variation is
nevertheless observed, we increased the numerical resolution in § 5.2 to N = 512.
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