THE RATE OF INCREASE OF MEAN VALUES OF FUNCTIONS IN HARDY SPACES

JAVAD MASHREGHI

(Received 18 April 2007; accepted 17 October 2007)

Communicated by P. C. Fenton

Abstract

The norm of a function f in the Hardy space $H^p(\mathbb{D})$ is by definition the limit of $||f_r||_p$ as $r \to 1$. We show that $d||f_r||_p/dr$ grows at most like $o(1/\log r)$ as $r \to 1$.

2000 *Mathematics subject classification*: primary 32A35; secondary 30D55. *Keywords and phrases*: Hardy space, integral means, BMO.

1. Introduction

Let f be analytic in the unit disc, and let 0 . Define

$$\|f_r\|_p = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta\right)^{1/p}.$$

Hardy showed that $\log ||f_r||_p$ is a convex increasing function of $\log r$ [3]. The *Hardy* space $H^p(\mathbb{D})$ is, by definition, the family of all analytic functions satisfying

$$||f||_p = \lim_{r \to 1} ||f_r||_p < \infty.$$

In this note we show that

$$\frac{d}{dr} \|f_r\|_p = o(1/\log r) \quad \text{as } r \to 1$$

for each $f \in H^p(\mathbb{D})$.

This work was supported by NSERC (Canada) and FQRNT (Québec). The author thanks the anonymous referee for his/her valuable remarks.

© 2009 Australian Mathematical Society 1446-7887/2009 \$16.00

J. Mashreghi

Fefferman [1, 2] showed that a 2π -periodic function of bounded mean oscillation is of the form $\varphi + \tilde{\psi}$, where φ and ψ are two bounded 2π -periodic functions on \mathbb{R} , and moreover,

$$\|\varphi + \psi\|_{\text{BMO}} \asymp \|\varphi\|_{\infty} + \|\psi\|_{\infty}.$$

Then, Garsia defined a different (somehow simpler) norm $\|\cdot\|_G$ on this space, and showed that

$$\|\varphi + \hat{\psi}\|_{\text{BMO}} \asymp \|\varphi + \hat{\psi}\|_{\text{G}} \asymp \|\varphi\|_{\infty} + \|\psi\|_{\infty}.$$

In the proof of this fundamental result [4, p. 225], the following lemma plays a key role.

LEMMA 1.1. Let f be analytic on the disc $\{|z| < R\}$, with R > 1. Suppose that f has a simple zero at the origin, and that it has no other zeros in $\{0 < |z| < R\}$. Then

$$\int_0^{2\pi} |f(e^{i\theta})| \, d\theta = \iint_{|z|<1} \log(1/|z|) \frac{|f'(z)|^2}{|f(z)|} \, dx \, dy.$$

The hypothesis of this lemma makes the proof of the Garcia–Fefferman theorem longer. Let us first slightly generalize this lemma for an arbitrary function of the classical Hardy space H^p . Note that, contrary to Lemma 1.1, we do *not* assume in the following lemma that f has a simple zero at the origin, has no other zeros in the unit disc, and is analytic on a neighbourhood of the closed unit disc.

LEMMA 1.2. Let $f \in H^p(\mathbb{D})$, $0 , and <math>f \neq 0$. Suppose that f(0) = 0. Then

$$\int_0^{2\pi} |f(e^{i\theta})|^p \, d\theta = p^2 \iint_{|z|<1} \log(1/|z|) |f(z)|^{p-2} |f'(z)|^2 \, dx \, dy.$$

PROOF. Let ρ be so small that on the closed disc $\{|z| \le \rho\}$ there are no zeros of f, except of course the origin. Let $1 > \rho > \rho$ be such that on the circle $\{|z| = \rho\} f$ has no zeros. Then, in the annulus $\{\rho < |z| < \rho\}$, there are a finite number of zeros of f, say z_1, z_2, \ldots, z_n . Let ε be so small that all the discs $\{|z - z_k| \le \varepsilon\}$, $1 \le k \le n$, are entirely in the annulus $\{\rho < |z| < \rho\}$. Finally, let

$$\Omega = \{ \rho < |z| < \varrho \} \setminus \bigcup_{k=1}^n \{ |z - z_k| \le \varepsilon \}.$$

In the following, we shall eventually let $\varepsilon \to 0$, and then $\rho \to 0$, and $\varrho \to 1$ through a sequence $(\varrho_n)_{n\geq 1}$, so that there is no zero on the circles $\{|z| = \varrho_n\}$.

The function $W(z) = |f(z)|^p$ is infinitely differentiable in a neighbourhood of $\overline{\Omega}$. Hence, by Green's theorem,

$$\iint_{\Omega} \log(\varrho/|z|) \nabla^2 W(z) \, dx \, dy = \int_{\partial \Omega} \left(\log(\varrho/|z|) \frac{\partial W}{\partial n} - W \frac{\partial \log(\varrho/|z|)}{\partial n} \right) d\ell.$$

First of all, a simple calculation shows that

$$\nabla^2 W(z) = p^2 |f(z)|^{p-2} |f'(z)|^2.$$

Hence, the Green formula becomes

$$p^{2} \iint_{\Omega} \log(\varrho/|z|) |f(z)|^{p-2} |f'(z)|^{2} dx dy = I_{\varrho} - I_{\rho} - \sum_{k=1}^{n} I_{k}, \qquad (1.1)$$

where the integrals on the right-hand side are explained below. On the boundary $\{|z| = \varrho\},\$

$$I_{\varrho} = \int_{0}^{2\pi} \left(\log(1) \frac{\partial W}{\partial r} (\varrho e^{i\theta}) + W(\varrho e^{i\theta}) \frac{1}{\varrho} \right) \varrho \, d\theta$$
$$= \int_{0}^{2\pi} |f(\varrho e^{i\theta})|^{p} \, d\theta.$$

By a well-known result in the theory of H^p spaces, we know that

$$I_{\varrho} = \int_{0}^{2\pi} |f(\varrho e^{i\theta})|^{p} d\theta \to \int_{0}^{2\pi} |f(e^{i\theta})|^{p} d\theta$$
(1.2)

as $\rho \to 1$. On the boundary $\{|z| = \rho\}$,

$$I_{\rho} = \int_{0}^{2\pi} \left(\log(\rho/\rho) \frac{\partial W}{\partial r} (\rho e^{i\theta}) + W(\rho e^{i\theta}) \frac{1}{\rho} \right) \rho \, d\theta$$
$$= \int_{0}^{2\pi} |f(\rho e^{i\theta})|^{p} \, d\theta + \rho \log(\rho/\rho) \int_{0}^{2\pi} \frac{\partial |f|^{p}}{\partial r} (\rho e^{i\theta}) \, d\theta$$

Since f is continuous at the origin,

$$\int_0^{2\pi} |f(\rho e^{i\theta})|^p \, d\theta \to 2\pi |f(0)|^p = 0$$

as $\rho \rightarrow 0$. On the other hand, since

$$\frac{\partial |f|^p}{\partial r} = p(uu_r + vv_r)|f|^{p-2},$$

by the Cauchy-Schwarz inequality,

$$\left|\int_{0}^{2\pi} \frac{\partial |f|^{p}}{\partial r} (\rho e^{i\theta}) d\theta\right| \le p \int_{0}^{2\pi} |f(\rho e^{i\theta})|^{p-1} |f'(\rho e^{i\theta})| d\theta.$$

If *f* has a zero of order n_0 at the origin, then $|f(\rho e^{i\theta})| \simeq \rho^{n_0}$ and $|f'(\rho e^{i\theta})| \simeq \rho^{n_0-1}$ as $\rho \to 0$. Hence,

$$\int_0^{2\pi} |f(\rho e^{i\theta})|^{p-1} |f'(\rho e^{i\theta})| \, d\theta \asymp \rho^{pn_0-1},$$

J. Mashreghi

which gives

$$\left|\rho \log(\varrho/\rho) \int_0^{2\pi} \frac{\partial |f|^p}{\partial r} (\rho e^{i\theta}) \, d\theta \right| \le C \rho^{pn_0} |\log \rho|.$$

Thus,

$$\rho \log(\rho/\rho) \int_0^{2\pi} \frac{\partial |f|^p}{\partial r} (\rho e^{i\theta}) d\theta \to 0$$

as $\rho \rightarrow 0$. Therefore,

$$I_{\rho} \to 0 \tag{1.3}$$

as $\rho \to 0$. Finally, on the boundary $\{|z - z_k| = \varepsilon\}$,

$$I_{k} = \int_{0}^{2\pi} \left(\log(\varrho/|z_{k} + \varepsilon e^{i\theta}|) \frac{\partial |f|^{p}}{\partial n} (z_{k} + \varepsilon e^{i\theta}) - |f(z_{k} + \varepsilon e^{i\theta})|^{p} \frac{\partial \log(\varrho/|z|)}{\partial n} (z_{k} + \varepsilon e^{i\theta}) \right) \varepsilon d\theta.$$

Since

$$\left. \frac{\partial |f|^p}{\partial n} \right| \le |\nabla|f|^p | \le p |f|^{p-1} |f'|,$$

if *f* has a zero of order $n_k \ge 1$ at the z_k then

$$|I_k| \leq C \varepsilon^{pn_k}$$

Note that the constant C depends on ρ . However, for a fixed ρ ,

$$I_k \to 0 \tag{1.4}$$

as $\varepsilon \to 0$. Now let $\varepsilon \to 0$. By the monotone convergence theorem, and by (1.4), the Green formula (1.1) becomes

$$p^{2} \iint_{\rho < |z| < \varrho} \log(\varrho/|z|) |f(z)|^{p-2} |f'(z)|^{2} dx dy = I_{\varrho} - I_{\rho}.$$

Then let $\rho \to 0$, and finally let $\rho \to 1$. Again by the monotone convergence theorem, and by (1.2) and (1.3),

$$p^2 \iint_{|z|<1} \log(1/|z|) |f(z)|^{p-2} |f'(z)|^2 \, dx \, dy = \int_0^{2\pi} |f(e^{i\theta})|^p \, d\theta. \qquad \Box$$

2. The rate of increase of $|| f_r ||_p$

Using Lemma 1.2, we are able to show that

$$\frac{d}{dr}\|f_r\|_p$$

does not grow arbitrarily fast as $r \rightarrow 1$.

202

Rate of increase

THEOREM 2.1. Let $f \in H^p(\mathbb{D})$, 0 . Then

$$\frac{d}{dr} \|f_r\|_p = o(1/\log r)$$

as $r \rightarrow 1$.

PROOF. Without loss of generality, assume that f(0) = 0. Let ρ , ρ and ε be as in the proof of Lemma 1.2. We apply Green's formula again, but this time we use $\log 1/|z|$ instead of $\log \rho/|z|$. Hence,

$$p^{2} \iint_{\Omega} \log(1/|z|) |f(z)|^{p-2} |f'(z)|^{2} dx dy = J_{\varrho} - J_{\rho} - \sum_{k=1}^{n} J_{k}.$$
(2.1)

On the boundary $\{|z| = \varrho\}$,

$$J_{\varrho} = \int_{0}^{2\pi} \left(\log(1/\varrho) \frac{\partial W}{\partial r} (\varrho e^{i\theta}) + W(\varrho e^{i\theta}) \frac{1}{\varrho} \right) \varrho \, d\theta$$

=
$$\int_{0}^{2\pi} |f(\varrho e^{i\theta})|^{p} \, d\theta - \varrho \log \varrho \int_{0}^{2\pi} \frac{\partial |f|^{p}}{\partial r} (\varrho e^{i\theta}) \, d\theta$$

=
$$M_{p}(\varrho) - \varrho \log \varrho M'_{p}(\varrho),$$

where

$$M_p(r) = \|f_r\|_p^p = \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta$$

Using the same techniques as in the proof of Lemma 1.2, we can show that

$$J_k \to 0 \tag{2.2}$$

as $\varepsilon \to 0$, and that

$$J_{\rho} \to 0 \tag{2.3}$$

as $\rho \to 0$. Now, let $\varepsilon \to 0$, and then let $\rho \to 0$. By the monotone convergence theorem, and (2.2)–(2.3), the Green formula (2.1) becomes

$$p^{2} \iint_{|z| < \varrho} \log(1/|z|) |f(z)|^{p-2} |f'(z)|^{2} dx dy = M_{p}(\varrho) - \varrho \log \varrho M'_{p}(\varrho).$$

Then, let $\rho \to 1$. Again by the monotone convergence theorem, and by Lemma 1.2, we obtain

$$\lim_{\varrho \to 1} \log \varrho M'_p(\varrho) = 0.$$

REMARK. Minor modification of the above calculations yields the formula

$$\varrho M'_p(\varrho) = p^2 \iint_{|z| < \varrho} |f(z)|^{p-2} |f'(z)|^2 \, dx \, dy.$$

J. Mashreghi

References

- [1] C. Fefferman, 'Characterizations of bounded mean oscillation', *Bull. Amer. Math. Soc.* **77** (1971), 587–588.
- [2] C. Fefferman and E. Stein, '*H^p* spaces of several variables', *Acta Math.* **129** (1972), 137–193.
- [3] G. H. Hardy, 'The mean values of the modulus of an analytic function', *Proc. London Math. Soc.* **14** (1915), 269–277.
- P. Koosis, *Introduction to H^p Spaces*, 2nd edn, Cambridge Tracts in Mathematics (Cambridge University Press, Cambridge, 1998).

JAVAD MASHREGHI, Département de mathématiques et de statistique, Université Laval, Québec, QC, Canada G1V OA6 e-mail: javad.mashreghi@mat.ulaval.ca