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Abstract

The norm of a function f in the Hardy space H p(D) is by definition the limit of ‖ fr‖p as r→ 1. We
show that d‖ fr‖p/dr grows at most like o(1/ log r) as r→ 1.
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1. Introduction

Let f be analytic in the unit disc, and let 0< p <∞. Define

‖ fr‖p =

(
1

2π

∫ 2π

0
| f (reiθ )|p dθ

)1/p

.

Hardy showed that log ‖ fr‖p is a convex increasing function of log r [3]. The Hardy
space H p(D) is, by definition, the family of all analytic functions satisfying

‖ f ‖p = lim
r→1
‖ fr‖p <∞.

In this note we show that

d

dr
‖ fr‖p = o(1/ log r) as r→ 1

for each f ∈ H p(D).
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Fefferman [1, 2] showed that a 2π -periodic function of bounded mean oscillation is
of the form ϕ + ψ̃ , where ϕ and ψ are two bounded 2π -periodic functions on R, and
moreover,

‖ϕ + ψ̃‖BMO � ‖ϕ‖∞ + ‖ψ‖∞.

Then, Garsia defined a different (somehow simpler) norm ‖ · ‖G on this space, and
showed that

‖ϕ + ψ̃‖BMO � ‖ϕ + ψ̃‖G � ‖ϕ‖∞ + ‖ψ‖∞.

In the proof of this fundamental result [4, p. 225], the following lemma plays a
key role.

LEMMA 1.1. Let f be analytic on the disc {|z|< R}, with R > 1. Suppose that f has
a simple zero at the origin, and that it has no other zeros in {0< |z|< R}. Then∫ 2π

0
| f (eiθ )| dθ =

∫ ∫
|z|<1

log(1/|z|)
| f ′(z)|2

| f (z)|
dx dy.

The hypothesis of this lemma makes the proof of the Garcia–Fefferman theorem
longer. Let us first slightly generalize this lemma for an arbitrary function of the
classical Hardy space H p. Note that, contrary to Lemma 1.1, we do not assume in the
following lemma that f has a simple zero at the origin, has no other zeros in the unit
disc, and is analytic on a neighbourhood of the closed unit disc.

LEMMA 1.2. Let f ∈ H p(D), 0< p <∞, and f 6≡ 0. Suppose that f (0)= 0. Then∫ 2π

0
| f (eiθ )|p dθ = p2

∫ ∫
|z|<1

log(1/|z|)| f (z)|p−2
| f ′(z)|2 dx dy.

PROOF. Let ρ be so small that on the closed disc {|z| ≤ ρ} there are no zeros of f ,
except of course the origin. Let 1> % > ρ be such that on the circle {|z| = %} f has
no zeros. Then, in the annulus {ρ < |z|< %}, there are a finite number of zeros of f ,
say z1, z2, . . . , zn . Let ε be so small that all the discs {|z − zk | ≤ ε}, 1≤ k ≤ n, are
entirely in the annulus {ρ < |z|< %}. Finally, let

�= {ρ < |z|< %}
∖ n⋃

k=1

{|z − zk | ≤ ε}.

In the following, we shall eventually let ε→ 0, and then ρ→ 0, and %→ 1 through a
sequence (%n)n≥1, so that there is no zero on the circles {|z| = %n}.

The function W (z)= | f (z)|p is infinitely differentiable in a neighbourhood of �̄.
Hence, by Green’s theorem,∫ ∫

�

log(%/|z|)∇2W (z) dx dy =
∫
∂�

(
log(%/|z|)

∂W

∂n
−W

∂ log(%/|z|)
∂n

)
d`.
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First of all, a simple calculation shows that

∇
2W (z)= p2

| f (z)|p−2
| f ′(z)|2.

Hence, the Green formula becomes

p2
∫ ∫

�

log(%/|z|)| f (z)|p−2
| f ′(z)|2 dx dy = I% − Iρ −

n∑
k=1

Ik, (1.1)

where the integrals on the right-hand side are explained below. On the boundary
{|z| = %},

I% =
∫ 2π

0

(
log(1)

∂W

∂r
(%eiθ )+W (%eiθ )

1
%

)
% dθ

=

∫ 2π

0
| f (%eiθ )|p dθ.

By a well-known result in the theory of H p spaces, we know that

I% =
∫ 2π

0
| f (%eiθ )|p dθ→

∫ 2π

0
| f (eiθ )|p dθ (1.2)

as %→ 1. On the boundary {|z| = ρ},

Iρ =
∫ 2π

0

(
log(%/ρ)

∂W

∂r
(ρeiθ )+W (ρeiθ )

1
ρ

)
ρ dθ

=

∫ 2π

0
| f (ρeiθ )|p dθ + ρ log(%/ρ)

∫ 2π

0

∂| f |p

∂r
(ρeiθ ) dθ.

Since f is continuous at the origin,∫ 2π

0
| f (ρeiθ )|p dθ→ 2π | f (0)|p = 0

as ρ→ 0. On the other hand, since

∂| f |p

∂r
= p(uur + vvr )| f |

p−2,

by the Cauchy–Schwarz inequality,∣∣∣∣ ∫ 2π

0

∂| f |p

∂r
(ρeiθ ) dθ

∣∣∣∣≤ p
∫ 2π

0
| f (ρeiθ )|p−1

| f ′(ρeiθ )| dθ.

If f has a zero of order n0 at the origin, then | f (ρeiθ )| � ρn0 and | f ′(ρeiθ )| � ρn0−1

as ρ→ 0. Hence, ∫ 2π

0
| f (ρeiθ )|p−1

| f ′(ρeiθ )| dθ � ρ pn0−1,

https://doi.org/10.1017/S1446788708000414 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000414


202 J. Mashreghi [4]

which gives ∣∣∣∣ρ log(%/ρ)
∫ 2π

0

∂| f |p

∂r
(ρeiθ ) dθ

∣∣∣∣≤ Cρ pn0 |log ρ|.

Thus,

ρ log(%/ρ)
∫ 2π

0

∂| f |p

∂r
(ρeiθ ) dθ→ 0

as ρ→ 0. Therefore,

Iρ→ 0 (1.3)

as ρ→ 0. Finally, on the boundary {|z − zk | = ε},

Ik =

∫ 2π

0

(
log(%/|zk + εe

iθ
|)
∂| f |p

∂n
(zk + εe

iθ )

− | f (zk + εe
iθ )|p

∂ log(%/|z|)
∂n

(zk + εe
iθ )

)
ε dθ.

Since ∣∣∣∣∂| f |p∂n

∣∣∣∣≤ |∇| f |p| ≤ p| f |p−1
| f ′|,

if f has a zero of order nk ≥ 1 at the zk then

|Ik | ≤ Cε pnk .

Note that the constant C depends on %. However, for a fixed %,

Ik→ 0 (1.4)

as ε→ 0. Now let ε→ 0. By the monotone convergence theorem, and by (1.4), the
Green formula (1.1) becomes

p2
∫ ∫

ρ<|z|<%
log(%/|z|)| f (z)|p−2

| f ′(z)|2 dx dy = I% − Iρ .

Then let ρ→ 0, and finally let %→ 1. Again by the monotone convergence theorem,
and by (1.2) and (1.3),

p2
∫ ∫
|z|<1

log(1/|z|)| f (z)|p−2
| f ′(z)|2 dx dy =

∫ 2π

0
| f (eiθ )|p dθ. 2

2. The rate of increase of ‖ fr‖ p

Using Lemma 1.2, we are able to show that

d

dr
‖ fr‖p

does not grow arbitrarily fast as r→ 1.
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THEOREM 2.1. Let f ∈ H p(D), 0< p <∞. Then

d

dr
‖ fr‖p = o(1/ log r)

as r→ 1.

PROOF. Without loss of generality, assume that f (0)= 0. Let %, ρ and ε be as in the
proof of Lemma 1.2. We apply Green’s formula again, but this time we use log 1/|z|
instead of log %/|z|. Hence,

p2
∫ ∫

�

log(1/|z|)| f (z)|p−2
| f ′(z)|2 dx dy = J% − Jρ −

n∑
k=1

Jk . (2.1)

On the boundary {|z| = %},

J% =
∫ 2π

0

(
log(1/%)

∂W

∂r
(%eiθ )+W (%eiθ )

1
%

)
% dθ

=

∫ 2π

0
| f (%eiθ )|p dθ − % log %

∫ 2π

0

∂| f |p

∂r
(%eiθ ) dθ

= Mp(%)− % log %M ′p(%),

where

Mp(r)= ‖ fr‖
p
p =

∫ 2π

0
| f (reiθ )|p dθ.

Using the same techniques as in the proof of Lemma 1.2, we can show that

Jk→ 0 (2.2)

as ε→ 0, and that

Jρ→ 0 (2.3)

as ρ→ 0. Now, let ε→ 0, and then let ρ→ 0. By the monotone convergence theorem,
and (2.2)–(2.3), the Green formula (2.1) becomes

p2
∫ ∫
|z|<%

log(1/|z|)| f (z)|p−2
| f ′(z)|2 dx dy = Mp(%)− % log %M ′p(%).

Then, let %→ 1. Again by the monotone convergence theorem, and by Lemma 1.2,
we obtain

lim
%→1

log %M ′p(%)= 0. 2

REMARK. Minor modification of the above calculations yields the formula

%M ′p(%)= p2
∫ ∫
|z|<%
| f (z)|p−2

| f ′(z)|2 dx dy.
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