J. Aust. Math. Soc. 86 (2009), 199-204
doi:10.1017/S14467887080004 14

THE RATE OF INCREASE OF MEAN VALUES OF
FUNCTIONS IN HARDY SPACES

JAVAD MASHREGHI
(Received 18 April 2007; accepted 17 October 2007)

Communicated by P. C. Fenton

Abstract

The norm of a function f in the Hardy space H” (D) is by definition the limit of || f; ||, as r — 1. We
show that d|| f, || ,/dr grows at most like o(1/ logr) as r — 1.
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1. Introduction

Let f be analytic in the unit disc, and let 0 < p < o0o. Define

1 27 ‘0 1/p
||fr||,,=(E/0 e )|Pd9> .

Hardy showed that log || f; ||, is a convex increasing function of log r [3]. The Hardy
space HP (D) is, by definition, the family of all analytic functions satisfying

I fllp=lm || f;]l, < o0.
r—1
In this note we show that
d
5||fr||p =o(l/logr) asr—1

for each f € HP (D).
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Fefferman [1, 2] showed that a 27 -periodic function of bounded mean oscillation is
of the form ¢ + i, where ¢ and ¥ are two bounded 2m-periodic functions on R, and
moreover,

llg + ¥llBmo = lgllco + 1V lloo-

Then, Garsia defined a different (somehow simpler) norm || - ||g on this space, and
showed that

e + ¥liemo < llg + ¥l < ll@llos + 1Y lloo-

In the proof of this fundamental result [4, p. 225], the following lemma plays a
key role.

LEMMA 1.1. Let f be analytic on the disc {|z| < R}, with R > 1. Suppose that f has
a simple zero at the origin, and that it has no other zeros in {0 < |z| < R}. Then

27 2
0| do = // LA,
/0 | f(e™)] e og(1/1z]) 0] dx dy

The hypothesis of this lemma makes the proof of the Garcia—Fefferman theorem
longer. Let us first slightly generalize this lemma for an arbitrary function of the
classical Hardy space H”. Note that, contrary to Lemma 1.1, we do not assume in the
following lemma that f has a simple zero at the origin, has no other zeros in the unit
disc, and is analytic on a neighbourhood of the closed unit disc.

LEMMA 1.2. Let f € HP (D), 0 < p < o0, and f #£ 0. Suppose that f(0) =0. Then

2 .
fo | f ()P do = p* //| 110g(1/IZI)If(Z)I"’zlf’(Z)lzdxdy-

PROOF. Let p be so small that on the closed disc {|z| < p} there are no zeros of f,
except of course the origin. Let 1 > ¢ > p be such that on the circle {|z] = o} f has
no zeros. Then, in the annulus {p < |z| < o}, there are a finite number of zeros of f,
say 71, 22, - - - , Zn- Let & be so small that all the discs {|z — zx| <&}, 1 <k <n, are
entirely in the annulus {p < |z| < p}. Finally, let

Q={p<lzl < Q}\ U{|Z —ul =e}.
k=1

In the following, we shall eventually let ¢ — 0, and then p — 0, and ¢ — 1 through a
sequence (0,)x>1, SO that there is no zero on the circles {|z| = gp}.

The function W (z) = | f(z)|” is infinitely differentiable in a neighbourhood of Q.
Hence, by Green’s theorem,

aw al
Y 30 n on
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First of all, a simple calculation shows that
VW@ =1 f @I @

Hence, the Green formula becomes
n
P’ //Q log(e/1zDIf @I 21 f' @Pdxdy =1, -1, = > I, (1.1)
k=1

where the integrals on the right-hand side are explained below. On the boundary
{lzl = o},

e oW . o1
I, = / (logu)—(Qe"’) + wme’@)—)g df
0 ar 0

27 )
=f0 £ (0e™®) P db.

By a well-known result in the theory of H? spaces, we know that

2 2
I = / £ (ee®)IP db — / £ )P o (12)
0 0

as ¢ — 1. On the boundary {|z| = p},

e aw . o1
I, = / (log(g/p)a—(pe’9> + W(pe’%—)p do
0 r 0

2 ) 2 P p )
= / | f (0e'®)|P d6 + p log(o/p) / 'ai(pe”)de.
0 0 r

Since f is continuous at the origin,

2
/ | f(pe')|P do — 27| f(0)|P =0
0

as p — 0. On the other hand, since

alf1P
ar

by the Cauchy—Schwarz inequality,
2
alflr
‘ / i ( pe’e) do
0 ar

If f has a zero of order ng at the origin, then |f(pei9)| = p"0 and |f/(pei9)| = p'o~
as p — 0. Hence,

= p(uu, + Uvr)|f|p_2,

2 . .
<p /0 |f (e DP7 £ (e db.

1

2
/ |f ()P~ f (pe®)| db < pPmo~ T,
0
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which gives

2
‘plog(g/p) / 'f ! ———(pe'?y db| < CpP™|log pl.
0

Thus,
o Ifl it
p log(o/p) A ——(pe'”)do — 0
as p — 0. Therefore,
I, =0 (1.3)

as p — 0. Finally, on the boundary {|z — zx| = ¢},

2 ; |f|
Iy = /0 (10g(Q/|Zk + g6 ) (zx + e€'?)

—|f(zx + 8ei9)|p%(2k + sei9)>s do.

Since

fIP _
S| S IVIFIP = pIfI” Nl

if f has a zero of order ny > 1 at the z; then

[Ix| < CeP™.
Note that the constant C depends on o. However, for a fixed o,
I — 0 (1.4)

as ¢ = 0. Now let ¢ — 0. By the monotone convergence theorem, and by (1.4), the
Green formula (1.1) becomes

v’ / / ; log(o/IzDI £ @IP 21 @) dx dy = I, — I,.
p<|z|<o

Then let p — 0, and finally let o — 1. Again by the monotone convergence theorem,
and by (1.2) and (1.3),

27 )
e //H 1log(l/lzl)lf(z)|P—2|f/(z)|zdx dy:/o P de. -

2. The rate of increase of || f- || »

Using Lemma 1.2, we are able to show that

d
2 1l

does not grow arbitrarily fast as r — 1.
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THEOREM 2.1. Let f € HP (D), 0 < p < 00. Then

d
2 1rllp =o(1/logr)

asr — 1.

PROOF. Without loss of generality, assume that f(0) = 0. Let o, p and ¢ be as in the
proof of Lemma 1.2. We apply Green’s formula again, but this time we use log 1/|z|
instead of log o/|z|. Hence,

p’ fo log(1/1DIf @IP 2 f' @P dxdy=Jy = Jp =) e (2.D)
k=1
On the boundary {|z| = o},
o ow i0 i0 1
o= [ (1oe1/0) 5 (06" + Wige") > Yo do
0 r Q

2w 2w
. alflP .
- f | (ee')I” d6 — g log o / AT (geity ap
0 0 ar
= My(0) — 0 log oM, (0),
where
2 "
Mp(r)=llfr||§=/0 |f(re™)|" do.

Using the same techniques as in the proof of Lemma 1.2, we can show that

Je—0 (2.2)
as &€ — 0, and that

J,—0 (2.3)

as p — 0. Now, lete — 0, and then let p — 0. By the monotone convergence theorem,
and (2.2)—(2.3), the Green formula (2.1) becomes

P’ ff log(1/1zD)1f @7 72| f'(2)I* dx dy = M, (o) — ¢ log oM, (o).
lzl<eo
Then, let o — 1. Again by the monotone convergence theorem, and by Lemma 1.2,
we obtain
lim log oM),(0) = 0. O
o—1

REMARK. Minor modification of the above calculations yields the formula

oM, (o) = p* / / | £ @171 @) dx dy.
zZl<o
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