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Epsilon constants and orthogonal representations

Darren Glass

Abstract

In this paper we suppose G is a finite group acting tamely on a regular projective curve X
over Z and V is an orthogonal representation of G of dimension 0 and trivial deter-
minant. Our main result determines the sign of the ε-constant ε(X/G, V ) in terms of data
associated to the archimedean place and to the crossing points of irreducible components
of finite fibers of X , subject to certain standard hypotheses about these fibers.

1. Introduction

This section will state the main questions and results of the paper, specify notation, and give some
background. Let X be an arithmetic scheme of dimension d+1 which is flat, regular, and projective
over Z. We suppose that f : X → Spec(Z) is the structure morphism and that its fibers are all
of dimension d. Let G be a finite group which acts tamely on X in the sense that, for each closed
point x ∈ X, the order of the inertia group of x is relatively prime to the residue characteristic
of x. Define Y to be the quotient scheme X/G. We assume that Y is regular, and that for all
finite places v the fiber Yv = (Xv)/G = Y ⊗

Z
(Z/p(v)) has normal crossings and smooth irreducible

components with multiplicities relatively prime to the residue characteristic of v. Finally, let V be
a representation of G over Q.

Associated to these data, there are well-known ζ-functions and L-functions, both functions of a
complex variable s. The L-function is conjectured to have a functional equation of the form

L(s,Y, V ) = ε(Y, V )A(Y, V )−sL(d+ 1 − s,Y, V ∗)

in which A(Y, V ) is a positive integer called the conductor, V ∗ is the dual representation of V and
the ε-constant ε(Y, V ) is a non-zero algebraic number. In recent years, many authors have studied
the problem of determining these ε-constants, which may be defined unconditionally after we choose
an auxiliary prime �.

This paper concerns the case where V is an orthogonal representation, meaning that there is a
non-degenerate symmetric G-invariant bilinear form V ×V → Q ⊆ C (where we fix an embedding of
Q into C). In order to get the strongest results, we will furthermore make the technical hypotheses
that V is a virtual representation of trivial determinant and dimension 0. In other words, V will be
a linear combination of orthogonal representations such that the weighted sum of their dimensions
is zero and the product of their determinants is trivial.

We can now state in general terms the main result of this paper.

Theorem 1.1. If d = 1 and V is an orthogonal virtual representation of degree 0 and trivial
determinant, then the sign of the constant ε(Y, V ) ∈ R∗ can be determined from the ε-constant
ε∞(Y, V ) and from the restriction of the G-cover X → Y over the finite set of closed points z of Y
where two distinct irreducible components of a fiber of Y over Spec(Z) intersect.

Received 9 October 2002, accepted in final form 14 July 2003.
2000 Mathematics Subject Classification 11G35 (primary), 11G40, 14G40 (secondary).
Keywords: Epsilon constants, L-functions, orthogonal representations.
This journal is c© Foundation Compositio Mathematica 2004.

https://doi.org/10.1112/S0010437X04000491 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X04000491


D. Glass

The constant ε∞(Y, V ) which comes up in this formula is the archimedean ε-constant defined by
Deligne [Del73, § 8] using the action of the group G and of complex conjugation on the Hodge coho-
mology groups Hp,q(X ,C). Section 2 of this paper recalls this and other definitions of ε-constants, as
well as work done by Deligne, Fröhlich, Queyrut, Chinburg, Erez, Pappas, and Taylor in computing
ε-constants associated to situations similar to those in Theorem 1.1. In § 3, we make a more precise
statement of the main theorem and prove it. The proof uses formulae of Saito, class-field theory,
and several of the results discussed in § 2.

2. Background

In this section, we look at some of the work that others have done in order to compute ε-constants
in various situations.

Fröhlich and Queyrut look at computing ε-constants in the case where X and Y are of relative
dimension 0 over Z and V is an orthogonal representation. In [FQ73] they are able to prove the
following result.

Theorem 2.1. If d = 0 and V is an orthogonal representation of G, then ε(Y, V ) is positive.

We now recall some elements of Deligne’s theory of local constants, which are essential for our
work.

Definition 2.2. Let X and Y = X/G be as above. Let V be any virtual complex representation
of G.

a) Let εv,0(Y, V ) be the Deligne local constant defined in [CEPT97a] (see also [Del73]). In particu-
lar, the definition of εv,0(Y, V ) requires that one chooses an auxiliary prime � �= v, a non-trivial
continuous complex character of Qv which we denote by ψv, and a Haar measure dxv on Qv.
In the case where V has trivial determinant and is of dimension 0, then εv,0(Y, V ) is indepen-
dent of these choices (see Proposition 2.4.1 of [CEPT97a]). This term is well defined for v = ∞
as well as for finite places v.

b) Let X be a variety of dimension d which is defined over a finite field of characteristic p. Let �
be a prime different from p and let j� : Q� → C be an embedding. Finally, define V� to be a
virtual representation of G over Q� such that j�(χV�

) = χV . Define

ε(X,V ) = j�(det(−F |(H∗
et(Fp ×Fp X,Q�) ⊗ V ∗

� )G)),

where F is the geometric Frobenius automorphism. This number is independent of all choices.
c) For finite places v of Q, we let εv(Y, V ) = εv,0(Y, V )ε(Yv, V ), where ε(Yv, V ) is defined as an

ε-constant over a finite field. Furthermore, in the case where v = ∞, we let ε(Yv, V ) = 1 so
that in particular ε∞(Y, V ) = ε∞,0(Y, V ).

d) The global ε-constant associated to V is defined by ε(Y, V ) =
∏

v εv(Y, V ) where the product
is over all places v of Q.

The ε-constants associated to varieties defined over finite fields are studied by Chinburg, Erez,
Pappas, and Taylor in [CEPT97b]. Other papers by these authors, such as [CEPT97a] and [CEPT98],
prove results on computing ε-constants associated to arithmetic schemes in the case where V is a
symplectic representation. Recall that a symplectic representation is a representation V which is
equipped with a non-degenerate alternating G-invariant bilinear form.

For many applications of ε-constants it is not the actual ε-constant we are interested in computing
but merely the sign of this constant. We denote the sign of ε(Y, V ) by W (Y, V ) and call this the
root number of V .
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3. Main results

3.1 Reduction to fibral computations
Let X , G, Y = X/G be as in § 1. Let S be the set of all finite places v of Q where either the
fiber Yv = Y ⊗

Z
(Z/p(v)) is not smooth or the map π : X → Y is ramified. Let D′ be a horizontal

divisor on Y such that D′ + YT = KY + Yred
S , where KY is a canonical divisor on Y, Yred

S is the
sum of the reductions of the fibers of Y at the places in S, T is a finite set of finite places of Q

which is disjoint from S, and YT is the sum of the (necessarily reduced) fibers of Y over the places
in T . Thus OY(D′ + YT ) is isomorphic to the twist ωY/Z(Yred

S ) of the relative dualizing sheaf ωY/Z

by OY(Yred
S ). We further wish to choose D′ so that it intersects the non-smooth fibers Yv of Y

transversally at smooth points on the reduction of Yv. We can choose such a D′ after a suitable
base change due to the moving lemma proven as Proposition 9.1.3 in [CEPT97a]. The choice of this
canonical divisor is not unique, but our calculation will show that the results are independent of
the choice of D′. Note that we can define D to be the horizontal divisor on X such that D′ = D/G
and in doing so we can define ε-constants associated to D′ as in Definition 2.2.

As stated above, we can only choose a horizontal divisor D′ with the desired properties after a
suitable base change. Thus, we need to consider how base changes will affect the ε-constants. To be
precise about how we make the base change, we will choose an odd prime � which is not in the set
of bad primes S, and we denote by N∞ the cyclotomic Z� extension of Q. Because we have chosen
� /∈ S, this base extension is étale over S, and the pullback of a canonical divisor remains canonical
up to a multiple of the fiber of Y over �. Proposition 9.1.3 of [CEPT97a] shows that a horizontal
divisor D′ with the required properties exists after a base extension to the ring of integers of a
finite extension of Q inside N∞. This base extension, which we now fix, is of degree a power of �.
Since � is not in the set S, the Hasse–Davenport Theorem together with Lemma 9.4.1 of [CEPT97a]
show that the epsilon constants we will consider for the base change are the �ath powers of the
corresponding constants before the base change. Because we are primarily interested in the sign
of the ε-constant, we are free to make a base change of the above kind. If we were interested in
preserving more information about ε, we would place a stricter congruence condition on the prime �.

Lemma 3.1. For the infinite place, ε∞,0(D′, V ) = 1.

This lemma is an immediate corollary to Proposition 5.4.2 of [CEPT97a]. In particular, this
proposition says that if d is odd then the archimedean epsilon constant associated to the canonical
divisor and to any representation V of trivial determinant and dimension 0 is equal to one. D′ differs
from the canonical divisor only by vertical fibers, and thus the result applies.

Lemma 3.2. With Y, D′, and V chosen as above, εv,0(Y, V ) = εv,0(D′, V ) for all finite places v
of Q.

Proof. For all places v ∈ S, this follows directly from [CEPT97a]. However, one can generalize their
results in order to prove the lemma. In order to do this, we let Cv be the set of irreducible components
of Yred

v . For each Ci ∈ Cv let κi be the Gauss sum associated to the restriction of the representation V
to the inertia group of the generic point of Ci as defined in [CEPT97a]. They define ci to be the
�-adic Euler characteristic with compact support of the open subscheme of Ci consisting of points
which are non-singular in Yred

v . The formulae developed by Saito as Theorems 1 and 2 of [Sai93]
imply that εv,0(X , V ) =

∏
i∈Cv

κi(V )ci .

For each Ci we compute as in § 9 of [CEPT97a] that degCi
(OY(KY + Yred

S )) = −cifi, where
fi is the index of the constant field extension [Fi : Fp]. Changing views, we let δ′ be a point
where Yred

v intersects the horizontal divisor D′. We define Gauss sums κδ′ in a similar way to the
above defined κi, such that, in particular, κδ′ = κ

[k(δ):Fi]
i . Furthermore, the local epsilon constant

1137

https://doi.org/10.1112/S0010437X04000491 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000491


D. Glass

εv,0(D′, V ) is given by
∏

δ′∈D′∩Yred
v
κδ′ (see [Sai93, p. 416]). The proof of the lemma in this case now

reduces to counting intersection numbers and verifying that κi occurs as a factor the same number
of times in both εv,0(Y, V ) and εv,0(D′, V ).

For the finite places v which are not in S the argument is similar. It is only the intersection
multiplicities of D′ with certain vertical divisors that matter, and these numbers do not change in
the event that we add new vertical fibers into the divisors. For this reason, the appearance of YT

in the equality D′ + YT = KY + Yred
S makes no difference in the argument.

With these lemmas in hand, we can make the following series of calculations:

ε(Y, V ) =
∏
v

εv(Y, V )

= ε∞(Y, V )
∏

v finite

εv,0(Y, V )ε(Yv , V )

= ε∞(Y, V )
∏

v finite

εv,0(D′, V )ε(Yv, V )

= ε∞(Y, V )ε∞,0(D′, V )
∏

v finite

εv,0(D′, V )ε(D′
v , V )ε(D′

v, V )−1ε(Yv, V )

= ε(D′, V )ε∞,0(Y, V )
∏

v finite

ε(D′
v, V )−1ε(Yv, V ). (1)

In these calculations, D′
v = D′ ⊗

Z
Z/p(v) is the finite collection of closed points of D′ lying above

the finite place v of Q.

Lemma 3.3. The epsilon constant ε(D′, V ) is positive.

Proof. We have that D′ is a one-dimensional object, and the restriction of V to D′ will still be an
orthogonal representation. By applying the theorem of Fröhlich and Queyrut to the normalization
of D′ (which we denote by (D′)#), we get that ε((D′)#, V ) is positive. Now, because the definition
of local constants involves only the Galois action on general fibers, εv,0((D′)#, V ) = εv,0(D′, V ).
Thus, we are only concerned with the difference between the terms ε((D′)#v , V ) and ε(D′

v, V ), all of
which come about from the singular points z of D′. The action of G is étale at these points, and
thus we can compute the local constants at these points as ε(y, V ) = det(−F |(H0(y,Q�)⊗V )Gx) =
det(V )(πYred

v ,y), which is equal to one due to our hypotheses that V has trivial determinant.

Thus, we have reduced the calculation of the sign of ε(Y, V ), which is an inherently two-
dimensional calculation, to a collection of fibral computations ε(D′

v , V )−1ε(Yv, V ) for each finite
place v, and a calculation for the archimedean component ε∞,0(Y, V ).

3.2 The one-component case
Theorem 3.4. Let X ,Y,D′ be as above and let V be an orthogonal representation of trivial
determinant and zero dimension. Furthermore, assume v is a finite place of Q such that Yred

v is
irreducible. Then ε(D′

v , V )−1ε(Yv, V ) = 1.

Proof. Assume that Yred
v consists of a single component. Then Yred

v is smooth by hypothesis. Let c
be an irreducible component of Xv with generic point µc. Let Gµc be the Galois group acting on
the generic point of c, and Iµc be the inertia group at the generic point of c. Then we have that
Iµc ⊆ Gµc ⊆ G. We denote Iµc by I. The tameness hypothesis implies that the order of I is relatively
prime to v, and that I is a cyclic group. The specific structure of I is discussed in detail in the
Appendix to [CEPT97a].

1138

https://doi.org/10.1112/S0010437X04000491 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000491


Epsilon constants and orthogonal representations

We begin by computing

ε(Yv, V ) =
∏

i

det
(
−F

∣∣∣∣
(
H i

(
Z/vZ

⊗
Z/vZ

Yv,Q�

)
⊗ V

)G)(−1)i+1

,

where F is the Frobenius element as described above. We know by our hypotheses that the cover
X red

v → Yred
v is a tame Gµc/I-cover of smooth curves over Z/pZ. Furthermore, the action of G/I

on X red
v is étale because I = Iµc = IX ,x, the inertia group of the point x, for all points x ∈ X red

v .
This implies that ε(Yv, V ) = ε(Yred

v , V I). The group I acts trivially on the cohomology group
H∗(X red

v ,Q�), so Saito’s formulae [Sai93] imply that ε(Yv, V ) can be calculated as det(V I)(KYred
v

),
where KYred

v
is the canonical divisor on Yred

v . The terms KYred
v

are well defined, as we have assumed
that for all finite v the irreducible components of Yred

v are themselves smooth.
Next we look at the term ε(D′

v , V ). Let D be the preimage of D′ in X , and let � be a prime
different from v. Let ID,x be the cyclic inertia group of a point x lying above the points in Yv ∩D′

(note that this is independent of which point x we choose). Because D′
v is zero-dimensional, we

know that ε(D′
v , V ) =

∏
y∈D′

v
ε(y, V ), where

ε(y, V ) = det(−F |(H0(π−1(y)red,Q�) ⊗ V )G),

if we view π as the cover Dv → D′
v. We know that

π−1(y)red = (y ×D′
v
Dv)red = x×Gx G.

In particular, this implies that

H0(π−1(y)red,Q�) ⊗ V = (IndG
Gx
H0(x,Q�)) ⊗ V.

We know that Iµc = IX ,x for all points x, and furthermore that IX ,x is a normal subgroup of G
because there exists a unique irreducible component of X red

v . This allows us to compute that

IndG
Gx
H0(x,Q�) = InflG

G/IX ,x
IndG/IX ,x

Gx/IX ,x
H0(x,Q�).

Recall that I = IX ,x acts trivially on H0(x,Q�). This allows us to compute that

ε(y, V ) = det(−F |(H0(π−1(y)red,Q�) ⊗ V )G)

= det(−F |(InflG
G/I IndG/I

Gx/I H
0(x,Q�) ⊗ V )G)

= det(−F |(IndG/I
Gx/IH

0(x,Q�) ⊗ V I)G/I)

= ε(y, V I),

where ε(y, V I) is the local constant associated to the G/I-cover X red
v → Yred

v .
This last term is in turn equal to det(V I)(πYred

v ,y), where πYred
v ,y is the local uniformizer from

class-field theory since X red
v → Yred

v is an unramified G/I-cover. Finally, we can put these terms
together to get that ε(D′

v , V ) = det(V I)(D′ ∩Yred
v ), where D′ ∩Yred

v is viewed as a divisor on Yred
v .

Lemma 3.5. Under the above hypotheses, D′ ∩ Yred
v is a canonical divisor on Yred

v .

Given this lemma, we will have shown that ε(D′
v, V ) = det(V I)(K) = ε(Yv, V ), so in particular

ε(D′
v, V )−1ε(Yv, V ) = 1, and Theorem 3.4 will be proven.
In order to prove Lemma 3.5, recall that we chose D′ so that OY(D′+YT ) = ωY/Z(Yred

S ). We note
that if we look at the two exact sequences

0 → OY(−Yred
v ) → OY → OYred

v
→ 0,

0 → OY(D′ − Yred
v ) → OY(D′) → OY(D′)|Yred

v
→ 0,
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we get that, for all primes v, OY(D′)|Yred
v

is the same as OYred
v

(D′ ∩ Yred
v ). Furthermore, for those

primes v which are in S (and in particular are not in T ), we further get that OY(D′)|Yred
v

=
OY(D′ +YT )|Yred

v
. We now are able to make the following computation for all v ∈ S such that Yred

v

is irreducible:

OYred
v

(D′ ∩ Yred
v ) = OY(D′)|Yred

v

= OY(D′ + YT )|Yred
v

= ωY/Z(Yred
S )|Yred

v

= ωY/Z(Yred
v )|Yred

v

= ωYred
v
.

In other words, for such v, D′ ∩ Yred
v is a canonical divisor on Yred

v under these assumptions.
It remains to show that Lemma 3.5 holds for primes w outside of the set S. We know that,

for such w, the fibers Yw are reduced and smooth and that the local equations have a nice form.
This implies in particular that Yred

w = Yw is a principal divisor and thus that OY(Yred
w ) is isomorphic

to OY .
Recall that by definition we have that D′ + YT = KY + Yred

S . This tells us that

D′ + YT − Yred
S + Yred

w = KY/Z + Yred
w

and therefore that
OY(D′ + YT − Yred

S + Yred
w )|Yred

w
= ωY/Z(Yred

w )|Yred
w
.

The right-hand side is equal to ωYred
w

by the adjunction formula. To calculate the left-hand side, we
observe that w is not in S by hypothesis, although it may be in T . Thus there exists an integer m
depending on the multiplicity of w in T for which the following calculations hold:

OY(D′ + YT − Yred
S + Yred

w )|Yred
w

= OY(D′ +mYred
w )|Yred

w

= OY(D′)|Yred
w

⊗OY((Yred
w )⊗m)|Yred

w

∼= OY(D′)|Yred
w

⊗OY
∼= OY(D′)|Yred

w

= OY(D′ ∩ Yred
w ),

which proves Lemma 3.5 and therefore Theorem 3.4.

Remark 3.6. Note that we can identify det(V I) with a character of order 1 or 2 of PicWeil(Yred
v ).

Thus, ε(Yred
v ,det(V I)) = 1, as it is the ratio of epsilon constants associated to zeta functions.

In particular we can show that both ε(Yv, V ) and ε(D′, V ) are trivial, which would give us another
way of proving Theorem 3.4. However, for what follows it is more illuminating instead to consider
what their ratio is, and in particular how close each is to being of the form det(V I)(K).

3.3 Partial trivializations and the canonical cycles
In this section we will describe in detail the relative canonical cycle associated to line bundles with
partial trivializations, as defined by Saito [Sai93], as well as other machinery which we will need in
order to compute the terms ε(D′

v, V )−1ε(Yv, V ) in the case where Yred
v consists of more than one

component.

Definition 3.7. Let D be a divisor on a scheme X and let {Di}i∈I be the set of irreducible
components of D. A locally free sheaf E on X is said to be partially trivialized on D if there exists
a family ρ = (ρi) of surjective ODi-morphisms ρi : E|Di → ODi .
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Given a partial trivialization of the sheaf E of rank n on X, Saito defines the relative top Chern
class cn(E , ρ) ∈ H2n(X modD,Zq(n)) based on an idea of Anderson [And92]. In particular, Saito
notes that there is a canonical isomorphism

Φ : H2n(X modD,Zq(n)) → H2n(V mod ∆,Zq(n)),

where V is the covariant vector bundle associated to the dual of E and ∆ = (∆i) = (ρ∗i (1)) is the
family of closed subschemes of V obtained as the pullbacks of the global section under the maps
of the partial trivialization. We also have a natural map from H0(X,Zq) → H2n(V mod∆,Zq(n)).
Let [0] be the image of the class 1 ∈ H0(X,Zq) under this map, and then Saito defines the relative
top Chern class to be the inverse image of [0] under the canonical isomorphism Φ above. Relative top
Chern classes satisfy nice functorial properties, and the relative top Chern class is mapped to
the normal top Chern class under the canonical map H2n(X modD,Zq(n)) → H2n(X,Zq(n)).
Furthermore, the following corollary of Proposition 1 in [Sai93] gives us a way to compare the
relative top Chern classes associated to two different partial trivializations.

Corollary 3.8. Let X be an Fp-scheme, and let (E , ρ) be a partially trivialized locally free sheaf
on X. Let σi = f−1

i · ρi : E|Di → ODi where fi comes from F∗
p, so that σ = (σi) is another partial

trivialization of E . Finally, let Ei = Ker(ρi) so that ρ|Di is a partial trivialization of Ei. Then we can
compute the difference between the relative top Chern classes as

cn(E , ρ) − cn(E , σ) =
∑

i

{fi} ∪ cn−1(Ei, ρ|Di).

In § 2 of [Sai93], Saito uses the construction of relative top Chern classes to define the relative
canonical cycle.

Definition 3.9. Let D be a divisor with simple normal crossings on a variety X of dimension n
defined over a perfect field F of characteristic p, and let U = X−D. Let Ω1

X/F (logD) be the locally
free OX -module of rank n of differential 1-forms on X with logarithmic poles along D. Then the cycle

cX,U = (−1)ncn(Ω1
X/F (logD), res)

is called the relative canonical cycle. It lies inside the cohomology with compact support
H2n

c (X modD, Ẑ′(n)), where Ẑ′ =
∏

q �=p Zq. The relative canonical cycle has degree equal to χ(UF ) =∑
(−1)q dimHq

c (UF ,Ql). Note that this definition differs from that of S. Saito in [Sai84], but only
up to a change in sign.

Saito observes that one can also define a relative top Chern class (and hence a relative canonical
cycle) sitting inside of Hn(X modD,Gm), the divisor class group with modulus D, and in particular
we can define cX,U as an element of Hn(X modD,Gm) in the case when n = 1. For our work we will
want to consider the case where X is one of the components of Yred

v , and therefore is of dimension
one. Following Example 1 of [Sai93] we will look at the relative top Chern class cX,U lying inside
the generalized class group

H1(X modD,Gm) =
[( ⊕

x/∈D
Z

)
⊕

( ⊕
x∈D

K∗/U1
x

)]/
K∗,

where K is the fraction field of X and U1
x = 1 +mx. In particular, the class cX,U can be computed

in the following way. Let ω be a non-trivial rational section of Ω1
X(logD) such that, for all points

x ∈ D, ordx(ω) = −1 and resx(ω) = 1. Then the relative canonical cycle is represented by the class
of the zero cycle which is supported off of D, given by

−cX,U =
∑
x∈U

ordx(ω) +
∑
x∈D

resx(ω)

in the above decomposition of the generalized class group.
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Proposition 3.10. Let Yred
v consist of two components F ′ and G′. Let D′ be a horizontal divisor

chosen as in the previous sections.

1) There is a canonical isomorphism φ : OF ′(D′ ∩ F ′) → ωF ′(F ′ ∩G′) up to multiplication by a
global unit.

2) The global section 1 ∈ Γ(OF ′(D′ ∩ F ′)) maps under φ to an element γ ∈ Γ(ωF ′(F ′ ∩G′)) such
that ordx(γ) = 1 if x ∈ F ′ ∩D′, ordx(γ) = −1 if x ∈ F ′ ∩G′, and ordx(γ) = 0 otherwise.

3) Set ax = resx(γ) for all x ∈ F ′ ∩ G′. Then cF ′,UF ′ is such that −cF ′,UF ′ is the class in
[(
⊕

x∈(F ′−G′) Z) ⊕ (
⊕

x∈F ′∩G′ K∗/U1
x)]/K∗ = H1(F ′ mod (F ′ ∩G′),K) of the element

c =
( ⊕

x∈D′∩F ′
1 ∈ Z

)
⊕

( ⊕
x∈F ′−D′−G′

0 ∈ Z

)
⊕

( ⊕
x∈F ′∩G′

ax

)
.

The proof of part 1 follows from carrying through a series of calculations analogous to those in
the proof of Lemma 3.5. In particular,

OF ′(D′ ∩ F ′) = OY(D′)|F ′

= OY(D′ + YT )|F ′

∼= ωY(Yred
S )|F ′

= ωY(Yred
v )|F ′

= [ωY(F ′) ⊗OY(G′)]|F ′

= ωY(F ′)|F ′ ⊗OY(G′)|F ′

= ωF ′ ⊗OF ′(F ′ ∩G′)
= ωF ′(F ′ ∩G′).

Proving part 2 is just a matter of calculating the various orders and residues of γ given that we
know them for the element 1 ∈ Γ(OF ′(D′ ∩F ′)). Explicitly, one can compute these by following the
residue map on elements of the sheaves through the equalities and congruences in the calculations
above. Note that all of the isomorphisms are unique with the exception of OY(D′+YT ) ∼= ωY(Yred

S ).
This map, while not unique, is well defined up to multiplication by a global unit, and therefore
when we look at classes modK∗ the discrepancy will not matter.

Part 3 of the proposition now follows from combining part 2 with Saito’s definition of the relative
canonical cycle given above, setting X = F ′ and D = F ′ ∩G′.

This proposition gives us an explicit way to construct the relative canonical class in our situation.
In particular, the ax terms come about because of the difference in natural partial trivializations
on the sheaves OF ′(D′ ∩ F ′) and ωF ′(F ′ ∩ G′) associated to the restriction map OF ′(D′ ∩ F ′) →
OF ′(D′ ∩ F ′)|F ′∩G′ = OF ′∩G′ and the residue maps resx.

For the computations in the next section, we will need the following definitions.

Definition 3.11. Define the following classes which lie in the generalized class group H1(F ′

mod(F ′ ∩G′),K).

a) Define an element λ ∈ (
⊕

x∈(F ′−G′) Z) ⊕ (
⊕

x∈F ′∩G′ K∗/U1
x) which has components equal to

1 ∈ Z at all points x ∈ D′ ∩F ′, equal to 0 ∈ Z at all points x in F ′−D′−G′, and equal to the
identity in K∗/U1

x for all points x ∈ F ′∩G′. We then look at the class [λ]F ′ ∈ H1(F ′ mod (F ′∩
G′),K), which is the first relative Chern class of the line bundle OF ′(D′ ∩ F ′) with partial
trivializations. One can define [λ]G′ in a similar way.

b) Let δF ′ be the class in H1(F ′ mod (F ′∩G′),K) which corresponds to the element δ = (
⊕

0)⊕
(
⊕
ax) ∈ (

⊕
x∈F ′−G′ Z)⊕(

⊕
xF ′∩G′ K∗/U1

x). In other words, this element is trivial at all places
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corresponding to x /∈ F ′ ∩ G′, and for those places which correspond to points x ∈ F ′ ∩ G′

consists of the terms ax coming about as the difference between the partial trivializations of
OY(D′ + YT ) and ωY(Yred

S ), as found in the above characterization of cF ′,UF ′ . Note that δF ′

can be thought of as the quotient of cF ′,UF ′ and [λ]F ′ . One can define δG′ in a similar way.

3.4 The general case
We have shown that in the situation where Yred

v consists of a single component F ′ then the fibral
contribution to the root number is positive. Now we will consider the next case, where Yred

v consists
of two irreducible components, say F ′ and G′. Note that in particular this implies that v ∈ S.
Recall that from Equation (1) we are interested in comparing ε(D′

v, V ) and ε(Yv, V ). By our initial
assumptions, D′ intersects Yred

v in smooth points of Yred
v , so in particular we get that the set

D′ ∩ F ′ ∩G′ = ∅.
Define I1 = Iµ(F ) and I2 = Iµ(G), where F and G are components of X red

v lying above F ′ and
G′ respectively. Then det(V I1) is a character of the Galois group of the cover F → F ′, which will
be tame with respect to the divisor F ′ ∩ G′. Class-field theory says that we can therefore view
det(V I1) as a character of the ray class group of F ′ with conductor F ′ ∩ G′. We wish to define
the term det(V I1)(πD′,y) for points y ∈ F ′. In order to do so, we view det(V I1) as a character of
the idèles JF ′ of F ′. In other words, it is an idèle class character modulo the conductor, which will
be supported on F ′ ∩ G′. We then define det(V I1)(πD′,y) to be the value of det(V I1) on the idèle
(1, . . . , 1, πD′,y, 1, . . .) which is trivial away from y. This is well defined as the conductor of det(V I1)
does not involve y and the difference between two local uniformizers is a unit.

If we define det(V I1)(D′ ∩ F ′) to be equal to the product∏
y∈D′∩F ′

det(V I1)(πD′,y),

then this term will be independent of the choices of uniformizers as all components are unramified,
and we are able to make the following calculation:

ε(D′
v , V ) =

∏
y∈D′∩Yred

v

ε(y, V )

=
∏

y∈D′∩F ′
ε(y, V )

∏
y∈D′∩G′

ε(y, V )

=
∏

y∈D′∩F ′
det(V I1)(πD′,y)

∏
y∈D′∩G′

det(V I2)(πD′,y)

= det(V I1)(D′ ∩ F ′) · det(V I2)(D′ ∩G′). (2)

Recall that in the case where Yred
v consisted of a single component F ′, we were able to show that

ε(D′
v, V ) = det(V I)(D′ ∩ F ′). In that case Lemma 3.5 showed that our hypothesis on D′ implied

that D′ ∩ F ′ was a canonical divisor on F ′. The preceding subsection showed that in this more
complicated case, while D′ ∩ F ′ is not a canonical divisor on F ′, it is close to being one. To make
this precise requires the results of the previous subsection. In particular, when viewed as an idèle
class character, det(V I1) breaks into components det(V I1)x which are unramified for all x /∈ F ′∩G′,
and therefore we get

det(V I1)(D′ ∩ F ′) =
∏

y∈D′∩F ′
det(V I1)y(πD′,y) = det(V I1)([λ]F ′).

Therefore Equation (2) states that, in the case where V is an orthogonal virtual representation
of dimension 0 and trivial determinant, Yred

v consists of two components F ′ and G′, and D′ is chosen
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as above, then we have that

ε(D′
v, V ) = det(V I1)([λ]F ′) det(V I2)([λ]G′). (3)

Switching gears, we now want to take a look at the term ε(Yv, V ). For the moment, we will assume
that F ′ ∩G′ consists of a single point z. We begin by looking at the two exact sequences

0 → U = Yred
v − z → Yred

v → z → 0,

0 → U → Ŷred
v = F ′ �G′ → {zF ′ , zG′} → 0,

where zF ′ (respectively zG′) is the point z thought of as sitting just on F ′ (respectively G′).
Epsilon factors are multiplicative within exact sequences as well as in disjoint unions, so these
sequences imply that

ε(Yred
v , V ) = ε(U, V )ε(z, V )

=
ε(F ′, V )ε(G′, V )
ε(zF ′ , V )ε(zG′ , V )

ε(z, V ). (4)

To continue, we must consider the ε(F ′, V ) term. In order to compute this term we use the
following result proven by Saito [Sai93].

Lemma 3.12. Let X,U be as in Definition 3.9, and let the action of G be étale on U .
Then

∏
y∈U εy(X,V ) = det(V )(cX,U ).

Applying this lemma to our situation, we are able to make the following computation:

ε(F ′, V ) = ε(F ′, V I1)

=
∏

y∈(F ′)0
εy(F ′, V I1)

= εz(F ′, V I1)
∏
y �=z

(εy(F ′, V I1))

= εz(F ′, V I1) det(V I1)(cF ′,UF ′ )

= ε0,z(F ′, V I1)ε(zF ′ , V I1) det(V I1)(cF ′,UF ′ ). (5)

Plugging Equation (5) (and the analogous formula for ε(G′, V )) into Equation (4) gives that

ε(Yred
v , V ) = ε0,z(F ′, V I1)ε0,z(G′, V I2) det(V I1)(cF ′,UF ′ ) det(V I2)(cG′,UG′ )ε(z, V ),

which we can combine with Equation (3) to get that

ε(Yv, V )
ε(D′

v , V )
=

det(V I1)(cF ′,UF ′ ) det(V I2)(cG′,UG′ )
det(V I1)([λ]F ′) det(V I2)([λ]G′)

ε0,z(F ′, V I1)ε0,z(G′, V I2)ε(z, V ).

Note that
det(V I1)(cF ′,UF ′ )
det(V I1)([λ]F ′)

= det(V I1)(δF ′),

where δ is the class defined in Definition 3.11.
Considering a slightly more general case, in which we still only have two components, but where

F ′ ∩ G′ consists of more than one point, it is clear that all of the calculations will follow through
and we will get that

ε(Yv, V )
ε(D′

v , V )
= det(V I1)(δF ′) det(V I2)(δG′)

∏
z∈F ′∩G′

ε0,z(F ′, V I1)ε0,z(G′, V I2)ε(z, V ).
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If we have more than two components in Yred
v then the bookkeeping becomes more complicated

but the mathematics does not. We first set up the necessary notation. Let Ci be the components
of Yred

v . Furthermore, let Ci,j = Ci∩Cj, let Z =
⋃

i�=j Ci,j be the collection of all intersection points,
and let UCi be the open set consisting of Ci − Z. Finally, let Ii be the inertia group associated to
Ci as above. We are still interested in computing ε(Yv, V ) and ε(D′

v, V ). Let λv and δv,Ci be the
classes λ and δ defined above for a particular class v and a particular component Ci. In particular,
recall that δv,Ci can be calculated purely from looking at points z ∈ Z.

For the latter, the computation works just as it did before, as we know that if i < j the Ci,j are
disjoint from each other as well as from D′. We obtain that

ε(D′
v, V ) =

∏
i

det(V Ii)(Ci ∩D′)

=
∏

i

det(V Ii)([λv ]Ci).

To compute ε(Yv, V ) we need to use the exact sequences

0 → U = Yred
v − Z → Yred

v → Z → 0,

0 → U → Ŷred
v =

∐
i

Ci →
∐
i�=j

Ci,j → 0,

where
∐

i�=j Ci,j can be thought of as the set consisting of two copies of Z, with each point considered
as sitting once on each of the two Ci which it comes from originally. We can now use these sequences
as well as the above calculations of ε(Ci, V ) to get that

ε(Yred
v , V ) = ε(U, V )ε(Z, V )

=
∏

i

ε(Ci, V )
∏
z∈Z

ε(z, V )
ε(zCi1

, V )ε(zCi2
, V )

=
∏

i

det(V Ii)(cCi,UCi
)
∏
z∈Z

ε0,z(Ci1 , V
Ii1 )ε0,z(Ci2 , V

Ii2 )ε(z, V ),

where we think of z ∈ Z as lying on Ci1 ∩ Ci2 . If we put all of these calculations together we get
the following result.

Theorem 3.13. Under all of the above hypotheses and notation, we get that, for all v,

ε(Yv, V )
ε(D′

v , V )
=

∏
i

det(V Ii)(δv,Ci)
∏
z∈Z

ε0,z(Ci1 , V
Ii1 )ε0,z(Ci2 , V

Ii2 )ε(z, V ),

where both of these products are equal to one if the set Z is empty.

Combining Equation (1), Lemma 3.3 and Theorem 3.13 gives a precise form of Theorem 1.1.
Note that, other than the term ε∞(Y, V ), all of the terms depend only on the crossing points of the
components of fibers Yred

v .

4. Examples

In this section we wish to show several examples that apply Theorem 1.1. In order to do this, we
must first have concrete examples of finite groups acting tamely on arithmetic surfaces. We find one
class of such examples by using the following result from the thesis of Kwon [Kwo95].

Theorem 4.1. Let X be an elliptic curve over K and let X be the minimal model of X over OK .
Consider the action of a group

G ∼= Z/nZ × Z/mZ ⊂ X(K)
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of torsion points on X . Then the action of G on X is numerically tame if and only if, for each place
v of OK whose residue characteristic p divides the order of G, the following conditions are satisfied:

i) The minimal model X has good or multiplicative reduction at v.

ii) The Zariski closure in X of the p-Sylow subgroup Gp of G is smooth over Spec OK .

In particular, these conditions imply that gcd(n,m) = 1.

This theorem provides us with a set of concrete criteria for checking when a finite group acts
tamely on the integral model of an elliptic curve, as numerical tameness implies tameness. In par-
ticular, the second condition asks us to compute the p-torsion points of the minimal model over p,
and check that they do not coalesce when we reduce mod p.

We will now show an example of a computation of the orthogonal ε-constants associated to the
tame action of a finite group on a surface. First, we must calculate terms ε(z, V ), where z ∈ Y is
a closed point defined over a finite field. Section 2.5 of [CEPT97a] gives us the following way of
making this computation.

Lemma 4.2. Let x be a point of X over a point y ∈ Y which has finite residue field. Furthermore, let
Fx be the arithmetic Frobenius element lying in G. Then ε(y, V ) = det(V Ix)(−Fx), where Ix ⊆ G
is the inertia group of the point x.

Let X be the elliptic curve given by the equation y2 +xy+y = x3. This equation is minimal over
every prime p ∈ Spec(Z), and thus it defines X , the minimal model over Z. The torsion subgroup
of X is isomorphic to Z/3Z, and the torsion points of order three are (0, 0) and (0,−1). We wish
to check to see whether or not the action of G ∼= Z/3Z is numerically tame by the criteria in
Theorem 4.1. In order to do this, we first note that the discriminant of X is −26 = −1 × 2 × 13,
and thus X has good reduction at 3. Furthermore X has multiplicative reduction at 2 and at 13
(and in particular the fibers have Kodaira type I1).

Next we check condition ii. We have G3 = G = {(0, 0), (0,−1),0}, and these points clearly do
not coalesce mod q for any prime q (and in particular for q = 3). Thus, this action of G on X does
satisfy the appropriate conditions.

Therefore the action of G is in fact numerically tame on X . Furthermore, it follows from formulae
of Velu [Vel71] that Y = X/G is the integral model of the elliptic curve defined by the equation
y2 + xy + y = x3 − 5x − 8. The fibers of Y are also non-singular with the exceptions of the fibers
at v = 2, 12, which are both of Kodaira type I3. However, Y is not regular, and thus the results of
§ 3 do not apply and in fact the ε-constants are not well defined. However, due to Theorem 3.8
of Kwon’s dissertation [Kwo95], we know that after a finite number of blow-ups on the singular
fibers we can blow up X in such a way that the action of the group G extends to a tame action of
G on the blow-up X̃ , and the quotient Ỹ = X̃/G is in fact regular. This theorem applies because
all of the local decomposition groups must be subgroups of Z/3Z and in particular must be cyclic
of degree n � 3.

Next we need to define a representation V of Z/3Z satisfying certain properties. We know from
representation theory that there are two distinct non-trivial one-dimensional characters of Z/3Z of
order three. Let us define V1 to be the sum of these characters and V2 to be 2χ0, where χ0 is the trivial
character. We then define V to be V1−V2. Sums of characters are always orthogonal representations,
so V will be orthogonal. It also is not hard to see that V has dimension 0 and trivial determinant.

In general, computing ε(Ỹ , V ) might be difficult, but in light of Theorem 1.1, the computation
simplifies greatly. In particular, we only need to compute ε∞,0(Ỹ , V ), det(V Ij)(δv,Ci ) for v = 2, 13,
and the terms

ε0,z(Ci1 , V
Ii1 )ε0,z(Ci2 , V

Ii2 )ε(z, V )
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at the singular points above the primes p = 2 and p = 13. For the above choice of the representa-
tion V , we can see that det(V I) is trivial for all possible inertia groups I. More precisely, det(V I

j )
will be trivial for j = 1, 2. If I acts trivially on Vj this is obvious, as the det(Vj) are both in fact
trivial. On the other hand, if I acts non-trivially on Vj, then V I

j will be trivial as the kernels of
both characters which make up Vj are the same, and thus det(V I

j ) will be trivial as well.

Let us first look at the part of the calculation of ε(Ỹ , V ) coming from the fiber of Ỹ above the
prime 2. Denote the three components of Ỹ2 by C1, C2, and C3. Let Ii be the inertia group associated
to Ci. In particular, det(V Ii) is trivial in each of these cases for the reasons described above. Thus,
the det(V Ij)(δ2,Ci) terms are equal to one. Many of the ε0,z(Ci, V

Ii) terms will also immediately
be equal to one as many of the V Ii terms are themselves trivial. To compute the others, we use
Theorem 2 of Saito [Sai93]. Because we are looking at cases where det(V I

i ) is trivial, these formulae
reduce the computation of ε0,z(Ci, V

Ii) to the computation of a Gauss sum τCi(V
Ii). We can now

use the fact that our representation V is the sum of a representation and its complex conjugate to
get that τCi(V

Ii) = 1.

The above paragraph holds for the points above p = 13 as well, so we can ignore those terms.
We can now use Lemma 4.2 in order to compute the ε(z, V ) terms. In particular, the fact that all
of the det(V I) terms are trivial tells us that these terms are also equal to one. To summarize, we
have that ε(Ỹ, V ) = ε∞,0(Ỹ, V ).

In Theorem 4.0.1 of [CPT02] the authors show that the Euler characteristics and the character
functions ζS associated to the action of a finite group on a minimal model over Z of an elliptic curve
over Q satisfying certain properties (which our example does satisfy) are trivial. This is because the
group must act trivially on the various Hp,q pieces of the Hodge structure. But this in turn shows
that ε∞,0(Ỹ , V ) is trivial, and thus ε(Ỹ , V ) is positive.

We note that many of the computations in the last example will hold whenever we are in the
case of one of Kwon’s examples. The most difficult step seems to be ensuring the regularity of Y, as
Theorem 3.8 of [Kwo95] only allows us to do so for very small G. We conclude by stating a general
theorem generalizing this example in the case G ∼= Z/3Z.

Proposition 4.3. Let X be an elliptic curve over a number field K and let X be the minimal
model of X over OK . Let G ∼= Z/3Z be a subgroup of torsion points on X . Furthermore, assume
that the minimal model X has good or multiplicative reduction at all places above p = 3 and that
the Zariski closure in X of G is smooth over Spec OK . We can blow up X in such a way that the
action of the group G extends to a tame action of G on the blow-up X̃ , and the quotient Ỹ = X̃/G
is regular. Let V be an orthogonal virtual representation of trivial dimension and determinant. If we
also assume that the reductions of the finite fibers of Ỹ have strictly normal crossings, then the sign
of ε(Ỹ , V ) will be the same as the sign of

∏
τCi(V

Ii) where the product runs over all components
of fibers of bad reduction. Furthermore, if V can be expressed as the sum of a character and its
complex conjugate then we get that ε(Ỹ , V ) > 0.
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