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  Abstract
  We were encouraged by the broad enthusiasm for building machines that learn and think in more human-like ways. Many commentators saw our set of key ingredients as helpful, but there was disagreement regarding the origin and structure of those ingredients. Our response covers three main dimensions of this disagreement: nature versus nurture, coherent theories versus theory fragments, and symbolic versus sub-symbolic representations. These dimensions align with classic debates in artificial intelligence and cognitive science, although, rather than embracing these debates, we emphasize ways of moving beyond them. Several commentators saw our set of key ingredients as incomplete and offered a wide range of additions. We agree that these additional ingredients are important in the long run and discuss prospects for incorporating them. Finally, we consider some of the ethical questions raised regarding the research program as a whole.
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