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Taylor–Couette (TC) flow is the shear-driven flow between two coaxial independently
rotating cylinders. In recent years, high-fidelity simulations and experiments revealed the
shape of the streamwise and angular velocity profiles up to very high Reynolds numbers.
However, due to curvature effects, so far no theory has been able to correctly describe the
turbulent streamwise velocity profile for a given radius ratio, as the classical Prandtl–von
Kármán logarithmic law for turbulent boundary layers over a flat surface at most fits
in a limited spatial region. Here, we address this deficiency by applying the idea of a
Monin–Obukhov curvature length to turbulent TC flow. This length separates the flow
regions where the production of turbulent kinetic energy is governed by pure shear from
that where it acts in combination with the curvature of the streamlines. We demonstrate
that for all Reynolds numbers and radius ratios, the mean streamwise and angular velocity
profiles collapse according to this separation. We then develop the functional form of the
velocity profile. Finally, using the newly developed angular velocity profiles, we show
that these lead to an alternative constant in the model proposed by Cheng et al. (J. Fluid
Mech., vol. 890, 2020, A17) for the dependence of the torque on the Reynolds number, or,
in other words, of the generalized Nusselt number (i.e. the dimensionless angular velocity
transport) on the Taylor number.
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905 A11-2 P. Berghout and others

1. Introduction

Most flows in nature and engineering are bounded by solid walls. In general, the flow in
the immediate vicinity – at a molecular scale distance – of the wall has the velocity of the
wall, the so-called no-slip boundary condition. As a consequence, a steep gradient in the
mean streamwise velocity profiles exists within the boundary layer (BL) region between
the wall and the freely flowing fluid above. In the BL, the action of viscosity against the
gradient of the streamwise velocity results in viscous dissipation, the conversion of kinetic
energy into heat.

1.1. Turbulent flow over a flat plate: Prandtl–von Kárman BL theory
For slowly flowing fluids (low Reynolds numbers), the edge of the BL remains smooth,
and the fluid flow in the BL is two-dimensional. This laminar BL is described by the
famous Prandtl–Blasius self-similar solution (Schlichting 1979). However, for fast flowing
fluids (high Reynolds numbers), the BL becomes turbulent, and the flow inside the BL
becomes vortical and three-dimensional. Although exact solutions of these turbulent BLs
do not exist, a well-established functional form of the mean streamwise velocity can be
obtained based on simple dimensional arguments (Schlichting 1979). The hallmark result
therefrom can be obtained by realizing that the mean streamwise velocity gradient in the
wall-normal direction (du/dy) is a function of two dimensionless parameters only (Pope
2000),

du
dy

= uτ

y
Φ

(
y

δν

,
y

δ

)
, (1.1)

where uτ is the friction velocity defined as uτ = ·√τw/ρ, τw is the mean wall shear
stress, ρ is the fluid density, δ is the outer length scale (e.g. the BL thickness) and
δν is the viscous length scale δν = ν/uτ , with ν the kinematic viscosity of the fluid.
Non-dimensionalization by the viscous scales uτ and δν is indicated by a superscript ‘+’.
The friction Reynolds number based on these viscous quantities is Reτ = uτ δ/ν = δ/δν ,
and uτ = uτ,i, where the subscript i refers to the inner cylinder. For Taylor–Couette (TC)
turbulence δ = d/2, with d the gap width between the two rotating cylinders. If we assume
that the dependence of the gradient of the mean velocity on viscosity vanishes with
increasing Reτ , the yet undefined function Φ(y/δν, y/δ) must go to a constant (= κ−1)
when δν � y � δ, which is known as the inertial sublayer. In this limit, we can integrate
(1.1) and arrive at the celebrated logarithmic law of the wall for turbulent BLs over a flat
surface

u+ = κ−1 log y+ + B. (1.2)

This law is connected with the names of Prandtl and von Kármán. It is supported by
overwhelming experimental and numerical evidence (e.g. Smits, McKeon & Marusic
2011). The values of the two parameters are κ ≈ 0.39 and B ≈ 5.0.

An important extension of the theory concerns buoyancy stratified BLs, where an
additional forcing acts on the wall-normal momentum component. A prominent example
of such a system is the atmospheric surface layer, where thermal forcing stabilizes or
destabilizes the flow. The thermal stratification introduces, aside from δν and δ, a third
relevant length scale: the Obukhov length Lob (introduced in the year 1946 cf. Obukhov
1971). This length Lob is proportional to the distance from the wall above which the
production of turbulence is significantly affected by buoyancy, and below which the
production of turbulence is governed purely by shear. With the introduction of this length
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The mean velocity profile of turbulent Taylor–Couette flow 905 A11-3

Lob, (1.1) becomes

du
dy

= uτ

y
Φ

(
y

δν

,
y

δ
,

y

Lob

)
, (1.3)

which was first proposed by Monin & Obukhov (1954). For the inertial sublayer viscous
effects and the domain size effects are negligible (δν � y � δ) and only the dependence
on y/Lob remains. Various empirical fits exist for Φ(y/Lob). Evidently, in the limit of
y/Lob � 1 they must obey Φ(y/Lob) = κ−1, thus indicating that buoyancy plays no
role. We point to § 4 of Monin & Yaglom (1975) for an in-depth analysis of stratified
BLs.

1.2. Turbulent flow with streamwise curvature: Taylor–Couette turbulence
Whereas flat plate BLs are often studied, and the existence of a logarithmic profile of the
mean streamwise velocity is well established, the study of flows with streamwise curvature
is less developed, despite its ubiquity, e.g. ship hulls or turbomachinery. In this paper,
we attempt to narrow this gap. One canonical system for flow in a curved geometry is
TC flow. TC flow is the shear-driven flow in between two coaxial, independently rotating
cylinders. Since the physical system is closed, one can derive a global balance between the
differential rotation of the cylinders and the total energy dissipation in the flow, which is
directly related to the torque (T) on any of the cylinders (Grossmann, Lohse & Sun 2016).

The dimensionless torque G is defined as G ≡ T/(ρν2Lz), where Lz is the height of the
cylinder. It depends on the Reynolds numbers of the inner and outer cylinder, defined
as Rei,o = ωi,ori,od/ν. Here, ri,o is the radius of the inner (outer) cylinder and ωi,o is
the angular velocity of the inner (outer) cylinder. The relation G(Rei, Reo, η) is directly
connected to the structure of the mean velocity profile. Uncovering this relation – for its
fundamental implications and practical relevance – can be considered the primary research
question.

In this paper we consider pure inner cylinder rotation (i.e. outer cylinder Reynolds
number is zero Reo = 0), for which, in the laminar case, Taylor (1923) derived that G ∝ Re.
For intermediate Re, Marcus (1984) – in analogy to the work of Malkus & Veronis (1958)
on Rayleigh–Bénard (RB) flow – argued by exploring marginal stability arguments that
G ∝ Re5/3. He modelled the flow domain as being partitioned into a turbulent bulk region
with constant angular momentum L (Townsend 1956) and two laminar BLs. For high but
finite Re, the BLs become turbulent (Grossmann & Lohse 2012; Ostilla-Mónico et al.
2015a; Krug et al. 2017), and the effective scaling exponent increases with increasing Re
(Lathrop, Fineberg & Swinney 1992a,b). Analogous to the interpretation of the strongly
turbulent regime by Kraichnan (1962) and Chavanne et al. (1997) in RB flow, Grossmann
& Lohse (2011) derived logarithmic corrections to the G(Re) scaling, coming from
the turbulent BLs, such that G ∝ Re2 × log(Re)-corrections. Recently, Cheng, Pullin &
Samtaney (2020) obtained an accurate calculation of the torque by matching the BL and
bulk velocity profiles (here referred to as the CPS model).

High-fidelity data on the structure of the BL are essential for testing all proposed
scaling relationships. Therefore, much work has been carried out to determine the
mean streamwise velocity profile at high Re. Huisman et al. (2013) used particle
image velocimetry (PIV) and laser doppler velocimetry to study the turbulent BL at an
unprecedented resolution. For η = 0.716, where η is the radius ratio, they find that for high
Rei, i.e. Rei = O(106), the classical logarithmic BL exists only in a very limited spatial
region of 50 < y+ < 600. van der Veen et al. (2016) employed PIV to study the velocity
profiles at low radius ratio of η = 0.50, for which the curvature effects are stronger, and
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905 A11-4 P. Berghout and others

find no von Kármán type logarithmic BL. For η = 0.91, Ostilla-Mónico et al. (2014a)
and Ostilla-Mónico et al. (2015a) employed direct numerical simulations (DNSs) and find
that the slope of the mean streamwise velocity profile is ever changing with Rei, at least
up to Rei = O(105). We further note that Grossmann, Lohse & Sun (2014) argue that the
appropriate velocity that obeys the classical von Kármán profile is the angular velocity,
rather than the streamwise velocity, based on conservation laws of the Navier–Stokes
equations in this axial symmetry.

In this paper we will explain that the introduction of a curvature length scale delineates
the region where one can expect a shear-dominated turbulent BL and another region where
curvature effects will alter the structure of the flow, similar as the Obukhov length in
stratified shear flow separates the shear-dominated regime from the buoyancy-dominated
regime. This paper is organized as follows: in § 2 we will give the Navier–Stokes equations
and boundary conditions for TC flow. In § 3 we will discuss the used datasets. We will
then, in § 4, derive a functional form for the angular velocity throughout the entire BL for
arbitrary Reynolds numbers but only for pure inner cylinder (IC) rotation. We extend the
theory towards varying radius ratios in § 5. Finally, we match the BL and bulk velocity
profiles and arrive at a new functional form for Nu(Ta) and Cf (Rei) for TC in § 6. The
paper ends with conclusions and an outlook.

2. Navier–Stokes equations for Taylor–Couette flow

When the inner cylinder rotates and the outer cylinder (OC) remains stationary (the case
to which we restrict ourselves in this paper), TC flow is linearly unstable (Rayleigh 1916).
The ratio between the destabilizing centrifugal force and the stabilizing viscous force is
expressed by the Taylor number (Taylor 1923),

Ta = (1 + η)4

64η2

(ro − ri)
2(ri + ro)

2(ωi − ωo)
2

ν2
. (2.1)

The Reynolds number Rei,o is related to Ta via the relation Rei − ηReo = Ta1/2/f (η) with
f (η) = (1 + η)3/8η2. Eckhardt, Grossmann & Lohse (2007) showed that the mean angular
velocity flux

Jω = r3[〈urω〉A(r),t − ν∂r〈ω〉A(r),t] (2.2)

is independent of r, where 〈·〉A(r),t refers to averaging over a cylindrical surface A(r) and
time t. The torque T per unit length is related to Jω by T = 2πρJω. Therefore also T is
constant with r.

TC flow, see the schematic in figure 1, is described by the three components of the
Navier–Stokes equations in an inertial frame in cylindrical coordinates, as in Landau &
Lifshitz (1987), with wr the radial velocity, uθ the azimuthal velocity and vz the axial
velocity

∂twr + (u · ∇)wr − u2
θ

r
= −∂rPt + ν

{
�wr − 2

r2
∂θuθ − wr

r2

}
, (2.3)

∂tuθ + (u · ∇)uθ + wruθ

r
= −1

r
∂θPt + ν

{
�uθ + 2

r2
∂θwr − uθ

r2

}
, (2.4)

∂tvz + (u · ∇)vz = −∂zPt + ν�vz, (2.5)
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The mean velocity profile of turbulent Taylor–Couette flow 905 A11-5

Lθ

θ

Lz

r

z

d

ri

ro

O

FIGURE 1. Schematic of TC flow including the coordinate directions (θ, z, r), IC radius ri, OC
radius ro, gap width d, the spanwise (axial) extent of the flow domain Lz and the streamwise
extent of the flow domain Lθ , which is used in DNSs that employ periodic boundary conditions in
the azimuthal directions. η = ri/ro is the radius ratio. The grey dashed circular arrows represent
the turbulent Taylor vortices.

where the operators are

(u · ∇)f = wr∂rf + uθ

r
∂θ f + vz∂zf , (2.6)

and

�f = 1
r
∂r(r∂rf ) + 1

r2
∂2

θ f + ∂2
z f , (2.7)

with for IC rotation only, the boundary conditions wr(ri) = wr(ro) = 0, vz(ri) = vz(ro) =
0, uθ (ri) = riωi and uθ (ro) = roωo = 0. Note that Pt is the kinematic pressure, and ρPt is
the physical pressure. The continuity equation reads

1
r
∂r(rwr) + 1

r
∂θuθ + ∂zvz = 0. (2.8)

3. Employed datasets

In this paper we apply our analysis to published datasets with varying radius ratio, see
table 1 in the appendix. We now briefly describe the techniques that are used to acquire
these datasets. However, we refer to the original papers for more details.

Huisman et al. (2013) did experiments on highly turbulent inner cylinder rotating TC
flow with the Twente turbulent TC facility (T3C) (van Gils et al. 2011a), with the radius
ratio η = 0.716 and the aspect ratio Γ = 11.7. In particular, they carried out PIV and
particle tracking velocimetry to measure the mean and the variance of the streamwise
velocity profiles at 9.9 × 108 ≤ Ta ≤ 6.2 × 1012, for both the IC BL and the OC BL.
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905 A11-6 P. Berghout and others

van der Veen et al. (2016) performed experiments on turbulent TC flow in the classical
turbulent regime (i.e. before the BLs become turbulent) with the Cottbus TC facility
(Merbold, Brauckmann & Egbers 2013), with radius ratio η = 0.50 and aspect ratio
Γ = 20. They carried out PIV to measure the mean streamwise and wall-normal velocity
profiles at 5.8 × 107 ≤ Ta ≤ 6.2 × 109. Although van der Veen et al. (2016) carried out
both counter rotation and pure IC rotation experiments, we will discuss here the latter
dataset only.

Ostilla-Mónico et al. (2015a) carried out DNSs of highly turbulent IC rotating TC flow
by using a second-order finite-difference scheme (Verzicco & Orlandi 1996; van der Poel
et al. 2015). With a radius ratio of η = 0.909 they simulated three cases with 1.1 × 1010 ≤
Ta ≤ 1.0 × 1011. Additionally, they simulated a large gap case, η = 0.5, with Ta = 1.1 ×
1011. For all cases the aspect ratio was fixed at Γ = 2π/3. We refer to Ostilla-Mónico,
Verzicco & Lohse (2015b) who found that the aspect ratios of the numerical simulations
are sufficiently large to obtain the correct velocity profiles.

4. Velocity profiles in Taylor–Couette turbulence

Whereas the effects of spanwise curvature on the velocity profiles in pipe flow have
been investigated before (Grossmann & Lohse 2017), in this section we set out to develop
a new functional form of the mean angular velocity profile ω+( y+) (with ω+ = ω/ωτ ,
ωτ,(i,o) = uτ,(i,o)/r(i,o), ω = ωi − uθ/r for the IC BL and ω = uθ/r for the OC BL) in that
part of the IC BL and OC BL where the streamwise curvature effects are significant. Note
that (1.1) can also be postulated for ω( y), so that the gradient becomes

dω

dy
= ωτ

y
Φω

(
y

δν

,
y

δ

)
, (4.1)

where Φω(y/δν, y/δ) goes to a constant in the inertial region δν � y � δ. We follow
the conclusion of Grossmann et al. (2014), namely that near the wall the angular velocity
ω+( y+) fits to a logarithmic form closer than the azimuthal velocity u+( y+), and we apply
our analysis to ω+( y+). For reference we have added figure 12 in the appendix, where we
apply the analysis (see following pages) to the azimuthal velocity profile.

In § 4.1 we first derive the curvature Obukhov length and then apply our analysis to the
highest Re dataset available (Huisman et al. 2013). Subsequently, we analyse both the IC
BL (§ 4.2) and OC BL (§ 4.4) and in § 4.3 also the constant angular momentum region in
the bulk.

4.1. Derivation of the curvature Obukhov length Lc

Following Bradshaw (1969), we draw the analogy between the effects of buoyancy and
streamline curvature on turbulent shear flow. Therefore it is informative to assess the
balance of turbulent kinetic energy (TKE) in the flow. To do so, we first Reynolds
decompose the velocity and pressure fields ((2.3)–(2.5)), such that v = U + u, where
v = (wr, uθ , vz) is the full velocity, U = (W, U, V) is the time averaged velocity and u =
(w, u, v) is the fluctuating component. Upon multiplying the decomposed Navier–Stokes
equations by u, and then taking the time average, we arrive at the TKE equations. In
vector notation, with the definition of TKE (per unit mass) being q =

(
u2 + v2 + w2

)
/2,
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The mean velocity profile of turbulent Taylor–Couette flow 905 A11-7

the TKE equation reads (see also Moser, Mansour & Cantwell 1984)

∂tq + ∇ · (qU) + 1
2
∇ · u(u · u)

= −∇ · pu − pw
r

− uu : ∇U − 1
2r

{2Wq + w(u · u) + 2ū2W}

+ uw
U
r

+ ν

{
�q − (u2 + w2)

r2
+ 2

r2
(u∂θw − w∂θu)

}
− ν∇u : ∇u, (4.2)

where : is the double dot product. We consider a statistically stationary flow that is
homogeneous in the wall-parallel directions. Further, we assume that the net radial
transport of TKE over the boundaries of a thin cylindrical cell in the turbulent BL is zero
for δν � y � δ. We then arrive at a reduced form of (4.2), where the net local production
of TKE is equal to the local dissipation ε (Pope 2000).

uw∂rU − 1
r

uwU = −ε. (4.3)

The first term on the left-hand side of (4.3) represents the production of TKE due to a
gradient of the mean streamwise velocity profile, i.e. shear. The curvilinear coordinate
system gives rise to an additional production term (the second term), as compared to
turbulent shear flow over a flat boundary. In fact, such additional production terms due
to curvature appear both in the uθ -component equation and in the wr-component equation,
and are respectively, (1/r)uwU and −(2/r)uwU. Together, they sum up to the second term
on the left-hand side in (4.3).

The process of additional production of TKE by curvature of the streamlines may be
explained by the conservation of angular momentum L = Ur (Rayleigh 1916; Townsend
1956). If one considers a vortex that exchanges two fluid elements from r1 to r2 where
r1 < r2 so that the vorticity vector points in the streamwise direction, e.g. the Taylor vortex,
the change in kinetic energy whilst conserving L is

�Ek = 1
2

(
U2

2r2
2 − U2

1r2
1

) (
1
r2

1
− 1

r2
2

)
. (4.4)

For (r2 − r1)/r1 � 1, the change in Ek can be rewritten as

δEk = 1
r3

dL2

dr
(δr)2, (4.5)

where δr ≈ r2 − r1 and r ≈ r1 ≈ r2. This is a very similar energy exchange as for
buoyancy stratified flows, where δEk = βg(dT/dz)(δz)2 (Townsend 1976). In fact, we see
that if dL2/dr < 0, the work carried out by the vortex is negative and the IC rotating
and stationary OC TC flow might be called unstably stratified (Rayleigh 1916; Esser &
Grossmann 1996), whereas for dL2/dr > 0 (OC rotating, IC stationary) the work carried
out by the vortex is positive and the flow is stably stratified.

In pursuing this analogy, which we illustrate in figure 2, we expect a region in the
flow where (∂rU 
 U/r) from (4.3) such that the production of TKE is governed solely
by shear, and the flow there behaves identical to flat plate BLs. Next to this, another
region might exist where the production of TKE is governed solely by curvature effects
(U/r 
 ∂rU) and curvature stratification effects dominate. The demarcation line that
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905 A11-8 P. Berghout and others

separates the two regions is the location where both mechanisms are of comparable
magnitude. Bradshaw (1969) recognized the similarity between buoyancy effects and
streamline curvature, and defined the curvature analogy of the Obukhov length, here called
Lc, with

Lc = uw∂rU
1
r

uwU
y, (4.6)

where y = r − ri. Hence, the curvature Obukhov length Lc( y) is the distance from the
wall (y) where production of turbulence by shear and curvature balance. We realize that
uw ≈ u2

τ and the gradient of the streamwise velocity in the shear dominated region is
∂rU = uτ /κy, see (1.1), which we take for reference in defining Lc. We approximate the
curvature production by U/r = ωi, and Lc then becomes

Lc = uτ

κωi
. (4.7)

We use κ = 0.39 throughout the paper, which is consistent with the data of Huisman
et al. (2013), see figure 3, and also agrees with measurements of κ in turbulent BLs and
turbulent channel flows (Marusic et al. 2010). However, we note that a range of κ are
reported in literature (Smits et al. 2011), and the employed data here are not conclusive
on the second decimal. A subtle difference with the definition of Bradshaw (1969) resides
in the definition of the curvature production term. Bradshaw (1969) uses the wall-normal
production only (i.e. −(2/r)uwU), in strict analogy with the buoyancy production, that
contains no streamwise production term. Here, however, we decide to use to sum of the
streamwise and wall-normal curvature production terms (i.e. −(1/r)uwU) to account for
the total effects of streamline curvature. Finally, we note that a similar length scale can
be derived to account for the effects of spanwise rotation on the flow over a flat wall
(Bradshaw 1969; Johnston, Halleent & Lezius 1972; Yang et al. 2018).

4.2. Development of the functional form of ω+( y+)

Figure 3(a) shows the angular velocity profiles for turbulent TC flow. For very high Re of
O(106), Huisman et al. (2013) observed the existence of a logarithmic form of the angular
velocity profile with κ ≈ 0.39 and B ≈ 5, in accordance with (4.1). However, the extent of
the profile is very limited, namely 50 < y+ < 600, covering a much smaller spatial range
than it would in canonical wall-turbulence systems such as channel flow and flat plate
turbulent boundary layers (Pope 2000) at similar Reτ . Figure 3(b) presents the so-called
diagnostic function, y+(dω+/dy+), which allows for a more detailed investigation of the
log slope of ω+( y+). Even for these high Re flows, only a very small region of the profile
coincides with the straight line with slope κ−1, which in this representation represents the
log layer.

Following the analysis in § 4.1, we expect the velocity profile to behave differently in the
region where curvature effects play a role – in close analogy with the Monin–Obukhov
similarity theory. Therefore, we plot the compensated gradient of the velocity profile
versus the ratio of turbulence production terms, see (4.6), in figure 4(a). For clarity we
include only the highest three Ta number cases from the dataset of Huisman et al. (2013).
Indeed, we find that the gradient of the velocity correlates strongly with the relative effects
of shear and curvature. Where turbulence production is governed by shear alone, we find
that the gradient approximates κ−1, albeit marginally. However, where curvature effects
become significant, i.e. for 100 ≤ (r/U)(dU/dr) ≤ 101, we find that the gradient is λ−1.
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T0

T1

z
x

Ws = –ρV uw dU
dz

Wb = ρV βgwT ′

Ws = –ρV uw dU
dr

Wc = ρV uw U
r

ρV �q = Ws�t + Wb�t – εV�t

ρV �q = Ws�t + Wc�t – εV�t

T(z)V

uθ(r)V

ω

θr

ωi

(a)

(b)

FIGURE 2. A schematic representation of the analogy between the effects of buoyancy and
streamline curvature on a BL. (a) A flat plate unstably stratified BL. The change in energy
production is governed by the work carried out on a volume element V by buoyancy Wb and
shear Ws; β is the thermal expansion coefficient, g is the gravitational acceleration that is defined
positive in the −z direction, T ′ is the temperate fluctuation and εV is the volumetric dissipation
rate. (b) A side view of a BL over a curved surface (or the top view of TC IC). In analogy to
positive work carried out by buoyancy fluctuations in an unstably stratified thermal BL (a), the
rate of work done by centrifugal forces Wc in the case of IC rotation is also positive.

30 5

4

3

2

1

0

25

20

15

10

101 102 103 104
104103102101

5

0

Ta = 6.1 × 1012

Ta = 1.5 × 1012
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Ta = 1.5 × 1010

Ta = 3.9 × 109
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k–1 = (0.39)–1

ω+ = k–1log(y+) + B
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ω+
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d
ω
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d
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(a) (b)

FIGURE 3. The IC BL angular velocity profiles for η = 0.716. (a) Mean angular velocity
ω+ = (ωi − 〈ω(r)〉A(r),t)/ωτ,i versus the wall-normal distance y+ = (r − ri)/δν,i. A logarithmic
velocity profile with slope κ−1 is observed in a limited spatial region at the highest
Taylor numbers. (b) The diagnostic function reveals a very limited spatial region in which
y+(dω+/dy+) = κ−1, indicated by the dashed line. Data from the PIV measurements of
Huisman et al. (2013).

It is remarkable that the gradient is constant over such an extended range over which the
relative effects of curvature and shear change. For (r/U)(dU/dr) ≤ 100 curvature effects
are dominant and the bulk velocity profile sets in (see § 4.3).
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Curvature Shear & curvature Shear
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Ta = 6.1 × 1012, IC BL
Ta = 3.8 × 1011, OC BL
Ta = 1.5 × 1012, OC BL
Ta = 6.1 × 1012, OC BL
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d
ω
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d
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FIGURE 4. (a) Compensated gradient of the mean angular velocity versus the ratio of
shear production of turbulence over curvature production of turbulence (see (4.6)). (b) The
approximation of the Obukhov curvature length Lc( y) (4.7) versus the exact calculation of the
Obukhov curvature length (4.6). Inset of (b) highlights the collapse of IC and OC approximations
with the use of different velocity scales (axis labels are the same as figure b), respectively ωiri
for the IC and 0.50ωiri for OC. Data from the PIV measurements of Huisman et al. (2013).
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d
ω
+

d
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y+

FIGURE 5. The IC BL mean angular velocity profiles for η = 0.716. (a) Mean angular velocity
ω+ = (ωi − 〈ω(r)〉A(r),t)/ωτ,i with the L+

c dependent offset κ−1 log (L+
c ) subtracted to highlight

collapse of the profiles. The curved, thick, grey line is the constant angular momentum Mo =
ωir2

i /2, as derived by Townsend (1956), which very closely fits the data at y > Lc. (b) Diagnostic
function versus the rescaled wall-normal distance y/Lc = (r − ri)/Lc, where Lc = uτ,i/(κωi) is
the curvature Obukhov length. The vertical grey lines indicate the bounds of the second log
region. Data from the PIV measurements of Huisman et al. (2013).

Consequently, we make the wall-normal distance dimensionless with Lc, see (4.7). This
is done in figure 5(b) where we plot the diagnostic function versus y/Lc. Similar to
figure 4, we find a collapse of the angular velocity profiles, directly justifying the use
of Lc in turbulent TC flow. The profiles not only collapse with respect to their wall-normal
location, but also all plateau at y+(dω+/dy+) = λ−1, i.e. the slope (in a semi-logarithmic
representation) of ω+( y+). This secondary flat regime with slope λ−1 exists for larger
r > Lc, than the κ−1 regime. We find that λ = 0.64.
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From these observations in figure 5 we obtain the unknown function Φω(y/Lc) in (1.3)
for 0.20 < y/Lc < 0.65

Φω

(
y

Lc

)
= 1
λ

≈ 1
0.64

; 0.20 � y/Lc � 0.65. (4.8)

Consequently, we integrate dω+/d( y/Lc) = 1/( y/Lc)λ and arrive at

ω+ = λ−1 log ( y/Lc) + K, (4.9)

where K is an integration constant and log is the natural logarithm. The offset K of this
second regime at larger r is related to the height at which the first logarithmic regime
at smaller r peels off to the second log regime. We thus expect that K = κ−1 log L+

c + C
which results in,

ω+ = λ−1 log ( y+) + (κ−1 − λ−1) log(L+
c ) + C, (4.10)

where C is a constant equal to 1.0 (obtained by fitting to the highest Taylor number data). If
the transition from a shear logarithmic regime (with slope κ−1) to a curvature logarithmic
regime (with slope λ−1) occurs exactly at y+ = L+

c , and if this transition is sharp, we would
expect to recover the offset of the curvature logarithmic regime as K = κ−1 log L+

c + B.
Hence, we would obtain the constant C = B = 5. However, we see in figure 3(a) that the
transition between the two logarithmic regions in the flow is not sharp, but gradual. The
gradual transition from the shear-dominated region to the curvature affected region and
the long ‘blending’ region in between made us decide not to simply equate (4.10) with
the von Kármán profile to obtain the lower bound of the curvature logarithmic region
(4.8). Instead, as explained, we employ a stricter empirical condition from which we find
y = 0.20Lc. In figure 5(a) we plot ω+ versus y/Lc and subtract K to highlight the collapse.
Indeed, we observe a collapse of the profiles in the range 0.20 � y/Lc � 0.65.

4.3. The constant angular momentum region in the bulk
In the previous section we discussed the shape of the mean streamwise velocity profile in
the IC BL, culminating in a new functional form which includes the stratification length
Lc. However, to arrive at a Nu(Ta) relationship, we need to assess the velocity profile
in the bulk region, too. Wendt (1933) already observed that for unstable flows (i.e. IC
rotation and a stationary OC) the bulk flow obeys a constant angular momentum L = Mo.
Later, Townsend (1956) came to a similar conclusion and found that Mo = ωir2

i /2 for
pure IC rotation. In recent years this finding is often confirmed by new datasets, see e.g.
Ostilla-Mónico et al. (2015a), Brauckmann, Salewski & Eckhardt (2016) and Cheng et al.
(2020). This region of constant angular momentum in IC rotating TC flow is reminiscent
to a linear mean flow scaling in the bulk of spanwise rotating channel flow (Johnston et al.
1972; Nakabayashi & Kitoh 1996; Yang et al. 2018).

Here, we plot the constant angular momentum region in figure 5. We find that the
transition from a λ−1 region into a constant angular momentum ω+ = ω+

i (1 − r2
i /(2r2))

region occurs at y = Lc. As such, the bulk region is entirely dominated by curvature effects
of the streamlines. Consequently, the IC BL thickness δi is equal to the curvature Obukhov
length, δi ≈ Lc (and OC BL thickness δo = 2.5Lc). Recently, a very similar thickness of
the BL was empirically found by Cheng et al. (2020).
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4.4. The outer cylinder boundary layer
Analogous to the IC BL we can analyse the OC BL, with IC rotation only, in the spirit
of the Monin–Obukhov similarity theory. As mentioned in § 4, Huisman et al. (2013) also
obtained velocity profiles of the OC BL for the highest five Ta number experiments. From
(4.6) we derive that the relevant length scale for the OC BL is Lc,o = ruτ,o/(κU) with
y = ro − r. We approximate the velocity U with the scale ωiri and the radius of curvature
r with ro, so that with uτ,oro = uτ,iri, Lc,o = uτ,i/(κωi). The length scale is the same as Lc,i.

The definition of the Obukhov curvature length Lc = (uτ,iri)/(κU) contains a velocity
U. Although this velocity is a function of the wall-normal coordinate, we approximate it by
the velocity scale ui of the IC throughout. The difference between the actual velocity in the
IC boundary layer and ui is different from the difference between the actual velocity in the
outer cylinder boundary layer and ui. In figure 4(b) we find that indeed the approximation
of Lc in (4.7) is not consistent for IC and OC when we employ U = ωiri. However, the
inset shows that when we use U = 0.50ωiri as the velocity scale for the OC (and U = ωiri
for the IC), the approximation of Lc is consistent.

Figure 6(b) presents the gradient of the OC BL velocity profiles versus the
dimensionless wall distance y/Lc. Again, we observe collapse of the profiles in both
the vertical direction and the horizontal direction. In the range 0.20 < y/Lc < 0.65 the
gradient of the profiles is λ−1, whose value is identical to the IC BL profiles. Since the
findings in figure 6(b) are the same as in figure 5(b), we derive the velocity profile for the
OC BL in the same manner as ((4.8)–(4.10)) and arrive at

ω+
o = λ−1 log ( y+) + (κ−1 − λ−1) log(L+

c ) + Co, (4.11)

where Co = 2.0 is obtained from fits in figure 6(a). Again, the profiles in figure 6(a) exhibit
fair overlap between (4.11) and the experimental data, especially at the highest two Ta
numbers (see inset). We note that Reτ,o at the OC BL is smaller than Reτ,i at the IC BL,
and consequently, we expect that the data at lower Ta still suffer from insufficient scale
separation.

5. The effects of the radius ratio η

Up to this point, we have shown that one can treat IC rotating TC flow as an unstably
stratified turbulent shear flow, in close analogy with temperature stratified flows. We
proposed a new functional form of the mean angular velocity in (4.10) that well describes
the experimental profiles measured by Huisman et al. (2013) in both inner and outer BL for
all Re at η = 0.716. The question arises what the implications of the theory of stratified
flows – and consequently (4.10) – bring to TC turbulence at varying radius ratios. To
answer this question we first analyse DNS data of Ostilla-Mónico et al. (2015a) and PIV
data of van der Veen et al. (2016) at a lower radius ratio of η = 0.50 (corresponding to
larger curvature effects), followed by the analysis of the DNS Ostilla-Mónico et al. (2015a)
data at a high radius ratio of η = 0.909.

5.1. Radius ratio η = 0.5
Figure 7 presents the velocity profiles at η = 0.5. The black solid line represents DNS data
at a remarkable high Ta of 1.1 × 1011 resulting in a significant scale separation; Reτ =
3257, see table 1. Nevertheless, the diagnostic function in figure 7(b) does not portray a
shear-dominated κ−1 regime, i.e. the solid black line never follows the black dotted line.
However, between y/Lc ≈ 0.20 and y/Lc ≈ 0.65 the λ−1 regime is obtained. Note that we
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FIGURE 6. The OC BL angular velocity profiles for η = 0.716. (a) Mean angular velocity
ω+ = 〈ω(r)〉A(r),t/ωτ,o with the L+

c dependent offset κ−1 log L+
c + Co subtracted to convey

collapse of the profiles. The vertical grey lines indicate the bounds of the second log region.
The curved, thick, grey line is the constant angular momentum Mo = ωir2

i /2, as derived by
Townsend (1956), which very closely fits the data at y > Lc. (b) Diagnostic function versus
the rescaled wall-normal distance y/Lc = (ro − r)/Lc, where Lc = uτ,i/(κωi) is the curvature
Obukhov length. For lower y (y < 0.20Lc) the shear-dominated logarithmic regime with slope
κ−1 peels off into a second logarithmic regime with slope λ−1. The inset to (a) shows the mean
angular velocity versus the wall-normal distance y+ = (ro − r)/δν,o, where the dashed line is
the curvature logarithmic relation. Data from the PIV measurements of Huisman et al. (2013).
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FIGURE 7. The IC BL mean angular velocity profile at η = 0.50. (a) Mean angular velocity
ω+ = (ωi − 〈ω(r)〉A(r),t)/ωτ,i with the L+

c dependent offset κ−1 log (L+
c ) subtracted to convey

collapse of the profiles. The curved, thick, grey line is the constant angular momentum Mo =
ωir2

i /2, as derived by Townsend (1956), which very closely fits the data at y > Lc. The black
solid line represents DNS data of Ostilla-Mónico et al. (2015a) whereas the coloured lines
represent the PIV data by van der Veen et al. (2016). (b) Diagnostic function versus the rescaled
wall-normal distance y/Lc = (r − ri)/Lc, where Lc = uτ,i/(κωi) is the curvature Obukhov
length.

do not fit λ−1 to the data, but only use the value (λ = 0.64) as obtained in § 4. The dark
grey solid line departs from the λ−1 region around y/Lc ≈ 0.65, to follow the Mo = ωir2

i /2
scaling of the bulk. This is in agreement with the observations at η = 0.716.

To understand the absence of a κ−1 region for this low η, we refer to the scale separation
in table 1. A κ−1 slope requires that 30 < y+ � 0.20L+

c . However, for η = 0.50 at Ta =
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FIGURE 8. (a) Mean angular velocity ω+ = (ωi − 〈ω(r)〉A(r),t)/ωτ,i versus the wall-normal
distance y+. The red solid line is DNS data taken from Ostilla-Mónico et al. (2015a).
(b) Diagnostic function versus the rescaled wall-normal distance y/Lc = (r − ri)/Lc, where
Lc = uτ,i/(κωi) is the curvature Obukhov length, for η = 0.909.

1.1 × 1011 we find that 0.20L+
c = 109. This marginal scale separation is insufficient to

find a logarithmic velocity profile with slope κ−1. However, the scale separation seems
to be sufficient to determine the offset of the curvature logarithmic part of the velocity
profile, i.e. K = 1/κ log(L+

c ) + 1.0 in (4.9) shown in figure 7(a). A large separation of
scales between L+

c and Reτ results in a large curvature-dominated flow region where the
angular momentum becomes constant, see figure 7(a).

Figure 7 also presents PIV data for low Ta from van der Veen et al. (2016). Although the
scale separation is limited for Reτ < 1000 we find a that with increasing Ta the profiles
convergence to the λ−1 region. For the very low Taylor number cases, the offset is too
low to reach the dashed line, indicating that the shear logarithmic region is absent. This is
confirmed by the absence of sufficient scale separation (i.e. 0.2L+

c < 30, with y+ = 30 the
conventional start of the shear logarithmic region (Pope 2000)) to form a shear logarithmic
regime, see table 1 in the appendix. However, for 0.2L+

c > 30 (at Ta ≥ 3.2 × 109), the
offset of the curvature region is correctly set by the shear velocity logarithmic profile.
Hence, the profiles follow the prediction.

5.2. Radius ratio η = 0.909
Figure 8 shows data from a DNS at high η = 0.909 (corresponding to small curvature
effects) and Ta = 1.0 × 1011. Interestingly, we observe a pronounced κ−1 region. However,
there is a total absence of the λ−1 and the Mo region. Once again this is understood with
the scale separation argument. In this case L+

c > Reτ , and therefore there is no location in
the flow where the curvature effects are significant, see table 1.

5.3. General radius ratio η

To close this section, we provide a phase diagram of the scale separation at Reτ ≈ 3000
for varying η, in order to illustrate where one would expect to see κ−1, λ−1, and constant
angular momentum regions of the angular velocity profile, in figure 9. We base the
phase diagram on three cases for η = (0.500, 0.716, 0.909) and Reτ ≈ 3000, for which
we have the phase boundaries, see table 1. Note that the boundaries are not sharp, and
gradual changes in the relative importance of TKE production by shear and curvature
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y+ dω+
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+r2
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y+ dω+
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y+

η

Constant angular momentum:
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Obukhov curvature BL:

Viscous

Prandtl–von Kármán shear BL:

y+ = 0.65L+
c y+ = 0.20L+

c

FIGURE 9. Varying regimes in between the solid boundary (here the IC wall at y+ = 0) and
the outer length scale at y+ = Reτ for increasing radius ratio η, from η = 0.4 (strong curvature)
to η = 1.0 (no curvature). The diagram is based on the values of L+

c at Reτ ≈ 3000 for η =
(0.500, 0.716, 0.909), see table 1 in the appendix.

lead to new regions. However, we now immediately see from the diagram that, for high
η, the Obukhov curvature BL is only expected to appear distinctly at extremely high Reτ

(higher than Reτ = 3000). In contrast, for low η, we need extremely high Reτ (higher than
Reτ = 3000) to observe the Prandtl–von Kármán turbulent BL type.

6. The Nu(Ta) and Cf (Rei) relationships

The derivation of the angular velocity profile in a turbulent BL with strong curvature
effects, see (4.10), allows us to obtain a functional form that relates the dimensionless
torque Nu to the dimensionless driving Ta at Reo = 0. To do so, we follow the very recent
work by Cheng et al. (2020). Therein, the BL profile (the conventional shear-dominated
von Kármán type) is matched with the constant angular momentum bulk profile at the
edge of the BL. With a fitting constant for the BL thickness, Cheng et al. (2020) arrive
at a very accurate calculation of Nu over a wide range of Ta. Here, we match the angular
velocity profiles in the bulk and the BL at the BL height δ = αLc. Note that the constant
α is easily extracted from figure 5, where it refers to the outer bound of the λ−1 region –
where the BL and bulk meet.

ωi

ωτ,i
− 1
λ

log αL+
c −

(
1
κ

− 1
λ

)
log L+

c − C = ωir2
i

2ωτ,i(ri + αLc)2
. (6.1)

Note that (6.1) is equivalent to Cheng et al. (2020) ((4.5)–(4.7)) with differences of
O(Reτ /Rei), and with a different constant. Upon closely following Cheng et al. (2020)
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FIGURE 10. The dimensionless torque Nu versus the dimensionless rotation rate Ta of the IC.
Solid lines represent the result as obtained by the matching of profiles in § 6, with the resulting
relationship Nu(Ta) given by (6.2a,b) (present p-CPS). Dashed lines represent the result of
Cheng et al. (2020) (CPS). Symbols are the values of Nu obtained by DNS or experiments;
η = 0.357 (blue triangle) Froitzheim et al. (2019), η = 0.500 (crosses) Ostilla-Mónico et al.
(2014b), (open circles) van der Veen et al. (2016) and (triangle) Ostilla-Mónico et al. (2015a),
η = 0.716 (squares) Brauckmann & Eckhardt (2013), (crosses) Ostilla-Mónico et al. (2014b) and
(diamonds) van Gils et al. (2011b), η = 0.909 (triangles) Ostilla-Mónico et al. (2015a).

including Reτ � Rei, (6.1) results,

Nu = κ2η3Ta1/2

4(1 + η)2W(Z)2
, Z =

√
κη3Ta1/2

2(1 − η)(1 + η)3
exp

⎛
⎜⎜⎝

κ

(
C + 1

λ
log α

)
2

⎞
⎟⎟⎠, (6.2a,b)

where W(Z) is the principal branch of the Lambert W function. We note that (6.2a,b) is
different from the result of Cheng et al. (2020) ((4.15)–(4.16)) by only a constant in the
argument of the productlog function and the difference in Nu(Ta) is only minor. We refer
to (6.2a,b) as the ‘present CPS model’ (i.e. p-CPS).

Figure 10 presents (6.2a,b) together with 8 datasets from DNS and experiments –
covering 0.357 ≤ η ≤ 0.909 and 7 orders of magnitude in Ta; α = 0.65, see (4.8) and
figure 5. Naturally, we find deviations at low Ta, where the BLs are not fully turbulent
yet. However, we find good overlap at high Ta for various η. For high η (at Reτ = 3000,
η � 0.80), (6.2a,b) loses its validity since shear is dominating curvature effects throughout
the entire BL at the current Ta. The Nu(Ta) relation is thus better described by the
functional form obtained in Cheng et al. (2020). However, we note that the ratio Reτ /L+

c
will become larger with increasing Ta, so that for extremely high Ta (even much higher
than 1012), the Nu(Ta) relationship at η = 0.909 will also follow (6.2a,b).

For Ta < 106, the BLs are of the laminar type and Nu scales with Ta1/3 (Ostilla-Mónico
et al. 2014a). Figure 11(a) shows the Nu(Ta) relationship where Nu is compensated with
Ta1/3, such that we highlight the transition to a turbulent BL where the scaling exponent is
larger than 1/3. We emphasize that, only after this transition, which is gradual and appears
to depend on η, when BLs are entirely turbulent, will (6.2a,b) correctly calculate Nu(Ta).
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FIGURE 11. (a) The dimensionless torque Nu, compensated with the scaling of TC flow with
laminar BL and turbulent bulk Ta1/3, versus the dimensionless rotation rate Ta of the IC. (b) The
friction factor Cf versus the the IC Reynolds number Rei. Colours and symbols are the same as
in figure 10 and links to the references can be found in the caption of that figure.

Figure 11(b) presents the Cf (Rei) diagram, which is more conventionally used in the pipe
flow and BL flow communities. The solid lines are given by (6.2a,b) where the friction
factor is calculated from Cf = 4Nu/(η(1 + η)Rei).

7. Summary and conclusions

In summary, we have developed a theory, similar to that of thermally stratified turbulent
BLs, as famously developed by Monin & Obukhov (1954), for the curved turbulent BLs
in inner cylinder rotating TC flow. In this analogy, the destabilizing effects from curvature
of the streamlines in inner cylinder rotating TC flow are similar to the destabilizing effects
coming from unstable thermal stratification in the atmospheric BL.

We show that the curvature Obukhov length Lc (Bradshaw 1969) separates the spatial
regions that are dominated by shear and curvature effects. We find that for δν < y �
0.20Lc, the mean angular velocity profile in the BL is described by the classical shear
profile, with the slope given by the von Kármán constant κ−1 = 0.39−1. In contrast,
for 0.20Lc � y � 0.65Lc, where curvature effects are relevant, the slope of the angular
velocity profile is λ−1 = 0.64−1. For y � 0.65Lc curvature effects dominate, and a region
with constant angular momentum sets in. This theory is applied to – and found consistent
with – PIV measurements and high-fidelity DNS data covering a wide range of radius
ratios 0.50 ≤ η ≤ 0.909 and rotation rates 108 ≤ Ta ≤ 1012, and describes both the IC BL
and the OC BL.

Building on these findings we obtain a new functional form of the mean angular velocity
profile in TC turbulence, with separate spatial regions where curvature and shear effects
are respectively relevant. In implementing the Cheng et al. (2020) theory by matching our
new outer boundary layer profile with the constant angular momentum profile in the bulk
at the edge of the BL, we recover their Nu(Ta, η) (and Cf (Rei, η)) relations but with a
different constant. For the present smooth-wall flow with the outer cylinder stationary,
this supports their model, with fair agreement with various datasets at high Ta and
different η.

The key assumptions made by Bradshaw (1969), namely that the net production of
turbulent kinetic energy is locally balanced by dissipation, as also employed in this
research, are left to be addressed by means of DNS at very high Reynolds numbers of
Re = O(106). Whether the Obukhov (outer) logarithmic region will survive at arbitrary
high Rei remains an open question. Open questions also concern the effects of stably
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stratified TC flow (i.e. outer cylinder rotation), or even mixed stratified TC flow (i.e.
counter cylinder rotation) within the framework of the Monin–Obukhov similarity theory.
However, so far, only velocity profiles with a scale separation up to Reτ ≈ 1200 are
available for OC rotation (Ostilla-Mónico, Verzicco & Lohse 2016) to apply the theoretical
analysis. Also, based on the newly derived velocity profile, it becomes necessary to
reassess the fully rough asymptote for rough wall turbulent TC flow (Berghout et al. 2019).
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Appendix

See table 1 for an overview of the used datasets and figure 12 for an application of the
analysis to the azimuthal velocity profile.

η Ta Rei L+
c Reτ

Huisman et al. (2013)
0.716 9.9 × 108 2.6 × 104 242 488 PIV
0.716 3.8 × 109 5.0 × 104 395 877 PIV
0.716 1.5 × 1010 1.0 × 105 661 1602 PIV
0.716 6.1 × 1010 2.0 × 105 1124 2950 PIV
0.716 3.8 × 1011 5.0 × 105 2327 6716 PIV
0.716 1.5 × 1012 1.0 × 106 3947 12 217 PIV
0.716 6.1 × 1012 2.0 × 106 6870 23 093 PIV

van der Veen et al. (2016)
0.500 5.8 × 107 4.5 × 103 45 141 PIV
0.500 1.1 × 108 6.2 × 103 55 183 PIV
0.500 2.1 × 108 8.6 × 103 67 239 PIV
0.500 4.4 × 108 1.2 × 104 84 320 PIV
0.500 8.3 × 108 1.7 × 104 103 413 PIV
0.500 1.5 × 109 2.3 × 104 125 531 PIV
0.500 3.2 × 109 3.4 × 104 156 714 PIV
0.500 6.2 × 109 4.7 × 104 192 933 PIV

Ostilla-Mónico et al. (2015a)
0.500 1.1 × 1011 2.0 × 105 544 3257 DNS
0.909 1.0 × 1011 3.0 × 105 4794 3745 DNS

TABLE 1. Used datasets. The curvature Obukhov length L+
c and friction Reynolds number Reτ

at varying Ta, Rei and radius ratio η.
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uθ
+– κ–1 log (L+

c) = λu
–1 log ( y/Lc) + 0.0
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FIGURE 12. The inner cylinder BL mean azimuthal velocity profiles for η = 0.716. (a) Mean
azimuthal velocity u+

θ = (uθ,i − 〈uθ (r)〉A(r),t)/uτ,i with the L+
c dependent offset κ−1 log (L+

c )
subtracted to highlight collapse of the profiles. (b) Diagnostic function versus the rescaled
wall-normal distance y/Lc = (r − ri)/Lc, where Lc = uτ,i/(κωi) is the curvature Obukhov
length. Note that λ−1

u is different than λ−1 in the main text. Data from the PIV measurements of
Huisman et al. (2013).
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