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p-ADIC EIGEN-FUNCTIONS FOR KUBERT
DISTRIBUTIONS

NEAL KOBLITZ

1. Introduction. Functions on R (or on R/Z, or Q/Z, or the interval
(0,1) ) which satisfy the identity

(1) fx) = m! 'njlf(x-Fh)

h=0 m

for positive integers m and fixed complex s, appear in several branches of
mathematics (see [8], p. 65-68). They have recently been studied
systematically by Kubert [6] and Milnor [12]. Milnor showed that for each
complex s there is a one-dimensional space of even functions and a
one-dimensional space of odd functions which satisfy (1.1). These
functions can be expressed in terms of either the Hurwitz partial
zeta-function or the polylogarithm functions.

My purpose is to prove an analogous theorem for p-adic functions. The
p-adic analog is slightly more general; it allows for a Dirichlet character
xo(m) in front of m* ! in (1.1). The functions satisfying (1.1) turn out to
be p-adic “partial Dirichlet L-functions”, functions of two p-adic variables
(x, s) and one character variable x,, which specialize to partial
zeta-functions when xg is trivial and to Kubota-Leopoldt L-functions
when x = 0.

In the p-adic case one can interpret (1.1) in terms of continuous
representations of the group of p-adic units on a function space. This
interpretation suggests further questions about the role of the Kubert
identities and the corresponding operators in p-adic function theory.

Let M be a submonoid of the multiplicative semigroup of nonzero
integers: M < { =1, &=2,...}. Let X be a topological ring which is
divisivble by all m € M; let K be a topological field of characteristic zero;
let X* denote the group of all quasicharacters, i.e., all continuous
homomorphisms from the units X* to J*; and let &% be a space of
functions f: X — K (or f: X — K U {oo}).
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There are two examples of M, X, K, X* and Zto have in mind:
(1) M = {all nonzero integers}; X = R; K = C;

* ~ (Z/2Z) X C,
where
X* 3 (e 5): x = (sgn x) + | x [

F = {fR— C U {00} | fis finite and continuous on (0, 1) and periodic
of period 1}.

(2) M = {all integers prime to a fixed integer d = dy};
= lim (Z/dp"Z);
“—

K = Q, = p-adic completion of the algebraic closure of the p-adic
numbers Q,;

* =~ {(xo0.?) | xo a character of (Z/dZ)*,
t€ Q|- 1], <1}
& = {all continuous f: X — @, such that
f(x + 1) = f(x) for x € X — X*}.

Now for any m € M and any /: X = K (or f: X = KU {co} ) we define
the operator T, by

(12) T f(x) = — Ef(x Lh),

where the summationisover0 = A< mifm >0,0>h =Z mif m < 0.
Note that

(1.3) T-, flx) =f(1 — x).
Further note that T commutes with multiplication in M, i.e.,

Tmlmz = Tm| - T,

my»

so that T gives a representation of M in the space of functions. Then
Milnor’s result can be re-stated:

ProrosiTION (Milnor [12]). Let M, X, K, % be as in example (1). For any

character (¢, s) € X * the restriction of (¢, s) ! to M has a one-dimensional

eigen-space for the action of T, i.e., [ is determined up to a constant multiple
by the identity
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Tf = (sgn m)* [m| " f.

In the p-adic case, M is dense in the p-adic units X*, and our Theorem 1
in Section 2 states that the action of T extends continuously to all of X*.
Then we have

THEOREM 2. Let M, X, K, F be as in example (2). Then any character x
€ X * has a one-dimensional eigen-space for the action of T. It is spanned by
the partial L-function corresponding to x (see Section 3 below).

2. p-adic interpolation of the distribution operators. Let d; be a fixed
positive integer prime to p. Let d = dyp for p > 2, d = 4d, for p = 2.
Let

X = lim (Z/dpVZ).
e
N

The compact-open subset {x € X | x = a mod dp"} will be denoted a +
deZp. Let X* denote the union of a + de over all a prim(i to d; thus, X*
is the set of invertible elements of the ring X. Further let % be the vector
space of all continuous f: X — @, with the sup-norm. Let

M =7 n X* = {all integers prime to d}.

THEOREM 1. (1) For every m € M, the map T,: F — F is a bounded
linear map with ||T,|| = 1; in fact, |Tf || = || f|| for all f € F.

(2) Tm| ° Tmz = Tm.n12~

(3) T,, depends continuously on m.

(4) T extends uniquely to a continuous representation of the group X* on
F.

(5) Ty is an isometry, i.e., T f |l = || f| for all x € X*, f € F.

(6) The subspace F = {f € F | f(x+1) = f(x) for x € X — X*} is

T-invariant.
Proof. (1) and (2) are obvious from the definition (1.2). (6) is also clear,
since

Tufee+ 1 = Tufe =~ (72 1) — (X))

If we prove (3), then (4) will follow, because M is dense in X* (that T is a
homomorphism follows from (2) and the denseness of M in X*). (5) will
then also follow, since (1) implies

1A= 1Ty (T = ITSI = 1S
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So it remains to prove (3).
Let f: X — @, be a continuous function bounded by b: | f(x)|, = b for x
€ X. Choose N, so that

(14) x —y € dpVZ, = | f(x) — fO)l, < e

Let m, m € M, and suppose that m’ = m + kdp", k > 0. First suppose
that m and m’ are positive. Then

T, f(x)— T,f(x) =4+ B+ C,

where

=G ) 2 (57)

summation over 4 as in (1.2) for T,,;

p-3(r(220) - (221)).

summation over £ as in (1.2) for 7,,;

summation over m = h < M + kdp".
If m and m’ are both negative, then
T,/(x) — T, fix)=—A— B+ C;
and if m is negative and m’ is positive, then one checks that
T f(x) — T,f(x) =4 + B+ C.
So it suffices to estimate |4|,, |B|,, |C|,. Clearly, 4], = p Vb, Since
x+h x+h

lIA

|m/ - m|p,

’ P

m m

we have |B|, < eif N = Ny, by (1.4). Finally, let N = N} + N, and in C
divide the sum into sums over all 4 of the form

a + jkdp™, j=0,...,pN —1.
That is,

S, where
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pNZ*]
X + a kd
Sao= 2 f( — + = pN‘)

j=0
Since
Ax +a  jkd x + a
r(Ere e B pn) - (222) |, <
for all j by (1.4), we have
p=1
_|_
szt | 2 (24,
j=0 m
+
=€ + pr(x a p§e+p'N”b
m
Hence also

ICl, = ¢ + p Mp.
This completes the proof of the theorem.
3. Eigen-spaces for the distribution operator. Let X be as in Section 2.
We have a natural projection 7: X — Z, defined by:
m(a + deZp) =a+ pV Z, (“forget mod d information™).

We shall always consider functions on Z, to be functions on X by means
of this projection. We also have two maps w: X = Z, and < >: X — Z,
given by

w(x) = lim m(x)""
(i.e., the Teichmiiller representative of #(x) ) and
<x> = 7(x) 0 ' (x)

(where we take o~ '(x) = 0 if w(x) = 0).

Fix a topological generator y for 1 + pZ, ». The correspondence
between quasicharacters x € X * and pairs (Xo, t) (where Xo 1s a character
of (Z/dZ)*, t € Q,, |t — llp < 1) is as follows:

x(x) = xo(x mod d) * if <x> = y*.

If 7 is within the disc of radius p~ '/? 1 around 1, then we can write 1 =
y* for some s, |s|, < p?=2/? =D and in that case
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x(x) = xo(x mod d) <x>°.

Definition. Let x € X* x € X If x is not locally constant (i.e., the
parameter ¢ is not a root of unity), then the p-adic partial L-function is
defined to be

1
B fx) = lim — 2 x(x +))

N—soo dp™ o= gV

IOEE(X +J)

1

L A )

Ve B o= Xo(x+J) 1\ log,y
xtjeX*

(here log, is the Iwasawa p-adic logarithm, see [3], p. 36-40 or [S], p. 17-18,
which we regard as a function on X* via the projection m: X — Z,). For
example, if x is of the form xq < >°, then

1
(32) fux) = fi(x,s) = lim —y 2 xo(x + /) <x + j>"
X fXO Noo de 0§j<de 0

If x is locally constant but not the trivial character, then we define

I
(33) fyx) = lim — X x(x +)) log,(x + ).

Finally, if x is the trivial character (i.e., the characteristic function of X*),
then we set

leriv (X) = L

LEMMA. In all cases the limit f,(x) exists and is locally analytic in x and t
(or in s for x of the form xg < >*).

The proof is routine (see [1] or [5], p. 48). For every x we also have f, €
Z since f(x+1) = fi(x) if x € X — X*.

For trivial x, the function f, (x, s) is essentially the p-adic partial
zeta-function (see, e.g., [9], p. 148). On the other hand, for arbitrary ¥
but x = 0 we obtain the Kubota-Leopoldt-Iwasawa p-adic Dirichlet
L-function ([7], [3]).

Note that in the definition of f,(x), we can replace dp" by mdp" for any
m=12,....

We easily compute that for m € X* a positive integer and x not locally
constant,
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1 'S (x +h
Tufx) = lim —— 3 3 x( +j)
N=oo MAP™ o=i<aph h—0 m

I

X 'm) lim — X x(x +j)
N—co mdp 0=/ <mdp®

I

X (m) filx).
By continuity,
T, = x '(a)f, foralla € X*.

A similar computation gives

Tafx = Xﬁl(a)fx

for x locally constant and nontrivial (here one uses the fact that the sum
of x(x + j) over 0 = j < dp" is zero for N large). Finally, we obviously
have

—1
Tu1 =1= Xtriv (a) - 1.

THEOREM 2. The subspace of % = {continuous f: X — $, such that
flx + 1) = f(x) for x € X — X*} on which T acts by x ! is
one-dimensional and is spanned by f,.

Proof. We just saw that T,/ = x '(a) /. a € X*. We must show
uniqueness. In the process we shall see how to arrive at the definition of f,
starting from the distribution identity.

Let f: X — @, be any continuous function such that 7,/ = x Ya) f
and
(34) fix+1) =f(x) forx € X — X*.

Define a continuous function g: X — {2, by setting

(335) gx)=xx'xX)(fix + 1) = f(x)), x€ X

(characters x € X * are always assumed to extend by 0 to X — X*). Then
for m € X* a positive integer,

g(x) = x x '(x) (x(m)T,f(x + 1) — x(m)T,f(x))

e (B0 =)

h=0 m
g(x/m).
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Since the m are dense in X*, this means that g(x) is constant on X*. By
(3.4), g(x) = 0 on X — X*. Then by (3.5) we have

x(x)

= forx € X.
X

(3.6) f(x + 1) — f(x) = const

First suppose that x is not locally constant. If x corresponds to the pair
(Xo, l), i.e.,

X(x) = xo (x) 1'%

then taking d/dx gives (x € X*)

<x>/log,y
b

1 : .
Xl(x) = lim XO(X) - (1 log,<x+e>/log,y _ tlogp<.\>/log,,y)
e—0 €

_ XO(X) lim l tlogp<x>/logpy (l log,(1+¢/x)/log,y __ 1)
e—0 €

1
x(x) lim — (¢ X%y — 1)
e—0 €

log,r x(x)

log,y x

Since 7 is not a root of unity, log, r # 0. Hence, multiplying f by a suitable
constant, we may assume that

BN fix + 1) = flx) = X(x).

Now in [1] Diamond shows how to construct a function f with this’
property, namely, one gets precisely the function f, in (3.1). £ is uniquely
determined by (3.7) up to an additive constant, because

fom) = O + 2 i+ 1) = ),

and the positive integers are dense in X. But if we had f(x) = f,(x) + C,
then since both f and f, transform by x ! under T, so would C. But
T,C = C; hence, C = 0.

Now suppose that x is locally constant and nontrivial. By (3.6), we
have

fix+ 1) — f(x) = g-c const x(x) log, x.

Then the same argument as before shows us that f'is a constant multiple
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of (3.3). Finally, if x = Xv. then we similarly find that f'is of the form

1
a+ b lim — X log,(x + /).
N—sco dp™ o= gV & /
x+jeX*

where a and b are constants. Constant functions transform by x,, under
T, but the second function does not; hence, b = 0.
This concludes the proof of Theorem 2.

Remarks. 1. If one removes the condition (3.4), one can obtain more
eigen-functions of the form (3.1) by extending x in different ways (not
necessarily by 0) to the multiplicative cosets of X* in X — X*. Namely, if
aX* € X — X*issuch a coset and c is a constant, one can extend x to aX*
by setting

x(ax) = cx(x) for x € X*.

Then (3.1) still is a x~ '-eigen-function of T.

2. To check that a function is a x !

the identity
J(x) = x(m) T,f(x)

for a set of integers m which generate a dense subset of X*, i.e., it suffices
if the m generate (Z/dpZ)*.

-eigen-function it suffices to verify

4. Examples. 1. The p-adic gamma-function I',: Z, — Z, (see [13], or
[5], p. 40-42) satisfies the Gauss multiplication formula ([5], p. 42):

m—1
+h
I, (%)
h=0 m
m—1
h
i ()
h=1 m
where x is written as x = xg + px;, x € {1, 2,..., p}. Taking the

logarithm and then the second derivative gives (here we denote y,(x) =
d/dx log, I'y(x))

(4.1 T,(x)= m¥o 1 (m® = Dy¥,

1
) = — Ty dh(x).

If we apply Theorem 2 with X = Z, and x(x) = 1/x, we find that
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Y{x) is a multiple of

1
lim p~N 2
N—oo 0=j<p¥ X T J
plx+j

In fact, T, is related to Diamond’s function ([1])

(42) G,(x) = lim p™¥ 2 (x+,j)(og, (x +j)— 1), x € Z,
N—oo

0sj<pV

by the equality (see [5], p. 49)

x + i
4.3) log,T,(x) = 2 Gp( )
0=i<p, P
plx+i

which, if we differentiate twice, gives
PN L 1 ]
N 2 s
i+pi=0 X T
fx+i
plx+i )

1
(x) = — lim p~
\bp( ) pz o 14

tJ

. _ 1
= lim p~V .
N—co 0sj<p¥ X +J
plx+j

2. If xo is a nontrivial character of (Z/dy Z)*, one can define the twisted
Y,-function on X = lim (Z/d, pNZ) as
«—

X+ i
. + i) log,T (——-—)
\PPvX() (X) dx 0§1’2< b XO(X ! ) ng p d()

S LS ey (2).

dy 0<i<d, do

(Recall that a function on Z,, such as I',, is regarded as a function on X via
the projection 7: X — Z,.) We have

d (x+h+im> (x+h+im)
T, = — E _— ) log, T, | —8M8M8MM—
1 Ypoxe (X) dx o<, X0 m 0glp md,
0=h<m
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+ k
(’n) Y E XO(X + J) 2 lngFp (x j ")

d 0=)<dy 0=k<m dy m
(letting h + im = j + kdy)
o d . (Xt
=xo (m) o= X xolx + ) log,l, (—)
0 dx <=y, 0 Sl do
(using (4.1) together with the vanishing of Zx (i) for x, nontrivial)

= X(;l (m) ll/p.x“ (x).

Hence, ¢, ,, is in the X&'-eigen—space of T. And in fact, using (4.2) and
(4.3), we see that (regarding xo modulo d, where d = dyp or 4d,, so that
now xo (p) = O):

d (x + 1')
x) = — +
o () = o 2 x0 (6 ) G\

1 . .
= lim 2 xolx +j)log, (x + ).
N—0o dp 0=, <dp"

3. The successive derivatives of these two examples give further
eigen-functions of 7. For example, for k = 2, 3, ...

/\ .

(k—1) d . X + l
() =7 2 xolx + i) log,I (—)
pxo dx* (<=4, : 7PN dy

Xo(x + /)
= (—DF(k — 2! lim — EAAAEAS
) ) N oo dp g=iZgy (x + )T
(4.4) = (—DF(k = ! fipo! * (X0 1 = k)
in the notation of (3.2).

4. If we evaluate the functionj;(o (x, s)in (3.2) at x = 0, we obtain the
Kubota-Leopoldt p-adic L-function —sL,(1—s, xo) (see §3 of [3], or [S], p.
47-48). Setting s = 1 — k and comparing with (4.4), we find that

e 1
Lytk, xo0' ) = = St + (0.1 = )

(—1) k=1
= (k — 1)' \P; X0>( ’
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which is a familiar expression ([2], [4]) for the value of L-functions at
positive integers.

Question. Is there a simple characterization of functions in #which can
be expressed as sums or integrals of f,? For example, let u be a measure on
a compact subset of X *, such as x + < >% for a fixed x. That is, p is a
bounded, finitely additive §,-valued function on compact-open subsets.
Then consider the function

g(-x) = /fX' < > (X) d‘U.(Y)

The distribution operators T,, a € X*, act as follows:

T.g(x) = x '(a) f <a>"" fyo < = (%) dus).

Alternately, since fy . = ~s(x) is locally analytic in s, we can relax the
requirement that p be bounded, and consider Manin-Visik’s boundedly
increasing [10] and A-admissible [14] measures, i.e., p for which

p "Mua + p2,) |, >0 as N — co.

Perhaps, the properties of the transform g(x) can be characterized in
terms of p and the compact domain of integration in X *, as Visik has done
for the p-adic Stieltjes transform (see [15], or Appendix to [5]).
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