p-ADIC EIGEN-FUNCTIONS FOR KUBERT DISTRIBUTIONS

NEAL KOBLITZ

1. Introduction. Functions on \mathbf{R} (or on \mathbf{R} / \mathbf{Z}, or \mathbf{Q} / \mathbf{Z}, or the interval $(0,1)$) which satisfy the identity

$$
\begin{equation*}
f(x)=m^{s-1} \sum_{h=0}^{m-1} f\left(\frac{x+h}{m}\right) \tag{1.1}
\end{equation*}
$$

for positive integers m and fixed complex s, appear in several branches of mathematics (see [8], p. 65-68). They have recently been studied systematically by Kubert [6] and Milnor [12]. Milnor showed that for each complex s there is a one-dimensional space of even functions and a one-dimensional space of odd functions which satisfy (1.1). These functions can be expressed in terms of either the Hurwitz partial zeta-function or the polylogarithm functions.

My purpose is to prove an analogous theorem for p-adic functions. The p-adic analog is slightly more general; it allows for a Dirichlet character $\chi_{0}(m)$ in front of m^{s-1} in (1.1). The functions satisfying (1.1) turn out to be p-adic "partial Dirichlet L-functions", functions of two p-adic variables (x, s) and one character variable χ_{0}, which specialize to partial zeta-functions when χ_{0} is trivial and to Kubota-Leopoldt L-functions when $x=0$.

In the p-adic case one can interpret (1.1) in terms of continuous representations of the group of p-adic units on a function space. This interpretation suggests further questions about the role of the Kubert identities and the corresponding operators in p-adic function theory.

Let M be a submonoid of the multiplicative semigroup of nonzero integers: $M \subset\{ \pm 1, \pm 2, \ldots\}$. Let X be a topological ring which is divisible by all $m \in M$; let K be a topological field of characteristic zero; let X^{*} denote the group of all quasicharacters, i.e., all continuous homomorphisms from the units X^{*} to \mathscr{K}^{*}; and let \mathscr{F} be a space of functions $f: X \rightarrow K($ or $f: X \rightarrow K \cup\{\infty\})$.

Received May 26, 1982. This research was partially supported by N.S.F. grant MCS80-02271.

There are two examples of M, X, K, \check{X}^{*} and \mathscr{F} to have in mind:
(1) $M=\{$ all nonzero integers $\} ; X=\mathbf{R} ; K=\mathbf{C}$;

$$
\check{X}^{*} \approx(\mathbf{Z} / 2 \mathbf{Z}) \times \mathbf{C}
$$

where

$$
\tilde{X}^{*} \ni(\epsilon, s): x \mapsto(\operatorname{sgn} x)^{\epsilon} \cdot|x|^{s}
$$

$\mathscr{F}=\{f: \mathbf{R} \rightarrow \mathbf{C} \cup\{\infty\} \mid f$ is finite and continuous on $(0,1)$ and periodic of period 1\}.
(2) $M=\left\{\right.$ all integers prime to a fixed integer $\left.d=d_{0} p\right\}$;

$$
\mathrm{X}=\underset{\leftarrow}{\lim }\left(\mathbf{Z} / d p^{N} \mathbf{Z}\right)
$$

$K=\Omega_{p}=p$-adic completion of the algebraic closure of the p-adic numbers \mathbf{Q}_{p};

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{X} * \approx\left\{\left(\chi_{0}, t\right) \mid \chi_{0} \text { a character of }(\mathbf{Z} / d \mathbf{Z})^{*}\right. \\
& \left.t \in \Omega_{p},|t-1|_{p}<1\right\} \\
& \mathscr{F}=\left\{\text { all continuous } \mathrm{f}: X \rightarrow \Omega_{p}\right. \text { such that } \\
& \left.\qquad \quad f(x+1)=f(x) \text { for } x \in X-X^{*}\right\} .
\end{aligned}
$$

Now for any $m \in M$ and any $f: X \rightarrow K($ or $f: X \rightarrow K \cup\{\infty\})$ we define the operator T_{m} by

$$
\begin{equation*}
T_{m} f(x)=\frac{1}{|m|} \sum f\left(\frac{x+h}{m}\right) \tag{1.2}
\end{equation*}
$$

where the summation is over $0 \leqq h<m$ if $m>0,0>h \geqq m$ if $m<0$. Note that
(1.3) $T_{-1} f(x)=f(1-x)$.

Further note that T commutes with multiplication in M, i.e.,

$$
T_{m_{1} m_{2}}=T_{m_{1}} \cdot T_{m_{2}}
$$

so that T gives a representation of M in the space of functions. Then Milnor's result can be re-stated:

Proposition (Milnor [12]). Let M, X, K, \mathscr{F} be as in example (1). For any character $(\epsilon, s) \in \dot{X}^{*}$ the restriction of $(\epsilon, s)^{-1}$ to M has a one-dimensional eigen-space for the action of T, i.e., f is determined up to a constant multiple by the identity

$$
T_{m} f=(\operatorname{sgn} m)^{\epsilon}|m|^{-s} f
$$

In the p-adic case, M is dense in the p-adic units X^{*}, and our Theorem 1 in Section 2 states that the action of T extends continuously to all of X^{*}. Then we have

Theorem 2. Let M, X, K, \mathscr{F} be as in example (2). Then any character χ $\in \dot{X}^{*}$ has a one-dimensional eigen-space for the action of T. It is spanned by the partial L-function corresponding to χ (see Section 3 below).
2. p-adic interpolation of the distribution operators. Let d_{0} be a fixed positive integer prime to p. Let $d=d_{0} p$ for $p>2, d=4 d_{0}$ for $p=2$. Let

$$
X=\underset{N}{\lim _{N}}\left(\mathbf{Z} / d p^{N} \mathbf{Z}\right)
$$

The compact-open subset $\left\{x \in X \mid x \equiv a \bmod d p^{N}\right\}$ will be denoted $a+$ $d p^{N} \mathbf{Z}_{p}$. Let X^{*} denote the union of $a+d \mathbf{Z}_{p}$ over all a prime to d; thus, X^{*} is the set of invertible elements of the ring X. Further let $\widetilde{\mathscr{F}}$ be the vector space of all continuous $f: X \rightarrow \Omega_{p}$ with the sup-norm. Let

$$
M=\mathbf{Z} \cap X^{*}=\{\text { all integers prime to } d\}
$$

ThEOREM 1. (1) For every $m \in M$, the map $T_{m}: \widetilde{\mathscr{F}} \rightarrow \widetilde{\mathscr{F}}$ is a bounded linear map with $\left\|T_{m}\right\| \leqq 1$; in fact, $\left\|T_{m} f\right\| \leqq\|f\|$ for all $f \in \mathscr{\mathscr { F }}$.
(2) $T_{m_{1}} \cdot T_{m_{2}}=T_{m_{1} m_{2}}$.
(3) T_{m} depends continuously on m.
(4) T extends uniquely to a continuous representation of the group X^{*} on $\widetilde{\mathscr{F}}$.
(5) $\quad T_{x}$ is an isometry, i.e., $\left\|T_{x} f\right\|=\|f\|$ for all $x \in X^{*}, f \in \widetilde{\mathscr{F}}$.
(6) The subspace $\mathscr{F}=\left\{f \in \mathscr{F} \mid f(x+1)=f(x)\right.$ for $\left.x \in X-X^{*}\right\}$ is T-invariant.

Proof. (1) and (2) are obvious from the definition (1.2). (6) is also clear, since

$$
T_{m} f(x+1)-T_{m} f(x)=|m|^{-1}\left(f\left(\frac{x}{m}+1\right)-f\left(\frac{x}{m}\right)\right)
$$

If we prove (3), then (4) will follow, because M is dense in X^{*} (that T is a homomorphism follows from (2) and the denseness of M in X^{*}). (5) will then also follow, since (1) implies

$$
\|f\|=\left\|T_{1 / x}\left(T_{x} f\right)\right\| \leqq\left\|T_{x} f\right\| \leqq\|f\|
$$

So it remains to prove (3).
Let $f: X \rightarrow \Omega_{p}$ be a continuous function bounded by $b:|f(x)|_{p} \leqq b$ for x $\in X$. Choose N_{1} so that
(1.4) $x-y \in d p^{N_{1}} \mathbf{Z}_{p} \Rightarrow|f(x)-f(y)|_{p}<\epsilon$.

Let $m, m^{\prime} \in M$, and suppose that $m^{\prime}=m+k d p^{N}, k>0$. First suppose that m and m^{\prime} are positive. Then

$$
T_{m^{\prime}} f(x)-T_{m} f(x)=A+B+C
$$

where

$$
\begin{aligned}
& A=\left(\frac{1}{m^{\prime}}-\frac{1}{m}\right) \sum f\left(\frac{x+h}{m^{\prime}}\right), \\
& \text { summation over } h \text { as in (1.2) for } T_{m^{\prime}} \text {; } \\
& B=\frac{1}{m} \sum\left(f\left(\frac{x+h}{m^{\prime}}\right)-f\left(\frac{x+h}{m}\right)\right), \\
& \text { summation over } h \text { as in (1.2) for } T_{m^{\prime}} \text {; } \\
& C=\frac{1}{m} \sum f\left(\frac{x+h}{m}\right), \\
& \text { summation over } m \leqq h<M+k d p^{N} .
\end{aligned}
$$

If m and m^{\prime} are both negative, then

$$
T_{m^{\prime}} f(x)-T_{m} f(x)=-A-B+C
$$

and if m is negative and m^{\prime} is positive, then one checks that

$$
T_{m^{\prime}} f(x)-T_{m} f(x)=A+B+C
$$

So it suffices to estimate $|A|_{p},|B|_{p},|C|_{p}$. Clearly, $|A|_{p} \leqq p^{-N} b$. Since

$$
\left|\frac{x+h}{m^{\prime}}-\frac{x+h}{m}\right|_{p} \leqq\left|m^{\prime}-m\right|_{p},
$$

we have $|B|_{p}<\epsilon$ if $N \geqq N_{1}$, by (1.4). Finally, let $N=N_{1}+N_{2}$, and in C divide the sum into sums over all h of the form

$$
a+j k d p^{N_{1}}, \quad j=0, \ldots, p^{N_{2}}-1
$$

That is,

$$
C=\frac{1}{m} \sum_{a=m}^{m+k d p^{N_{1}}-1} S_{a}, \quad \text { where }
$$

$$
S_{a}=\sum_{j=0}^{p^{N_{2}}-1} f\left(\frac{x+a}{m}+\frac{j k d}{m} p^{N_{1}}\right)
$$

Since

$$
\left|f\left(\frac{x+a}{m}+\frac{j k d}{m} p^{N_{1}}\right)-f\left(\frac{x+a}{m}\right)\right|_{p}<\epsilon
$$

for all j by (1.4), we have

$$
\begin{aligned}
& \left|S_{a}\right|_{p} \leqq \epsilon+\left|\sum_{j=0}^{p^{N_{2}}-1} f\left(\frac{x+a}{m}\right)\right|_{p} \\
& =\epsilon+\left|p^{N} f\left(\frac{x+a}{m}\right)\right|_{p} \leqq \epsilon+p^{-N_{2}} b
\end{aligned}
$$

Hence also

$$
|C|_{p} \leqq \epsilon+p^{-N_{2}} b
$$

This completes the proof of the theorem.
3. Eigen-spaces for the distribution operator. Let X be as in Section 2. We have a natural projection $\pi: X \rightarrow \mathbf{Z}_{p}$ defined by:

$$
\pi\left(a+d p^{N} \mathbf{Z}_{p}\right)=a+p^{N} \mathbf{Z}_{p} \quad \text { ("forget mod } d \text { information") }
$$

We shall always consider functions on \mathbf{Z}_{p} to be functions on X by means of this projection. We also have two maps $\omega: X \rightarrow \mathbf{Z}_{p}$ and $<>: X \rightarrow \mathbf{Z}_{p}$ given by

$$
\omega(x)=\lim \pi(x)^{p^{N}}
$$

(i.e., the Teichmüller representative of $\pi(x))$ and

$$
<x>=\pi(x) \omega^{-1}(x)
$$

(where we take $\omega^{-1}(x)=0$ if $\omega(x)=0$).
Fix a topological generator γ for $1+p \mathbf{Z}_{p}=\gamma^{\mathbf{Z}_{p}}$. The correspondence between quasicharacters $\chi \in X^{*}$ and pairs $\left(\chi_{0}, t\right)$ (where χ_{0} is a character of $\left.(\mathbf{Z} / d \mathbf{Z})^{*}, t \in \Omega_{p},|t-1|_{p}<1\right)$ is as follows:

$$
\chi(x)=\chi_{0}(x \bmod d) t^{\alpha} \quad \text { if }<x>=\gamma^{\alpha}
$$

If t is within the disc of radius $p^{-1 /(p-1)}$ around 1 , then we can write $t=$ γ^{s} for some $s,|s|_{p}<p^{(p-2) /(p-1)}$, and in that case

$$
\chi(x)=\chi_{0}(x \bmod d)<x>^{s}
$$

Definition. Let $\chi \in \dot{X}^{*}, x \in X$. If χ is not locally constant (i.e., the parameter t is not a root of unity), then the p-adic partial L-function is defined to be

$$
\begin{align*}
f_{\chi}(x) & =\lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{0 \leqq j<d p^{N}} \chi(x+j) \tag{3.1}\\
& =\lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{\substack{0 \leqq j<d p^{N} \\
x+j \in X^{*}}} \chi_{0}(x+j) t\left(\frac{\log _{p}(x+j)}{\log _{p} \gamma}\right)
\end{align*}
$$

(here $\log _{p}$ is the Iwasawa p-adic logarithm, see [3], p. 36-40 or [5], p. 17-18, which we regard as a function on X^{*} via the projection $\pi: X \rightarrow \mathbf{Z}_{p}$). For example, if χ is of the form $\chi_{0}<>^{s}$, then

$$
\begin{equation*}
f_{\chi}(x)=f_{\chi_{0}}(x, s)=\lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{0 \leqq j<d p^{N}} \chi_{0}(x+j)<x+j>^{s} \tag{3.2}
\end{equation*}
$$

If χ is locally constant but not the trivial character, then we define

$$
\begin{equation*}
f_{\chi}(x)=\lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{0 \leqq j<d p^{N}} \chi(x+j) \log _{p}(x+j) \tag{3.3}
\end{equation*}
$$

Finally, if χ is the trivial character (i.e., the characteristic function of X^{*}), then we set

$$
f_{\chi_{\text {triv }}}(x)=1
$$

Lemma. In all cases the limit $f_{\chi}(x)$ exists and is locally analytic in x and t (or in s for χ of the form $\chi_{0}<>^{s}$).

The proof is routine (see [1] or [5], p. 48). For every χ we also have $f_{\chi} \in$ \mathscr{F}, since $f_{\chi}(x+1)=f_{\chi}(x) \quad$ if $x \in X-X^{*}$.

For trivial χ_{0} the function $f_{\chi_{0}}(x, s)$ is essentially the p-adic partial zeta-function (see, e.g., [9], p. 148). On the other hand, for arbitrary χ_{0} but $x=0$ we obtain the Kubota-Leopoldt-Iwasawa p-adic Dirichlet L-function ([7], [3]).

Note that in the definition of $f_{\chi}(x)$, we can replace $d p^{N}$ by $m d p^{N}$ for any $m=1,2, \ldots$.

We easily compute that for $m \in X^{*}$ a positive integer and χ not locally constant,

$$
\begin{aligned}
T_{m} f_{\chi}(x) & =\lim _{N \rightarrow \infty} \frac{1}{m d p^{N}} \sum_{0 \leqq j<d p^{N}} \sum_{h=0}^{m-1} \chi\left(\frac{x+h}{m}+j\right) \\
& =\chi^{-1}(m) \lim _{N \rightarrow \infty} \frac{1}{m d p^{N}} \sum_{0 \leqq j<m d p^{N}} \chi(x+j) \\
& =\chi^{-1}(m) f_{\chi}(x) .
\end{aligned}
$$

By continuity,

$$
T_{a} f_{\chi}=\chi^{-1}(a) f_{\chi} \quad \text { for all } a \in X^{*}
$$

A similar computation gives

$$
T_{a} f_{\chi}=\chi^{-1}(a) f_{\chi}
$$

for χ locally constant and nontrivial (here one uses the fact that the sum of $\chi(x+j)$ over $0 \leqq j<d p^{N}$ is zero for N large). Finally, we obviously have

$$
T_{a} 1=1=\chi_{\text {triv }}^{-1}(a) \cdot 1
$$

Theorem 2. The subspace of $\mathscr{F}=\left\{\right.$ continuous $f: X \rightarrow \Omega_{p}$ such that $f(x+1)=f(x)$ for $\left.x \in X-X^{*}\right\}$ on which T acts by χ^{-1} is one-dimensional and is spanned by f_{χ}.

Proof. We just saw that $T_{a} f=\chi^{-1}(a) f, a \in X^{*}$. We must show uniqueness. In the process we shall see how to arrive at the definition of f_{χ} starting from the distribution identity.

Let $f: X \rightarrow \Omega_{p}$ be any continuous function such that $T_{a} f=\chi^{-1}(a) f$ and
(3.4) $f(x+1)=f(x)$ for $x \in X-X^{*}$.

Define a continuous function $g: X \rightarrow \Omega_{p}$ by setting

$$
\begin{equation*}
g(x)=x \chi^{-1}(x)(f(x+1)-f(x)), \quad x \in X \tag{3.5}
\end{equation*}
$$

(characters $\chi \in \dot{X}^{*}$ are always assumed to extend by 0 to $X-X^{*}$). Then for $m \in X^{*}$ a positive integer,

$$
\begin{aligned}
g(x) & =x \chi^{-1}(x)\left(\chi(m) T_{m} f(x+1)-\chi(m) T_{m} f(x)\right) \\
& =\frac{x}{m} \chi^{-1}\left(\frac{x}{m}\right)\left(\sum_{h=0}^{m-1} f\left(\frac{x+1+h}{m}\right)-\sum_{h=0}^{m-1} f\left(\frac{x+h}{m}\right)\right) \\
& =g(x / m)
\end{aligned}
$$

Since the m are dense in X^{*}, this means that $g(x)$ is constant on X^{*}. By (3.4), $g(x)=0$ on $X-X^{*}$. Then by (3.5) we have

$$
\begin{equation*}
f(x+1)-f(x)=\mathrm{const} \frac{\chi(x)}{x} \quad \text { for } x \in X \tag{3.6}
\end{equation*}
$$

First suppose that χ is not locally constant. If χ corresponds to the pair $\left(\chi_{0}, t\right)$, i.e.,

$$
\chi(x)=\chi_{0}(x) t^{\log _{p}<x>/ \log _{p} \gamma}
$$

then taking $d / d x$ gives $\left(x \in X^{*}\right)$

$$
\begin{aligned}
\chi^{\prime}(x) & =\lim _{\epsilon \rightarrow 0} \chi_{0}(x) \frac{1}{\epsilon}\left(t^{\log _{p}<x+\epsilon>/ \log _{p} \gamma}-t^{\log _{p}<x>/ \log _{p} \gamma}\right) \\
& =\chi_{0}(x) \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} t^{\log _{p}<x>/ \log _{p} \gamma}\left(t^{\log _{p}(1+\epsilon / x) / \log _{p} \gamma}-1\right) \\
& =\chi(x) \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(t^{\epsilon / x \log _{p} \gamma}-1\right) \\
& =\frac{\log _{p} t}{\log _{p} \gamma} \frac{\chi(x)}{x}
\end{aligned}
$$

Since t is not a root of unity, $\log _{p} t \neq 0$. Hence, multiplying f by a suitable constant, we may assume that

$$
\begin{equation*}
f(x+1)-f(x)=\chi^{\prime}(x) \tag{3.7}
\end{equation*}
$$

Now in [1] Diamond shows how to construct a function f with this' property, namely, one gets precisely the function f_{χ} in (3.1). f is uniquely determined by (3.7) up to an additive constant, because

$$
f(m)=f(0)+\sum_{0 \leqq i<m} f(i+1)-f(i)
$$

and the positive integers are dense in X. But if we had $f(x)=f_{\chi}(x)+C$, then since both f and f_{χ} transform by χ^{-1} under T, so would C. But $T_{a} C=C$; hence, $C=0$.

Now suppose that χ is locally constant and nontrivial. By (3.6), we have

$$
f(x+1)-f(x)=\frac{d}{d x} \text { const } \chi(x) \log _{p} x
$$

Then the same argument as before shows us that f is a constant multiple
of (3.3). Finally, if $\chi=\chi_{\text {triv }}$, then we similarly find that f is of the form

$$
a+b \lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{\substack{0 \leqq j<d p^{N} \\ x+j \in X^{*}}} \log _{p}(x+j)
$$

where a and b are constants. Constant functions transform by $\chi_{\text {triv }}$ under T, but the second function does not; hence, $b=0$.

This concludes the proof of Theorem 2.
Remarks. 1. If one removes the condition (3.4), one can obtain more eigen-functions of the form (3.1) by extending χ in different ways (not necessarily by 0) to the multiplicative cosets of X^{*} in $X-X^{*}$. Namely, if $a X^{*} \subset X-X^{*}$ is such a coset and c is a constant, one can extend χ to $a X^{*}$ by setting

$$
\chi(a x)=c \chi(x) \quad \text { for } x \in X^{*}
$$

Then (3.1) still is a χ^{-1}-eigen-function of T.
2. To check that a function is a χ^{-1}-eigen-function it suffices to verify the identity

$$
f(x)=\chi(m) T_{m} f(x)
$$

for a set of integers m which generate a dense subset of X^{*}, i.e., it suffices if the m generate $(\mathbf{Z} / d p \mathbf{Z})^{*}$.
4. Examples. 1. The p-adic gamma-function $\Gamma_{p}: \mathbf{Z}_{p} \rightarrow \mathbf{Z}_{p}$ (see [13], or [5], p. 40-42) satisfies the Gauss multiplication formula ([5], p. 42):
(4.1) $\Gamma_{p}(x)=\frac{h=0}{\prod_{h=1}^{m-1} \Gamma_{p}\left(\frac{h}{m}\right)} m^{x_{0}-1}\left(m^{(p-1)}\right)^{x_{1}}$,
where x is written as $x=x_{0}+p x_{1}, x \in\{1,2, \ldots, p\}$. Taking the logarithm and then the second derivative gives (here we denote $\psi_{p}(x)=$ $\left.d / d x \log _{p} \Gamma_{p}(x)\right)$

$$
\psi_{p}^{\prime}(x)=\frac{1}{m} T_{m} \psi_{p}^{\prime}(x)
$$

If we apply Theorem 2 with $X=\mathbf{Z}_{p}$ and $\chi(x)=1 / x$, we find that
$\psi_{p}^{\prime}(x)$ is a multiple of

$$
\lim _{N \rightarrow \infty} p^{-N} \sum_{\substack{0 \leqq j<p^{N} \\ p \nmid x+j}} \frac{1}{x+j} .
$$

In fact, Γ_{p} is related to Diamond's function ([1])
(4.2) $G_{p}(x)=\lim _{N \rightarrow \infty} p^{-N} \sum_{0 \leqq j<p^{N}}(x+j)\left(\log _{p}(x+j)-1\right), \quad x \in \mathbf{Z}_{p}$, by the equality (see [5], p. 49)
(4.3) $\log _{p} \Gamma_{p}(x)=\sum_{\substack{0 \leqq i<p, p \nmid x+i}} G_{p}\left(\frac{x+i}{p}\right)$,
which, if we differentiate twice, gives

$$
\begin{aligned}
\psi_{p}^{\prime}(x) & =\frac{1}{p^{2}} \lim _{N \rightarrow \infty} p^{-N} \sum_{\substack{i+p j=0 \\
p \nmid x+i}}^{p^{N+1}-1} \frac{1}{x+i}+j \\
& =\lim _{N \rightarrow \infty} p^{-N} \sum_{\substack{0 \leqq j<p^{N} \\
p \nmid x+j}} \frac{1}{x+j} .
\end{aligned}
$$

2. If χ_{0} is a nontrivial character of $\left(\mathbf{Z} / d_{0} \mathbf{Z}\right)^{*}$, one can define the twisted ψ_{p}-function on $X=\underset{\leftarrow}{\lim }\left(\mathbf{Z} / d_{0} p^{N} \mathbf{Z}\right)$ as

$$
\begin{aligned}
\psi_{p, \chi_{0}}(x) & =\frac{d}{d x} \sum_{0 \leqq i<d_{0}} \chi_{0}(x+i) \log _{p} \Gamma_{p}\left(\frac{X+i}{d_{0}}\right) \\
& =\frac{1}{d_{0}} \sum_{0 \leqq i<d_{0}} \chi_{0}(x+i) \psi_{p}\left(\frac{x+i}{d_{0}}\right) .
\end{aligned}
$$

(Recall that a function on \mathbf{Z}_{p}, such as Γ_{p}, is regarded as a function on X via the projection $\pi: X \rightarrow \mathbf{Z}_{p}$.) We have

$$
T_{m} \psi_{p, \chi_{n}}(x)=\frac{d}{d x} \sum_{\substack{0 \leqq i<d_{0} \\ 0 \leqq h<m}} \chi_{0}\left(\frac{x+h+i m}{m}\right) \log _{p} \Gamma_{p}\left(\frac{x+h+i m}{m d_{0}}\right)
$$

$$
=\chi_{0}^{-1}(m) \frac{d}{d x} \sum_{0 \leqq j<d_{0}} \chi_{0}(x+j) \sum_{0 \leqq k<m} \log _{p} \Gamma_{p}\left(\frac{x+j}{m d_{0}}+\frac{k}{m}\right)
$$

(letting $\left.h+i m=j+k d_{0}\right)$

$$
=\chi_{0}^{-1}(m) \frac{d}{d x} \sum_{0 \leqq j<d_{0}} \chi_{0}(x+j) \log _{p} \Gamma_{p}\left(\frac{x+j}{d_{0}}\right)
$$

(using (4.1) together with the vanishing of $\Sigma \chi_{0}(i)$ for χ_{0} nontrivial)

$$
=\chi_{0}^{-1}(m) \psi_{p, \chi_{0}}(x)
$$

Hence, $\psi_{p, \chi_{0}}$ is in the χ_{0}^{-1}-eigen-space of T. And in fact, using (4.2) and (4.3), we see that (regarding χ_{0} modulo d, where $d=d_{0} p$ or $4 d_{0}$, so that now $\left.\chi_{0}(p)=0\right)$:

$$
\begin{aligned}
\psi_{p, \chi_{0}}(x) & =\frac{d}{d x} \sum_{0 \leqq i<d} \chi_{0}(x+i) G_{p}\left(\frac{x+i}{d}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{0 \leqq j<d p^{N}} \chi_{0}(x+j) \log _{p}(x+j)
\end{aligned}
$$

3. The successive derivatives of these two examples give further eigen-functions of T. For example, for $k=2,3, \ldots$

$$
\begin{align*}
\psi_{p, \chi_{0}}^{(k-1)}(x) & =\frac{d^{k}}{d x^{k}} \sum_{0 \leqq i<d_{0}} \chi_{0}(x+i) \log _{p} \Gamma_{p}\left(\frac{x+i}{d_{0}}\right) \\
& =(-1)^{k}(k-2)!\lim _{N \rightarrow \infty} \frac{1}{d p^{N}} \sum_{0 \leqq j<d p^{N}} \frac{\chi_{0}(x+j)}{(x+j)^{k-1}} \\
& =(-1)^{k}(k-2)!f_{\chi_{0} \omega^{1} k}(x, 1-k) \tag{4.4}
\end{align*}
$$

in the notation of (3.2).
4. If we evaluate the function $f_{\chi_{0}}(x, s)$ in (3.2) at $x=0$, we obtain the Kubota-Leopoldt p-adic L-function $-s L_{p}\left(1-s, \chi_{0}\right)$ (see $\S 3$ of [3], or [5], p. 47-48). Setting $s=1-k$ and comparing with (4.4), we find that

$$
\begin{aligned}
L_{p}\left(k, \chi_{0} \omega^{1-k}\right) & =\frac{1}{k-1} f_{\chi_{0} \omega^{1} k}(0,1-k) \\
& =\frac{(-1)^{k}}{(k-1)!} \psi_{p, \chi_{0}}^{(k-1)}(0)
\end{aligned}
$$

which is a familiar expression ([2], [4]) for the value of L-functions at positive integers.

Question. Is there a simple characterization of functions in \mathscr{F} which can be expressed as sums or integrals of f_{χ} ? For example, let μ be a measure on a compact subset of \tilde{X}^{*}, such as $\chi \cdot<>\mathbf{Z}_{p}$ for a fixed χ. That is, μ is a bounded, finitely additive Ω_{p}-valued function on compact-open subsets. Then consider the function

$$
g(x)=\int f_{\chi} \cdot<^{s}(x) d \mu(s)
$$

The distribution operators $T_{a}, a \in X^{*}$, act as follows:

$$
T_{a} g(x)=\chi^{-1}(a) \int<a>^{-s} f_{\chi} \cdot<>^{s}(x) d \mu(s)
$$

Alternately, since $f_{\chi} \cdot<>^{s}(x)$ is locally analytic in s, we can relax the requirement that μ be bounded, and consider Manin-Visik's boundedly increasing [10] and h-admissible [14] measures, i.e., μ for which

$$
p^{-h N}\left|\mu\left(a+p^{N} \mathbf{Z}_{p}\right)\right|_{p} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

Perhaps, the properties of the transform $g(x)$ can be characterized in terms of μ and the compact domain of integration in \tilde{X}^{*}, as Višik has done for the p-adic Stieltjes transform (see [15], or Appendix to [5]).

References

1. J. Diamond, The p-adic log gamma function and p-adic Euler constants, Trans. A.M.S. 233(1977), 321-337.
2. On the values of p-adic L-functions at positive integers, Acta Arith. 35(1979), 223-237.
3. K. Iwasawa, Lectures on p-adic L-functions (Princeton Univ. Press, 1972).
4. N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46(1979), 455-468.
5. -p-adic analysis: A short course on recent work (Cambridge Univ. Press, 1980).
6. D. Kubert, The universal ordinary distribution, Bull. Soc. Math. France 107(1979), 179-202.
7. T. Kubota and H. W. Leopoldt, Eine p-adische theorie der zetawerte I, J. Reine und angew. Math. 214/215(1964), 328-339.
8. S. Lang, Cyclotomic fields (Springer-Verlag, 1978).
9. - Cyclotomic fields, vol. 2 (Springer-Verlag, 1980).
10. Ju. I. Manin, Periods of cusp forms and p-adic Hecke series, Mat. Sbornik 93(1973), 378-401.
11. B. Mazur, Analyse p-adique, Bourbaki report (unpublished) (1972).
12. J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, preprint.
13. Y. Morita, A p-adic analogue of the Γ-function, J. Fac. Sci. Univ. Tokyo 22(1975), 255-266.
14. M. M. Višik, Non-archimedean measures connected with Dirichlet series, Mat. Sbornik 99(1976), 248-260.
15. -On applications of the Shnirelman integral in non-archimedean analysis, Uspehi Mat. Nauk 34(1979), 223-224.

University of Washington, Seattle, Washington

