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Abstract

Uncertainty principles like Heisenberg's assert an inequality obeyed by some mea-
sure of joint uncertainty associated with a function and its Fourier transform. The
more groups under which that measure is invariant, the more that measure repre-
sents an intrinsic property of the underlying object represented by the given func-
tion. The Fourier transform is imbedded in a continuous group of operators, the
fractional Fourier transforms, but the Heisenberg measure of overall spread turns
out not to be invariant under that group. A new family is developed of measures
that are invariant under the group of fractional Fourier transforms and that obey
associated uncertainty principles. The first member corresponds to Heisenberg's
measure but is generally smaller than his although equal to it in special cases.

1. Introduction

Uncertainty principles assert a reciprocal relation between the spread of a
function / and the spread of its Fourier transform / . The Heisenberg
uncertainty principle or "the Heisenberg-Pauli-Weyl inequality" [3] uses the
standard deviation of |/ |2 as a measure A(/) of the spread of / and the
same measure A(/) for / ; that is, denning

</, g) = (2*)"* [f(x)g(x)dx, Il/U* = (/, f) (1)
JR

and

t),f(s)) (2)
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and taking zero as the centroid of |/ |2 and of | / | 2 ,

2 (3)

In units in which Planck's constant equals 2n , Heisenberg's uncertainty prin-
ciple is:

1/2<A(/)A(/). (4)

Unless both / and / decrease to zero at infinity faster than |;t|~3/'2 , one
of A(/) or A(/) is infinite and then Heisenberg's principle, (4), is uninfor-
mative about the minimum size of the other. Considerable research has been
done to circumvent this limitation on the usefulness of Heisenberg's principle
by generalising to other measures of spread and by relaxing the requirement
that the same measure be used for both / and / .

The theorem of Cowling and Price in [3, 4] and [14] generalises the results
of Heisenberg-Pauli-Weyl, of Hirschman [7], and others. (For a recent bibli-
ography see [9, 15]). A corollary to their theorem is that for 1 < p, q < oo,
if 0, <£ > 0 satisfy 6 > 1/p' and (f> > l/q1 where t1 = 2t/(t - 2) and a
satisfies a(d - \/pl) = (1 - a){<j> - I/?8) then there is K = K{p, q, Q, 4>)
such that for all locally-integrable tempered distributions / ,

\\f\\2<Ka-\\-a)a-l\\\x\ef{x)\\a
p\\\y\4>f(y)\\\-a. ' (5)

Clearly (4) corresponds to the particular case p = q = 2, 6 = <f> = 1 (and

In the context of signal analysis, Pollak and Slepian [13], Landau and
Pollak [8], and others use a measure of energy concentration on an inter-
val rather than of spread. Letting %T be the characteristic function of
the interval [-T, T] they define a2 = 6(T, / ) = IUT-ZII^/II/II^

 a n d s i m-
ilarly fi2 = d(£l, f), the fractions of the signal energy within the time
interval [-T, T] and the frequency interval [-fi, il]. Clearly for all /
0 < a2, p2 < 1. They determine a function y2: R+ -> [0, 1] such that
the possible pairs (a, fi) lie in that subset of [0, I]2 (excluding (0, 1) and
(1,0)) described by

cos'1 (y(ClT)) < cos"1 a + cos"1 fi. (6)

The results (4-6) can all be put in the general form

c(p)<o(p,f), (7)

where p is a vector of parameters and a(p, f) is some p-measure of "over-
all" spread of / , composed from measures of spread both of / and of / .
In each of (4-6) the corresponding a has certain invariance properties: for
example for (4) a is symmetric in / and / but for (5) and (6) it is not; for
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(4) and (5) a is invariant under the normalised dilatation / —> Saf where

(Saf)(t) = \afif(at) (« € K*) but for (6) it is not.
In this paper I examine the invariance of the measure a of overall spread

in the Heisenberg principle, (4), (and so of the generalisations (5)) under
the fractional Fourier transform 9^ that I have recently discussed [11], first
introduced by Condon in 1937 [2] and extended by Bargmann in 1961 [1].
The Lie group of fractional Fourier transforms {^}e e T (where T = K/2^Z,
the circle group) is the natural continuous imbedding into the circle T (in d
dimensions into the rf-torus T^ ) of the cyclic group {^k}k€Z of order 4
formed by the powers of Fourier-Plancherel operator 9~ defined in (2). In
particular ^ = J*", the identity operator, ^ , 2 = 9", &Ln,2 = ^~l and

&~n = &1 = y the parity operator.
In an uncertainty principle of the form (7), the more groups under which

a non-trivial measure a is invariant the more it can be said to measure an
intrinsic property of the object represented by / . For all 9 e T the object
represented by / (that is, by &~Qf) is equally well represented by &~gf, so for
a to represent an intrinsic property of the whole class {^f}eeT, it should
be invariant under the group {^}9GT; that is, a should satisfy

V0eT o(p,?ef) = o{p,f). (8)

I show that the Heisenberg measure, implicit in (4), does not satisfy this
requirement, and introduce a family of measures that do. The first member of
this family reduces to the Heisenberg measure in special cases but is generally
smaller, so the corresponding uncertainty principle not only has the desirable
quality of invariance under ^ but is quantitatively stronger as well.

2. The fractional Fourier transform SFQ and the operators / and

One construction [1, 11] of the fractional Fourier transform ^(6 e T)
is based on the observation that the set of normalised Hermite functions
{^}neN(N = {0 ,1 ,2 ,3 , . . . } ) defined by

hn{t) = (2"-*/!!)-* exv(-t2/2)Hn(t) (1)

(where Hn is the «th Hermite polynomial, defined by Hn(t) = exp
x (t2)(-d/dt)n exp(-f2)) is a complete orthonormal set of eigenfunctions un-
der (1.1) for the Fourier operator f?, satisfying

= e~mitl2K. (2)
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[5] so that if / has the Fourier-Hermite series

Y,KK (3)

its Fourier transform is

and so a "fractional" Fourier transform &~a(a. e K) is naturally denned

that is, writing &a = S^ where B = an/2 (6 e T)

Interchanging the order of integration and summation in (4) (provided 6/n
$ Z) one gets for 0 < |0| < n

(fgf){t) = (Kg(s, t), f(s)) where Kg(s, t) = £eir>ehn(s)hn(t). (5)
/I6N

The series for the kernel K0(s, t) of the integral operator in (5) can be evalu-
ated in closed form by using the generating function for hn and a unitary and
isomorphic mapping between the Hilbert space of entire analytic functions
of a complex variable and L2(R) [1, 11], yielding, eventually, the definition
of 9g for 0 < |0| < 7i as

Lexp - i

I
/R " [ * 2sin0

while for 0 = 0 and n one has Ĵ J = J*" and ^ = -
Denning operators, 31, 3?, f and «/" by

f(s)ds (6)

-<T) and f=f+f- = 2-\-2Sr ~r "* ( ? )

then it is well known [6, 10, 16] that the hn are the eigenfunctions of
and that

A n+1 n mx and fhn = nhn. (8)

It is easy to show that under the inner product (1.1)

, / + * = ^ ~ ; f-*=f+ and f*=f (9)
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where * denotes the adjoint.The operators obey the commutator relations

, - . ̂  , - , \s, - ^1Oj
\-y, f ] = [^,f ] = [Jr,f] = ^(the additive identity)

and so constitute a basis for an irreducible representation of a complex 4-
dimensional Lie algebra.

I have shown [11] that -if is the infinitesimal generator of the Lie group
{^} e € T and so f certainly commutes with ^ (as can also be seen from
(4) and (8)) although f+ and f ~ do not. The following propositions state
some invariance relations involving 2-norms and inner products of {f+)kf
and (f~) f (k e N) that are used to construct ^-invariant measures of
overall spread. (Since throughout this paper I deal only with the 2-norm I
shall drop the subscript "2" from now on.)

PROPOSITION 2.1. ForallkeN \\(f+)kf\\ and\{J~)kf\\ are ^-invariant;
that is to say

V9&T Wif^f&gfW = \\{f+)kf\\ and Wif'f&efW = \\(J"f f\\.
(M)

PROOF. By (9)

so if {f+)k(f )k commutes with &e then (since 9g is unitary) \{f )k f\\
is ^-invariant. From the commutation relations (10) one can show (by
induction) that

{S+)kiS~)k =SiS -S)(S -2S)-iS -ik-\)S),
which is a polynomial in / . As f commutes with ^ so does every
polynomial in f and therefore so does {f+) {f~)k . This completes the
proof that \\(f~)kf\\ is ^-invariant. The ^-invariance of \\if+)kf\\ is
proved similarly.

PROPOSITION 2.2. For all k e N
k i 2 k e + k k (12)

PROOF. Let / = E n e N / .* . where /„ = (hn, f) so ̂ f = E n e N e~inefnhn

(as in (4)) and so, by (8),
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and

m€N Vs=l /

Using the last two results and the orthonormality of {hn} one gets

7 i , m

that is

E ~fnfn+2k n >/(»i)(»+2*+1 - /).
(13)

Putting 0 = 0 and using 9^ = J in (13):
k

n€N /=1

Using the last result on the right-hand side of (13) gives (12) as required.

COROLLARY. \{(af
+)kf, {f~ff)\ is ^-invariant.

3. The Heisenberg measure of spread

Denote by oH{f) the square of the measure of overall spread of / ap-
pearing on the right-hand side of (1.4); that is

aH(f) = A2(f)A2(f). (1)

Using the operators 8? and 21 denned in Section 2 then

A2(/) = ll/lfV/ll2 - i2 where / = \\f\\~1 & f. f),

the (real) centroid of | / | 2 , and A2(/) = \\}\\~2Wf\? ~ ^ w h e r e <*> =
\\f\\~2(M^f, j), the (real) centroid of | / | 2 . By a familiar device one can
always transform / and / to a transform pair having an equal pair of values
of A2 but with their centroids both at zero; so I suppose for convenience and
with no loss of generality that that has already been done, so

A2m = ii/ir V / I I 2 (2)
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and by the unitarity of 9~ and the fundamental result &2l = \

A2(/) =

From (2.7) 8? and 2! can be written in terms of f* as

j r = 2 -* ( -^ + -J-) and 2S = 2^{f+ -

from which one can show

and

W/t = 1~\UVi + \\f~/t + 2<R(f+/, /-/)} (4)

\\2>ft = 2-l{U+ff + \\f~f\f - 2*<^+/, J-f)}. (5)

PROPOSITION 3.1. The sum of the variances, A2(f) + A2( / ) , of the energy
densities of a function and its Fourier transform is ^-invariant.

PROOF. Adding (4) and (5) and using (2) and (3) one gets

A2(/) + A2(/) = ||/ir2(||^+/l|2 + Wf'fW2). (6)

Proposition 2.1 shows that the right-hand side of (6) is ^-invariant and the
result then follows.

PROPOSITION 3.2. The Heisenberg measure of spread of f, oH{f), is not in-
variant under the fractional Fourier transform ^ but depends on 6 according
to the formula:

\ 2(/) + A2(/)]2 - [2||/ir2^-i2V+/, f~f)f). (7)

PROOF. Multiply (4) and (5) together and use (l)-(3) and (6) to get

"*(/) = \ {[A2(/) + A2(/)]2 - [2||/ir2fH(^+/> ^~/>]2} , (8)

then use Propositions 2.1, 2.2 and 3.1 to get the result (7).

4. ^-invariant measures of spread and their
uncertainty principles

Looking at the Heisenberg measure aH in the form (3.8) in the light of the
results of Propositions 3.2, 2.1, 2.2 and its corollary leads one to construct
modified and generalised " k th-order measures of overall spread", ak .
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DEFINITION 4.1. The k th-order measures of overall spread of / and / are
the functions ak{f) (k = 1, 2, . . . ) where

(1)
From Proposition 2.1 and the Corollary to Proposition 2.2 one can see im-
mediately that the ak are J^J-invariant.

THEOREM 4.1. For all f the k-measures of its overall spread satisfy the un-
certainty principles

<rk(f) > Oi/ifflicOVii2 - IICOVII2}2. (2)
PROOF. Use the Cauchy-Schwarz-Bunyakovski inequality on the inner-
product term in (1).

To justify the inequalities (2) being called "uncertainty principles" one
needs to see that they include a recognisable example as a special case.

THE CASE k = 1. Equations (3.2)—(3.5) give

\\ff22<K(J-+f, f-f) = A2(/) - A2(/) (3)
and an elementary calculation gives

\\ff223{^+f, f'f) = 2||/ir2(<r/, /^arg f). (4)
Using these, (3.1) and (3.6) in the definition (1) with k = 1 gives

where v{f) is the real number defined by

so the first-order ^-invariant measure of overall spread is the Heisenberg
measure aH less a nonnegative quantity v2 that is zero only in special cases
(for example, if / has constant argument).

A simple calculation and an integration by parts shows that ||«/^+/||2 —
IL/"/ l | 2 = ll/ll2 so for k = 1 the inequality (2) becomes

ax{f) = oH(f) - v2{f) > 1/4. (7)

One can show by the usual argument that equality holds in (7) if and only if
f(x) = a exp(-bx2 + ex) where a, b, c G C and 5RZ> > 0.

The inequality (7) is superior to the corresponding Heisenberg one (<JH(f)
> 1/4) for the quantitative reason that it is stronger, in the sense that for all
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f> ff#(/) ^ a\(f) ^ I / 4 a n d f° r s o m e / ff#(/) > a\(f)> an<*> but more sig-
nificantly, for the qualitative reason that the measure a{ (/) is ^-invariant
and so measures a more intrinsic property of the "signal" represented both
by / and / than does aH.

REMARK 4.1. The familiar Weyl derivation of the Heisenberg inequality (as
in [5], p. 119, for example) has as its key step the application of the Cauchy-
Schwarz-Bunyakovski inequality to the inner product {%?f, 21 f):

that is, using \\&f\\2 = Wft and multiplying throughout by

(9)
The first of the two terms on the right integrates to yield the constant 1/4
and the second is the v2(f) of equation (5) and which is tacitly jettisoned
in the usual next step of using \<f>\2 > (9t̂ >)2 . The inequality (7), referred to
as "stronger" than Heisenberg's, could therefore have been derived directly
from (9), however there are an infinite number of valid inequalities that
can be derived from a valid inequality. One could correctly conclude, for
example, that for all / , oH{f) — \v2{f) > \ , but the left-hand side of this
inequality is not ^-invariant and so does not represent an intrinsic property
as well as ax.

The purpose of this paper is not merely to generate valid inequalities but
to construct valid inequalities between measures that are ^-invariant and so
state something intrinsic about the underlying signal, rather than something
contingent on its particular representation. The construction of explicitly &~g-
invariant measures ak has led for k = 1 to an inequality that requires, in
effect, the restoration and rearrangement of a dropped term in the familiarly
derived inequality. That familiar derivation understandably gives no clue
as to how the inequality (9) should be rearranged or manipulated so as to
state an inequality obeyed by an ^-invariant quantity. Moreover attempt-
ing something similar in a higher-order case fails: there is no rearrangement
of the terms that result from applying the Cauchy-Schwarz-Bunyakovski in-
equality to {^2f,2J2f) that will yield an ^-invariant measure.

REMARK 4.2. The function u(f) has been defined by (6) under the conve-
nient assumptions that

t = \\f\\2(^f,f)=0 and cb = \\f\\-2(^f,f) = 0.
It is easy to show that in the general case the appropriate definition is

\ 3f)-icb. (10)
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From this it is easy to show that v(f) = —v(f).

REMARK 4.3. Denning translation and modulation operators Ta and Ma by
Tj(t) = f(t - a) and Maf(t) = exp(iat)f(t) (a e R) it is easy to see or to
show that both aH and ax are invariant under the groups {5a}aeR., {Ta}a€R

and {Ma}a e 8.

REMARK 4.4. Denning "chirp" operators Cb by

Cbf[t) = exp(i^2/2)/(0 (be*) (11)

it is easy to show that CT, is invariant under the group {Cb}beR but that aH

is not and in fact

M<V) = V / ) + A2(f)[2bu(f) + b2A2(f)] (12)

and so

mmaH(Cbf) = aH{Cb.f) = *,(/) where b* = -u{f)/A2(f). (13)

REMARK 4.5. I have shown elsewhere [12] that the energy density ^
of the fractional Fourier transform of / (regarded as a function in polar
coordinates (r, 6) on the plane) is the Radon transform of WAt, co), the
Wigner distribution of / . Let M, be the central moment of inertia tensor
of the normalised Wf. Its two invariants under rotation of coordinates are
tr Mf and det Mf and it is not hard to show that tr Mf = A2(f) + A2(J)
(see Proposition 3.1) and that det Mj- = ox(f). Multiplication of / by Cb

alters the inertia tensor of its Wigner distribution, rotating its principal axes
and changing its trace but leaving its determinant, er,, unchanged. The trace
is minimised by the same b that minimises A2(Cbf) and oH{Cbf), that is
the b* of (13).

EXAMPLE. Take f(t) = exp(icr4 - t212) (c € K). One finds A2(/) = 1/2
(as for h0), A2(j) = 1/2 + 30c2 and v{f) = 3c so oH(f) = 1/4+ 15c2

and cr,(/) = 1/4 + 6c2 < oH{f). Following Remark 4.4 one notices that
multiplying / by the operator C*b where b* = -v(f)/A2(f) = -6c will
result in a function whose Heisenberg measure of spread is now reduced to
ax{P), the ^-invariant and Cb-invariant measure of the original / :

tT//[exp(-3ir2)/(0] = <x,[/(0] = 1/4 + 6c2,

a reduction of 9c2 .
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5. Conclusion

The construction I have given of a family of measures ak of overall spread
that (unlike the Heisenberg measure aH) are invariant under the group {^}
of fractional Fourier transforms has turned out in the case k = 1 to lead
to a measure also invariant under the group {Cb} of chirp operators and to
an inequality that is stronger than Heisenberg's, ox being generally smaller
than aH but having the same sharp lower bound. Unfortunately for k > 2
the ok (like some other measures mentioned in Section 1) are not invariant
under the group {Sa} of normalised dilatations. The ak share a common
weakness with aH : they are infinite unless / and / decay fairly rapidly at
infinity. Perhaps an extension of the concept of ^-invariance to the ideas
in the results of Hirschman, of Cowling and Price and of Landau, Pollak and
Slepian will be successful in eliminating or reducing this weakness.

One of the Landau-Pollak-Slepian theorems relates to the asymptotic di-
mension of a class of signals that is "almost" band-limited and duration-
limited, that is for which

I l / - X r / H 2 < e and | | / - Xn/||2 < e, as O r -> oo.
I conjecture that using an ^-invariant definition of the class of signals to be
considered (for example S{A, e) = {/|min{£} I I ^ - ^ ^ ^ / I I R 2 < c ) where
Wj- is the Wigner distribution of / and XEIA) *S t n e characteristic function
on K2 of the ellipse of area A) would be more appropriate and will lead to
useful and interesting results.
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