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1. Introduction

Zemanian [17] obtained abelian theorems for the Hankel and /^-transforms of
functions and then extended his results to the corresponding transforms of distributions
in the sense of Schwartz [11]. Jones [6] has discussed at length asymptotic behaviours
of transforms generalized in his sense. Following the technique of Zemanian many
authors have obtained abelian theorems for more general transforms of functions and
distributions in the sense of Schwartz. Mention may be made of the works of Joshi and
Saxena [7], Lavoine and Misra [8] and Pathak [10]. However, these authors were
confined to the transforms of real variables only.

Carmichael and Milton [2] obtained abelian theorems for the distributional Stieltjes
transform when the variable s of the transform was complex. They allowed \s\ to tend to
zero or to infinity staying in the wedge domain {s:|s2|^/Csj; s = s, + is2, st ^0}. They also
used Lojasiewicz's definition of limits of a distribution and thus extended the work of
Lavoine and Misra [8]. Takaci [13] applied the idea of quasi-asymptotic behaviour of
distributions due to Drozzinov and Zav'jalov [4] and extended the work of Lavoine
and Misra based on the notion of equivalence at infinity. Some general results on
asymptotic behaviours of H-transforms using quasi-asymptotic behaviours have recently
been obtained by Carmichael and Pathak [3].

There exists a class of integral transforms in which integration is performed with
respect to a parameter (sometimes order of the kernel) instead of the argument-variable.
The well-known examples are Kontorovich-Lebedev and Mehler-Fock transforms and
their generalization due to Wimp [15]. Asymptotic behaviours of all these transforms
have not been much discussed. The work of Wong [16] on asymptotic expansion of the
Kontorovich-Lebedev transform is worth a mention here. The aim of the present paper
is to investigate asymptotic behaviours of a generalization of the Wimp transform which
incorporates all the aforesaid and some other transforms as its special cases [15].

In this paper we define the generalized Wimp transform (W-transform) of functions in
the complex domain, and obtain initial and final value theorems for the transform when
the transform variable seC approaches zero (or infinity) in a wedge. We define the W-
transform of a large class of distributions. Following Stankovic [12] we introduce the
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232 R. S. PATHAK AND S. K. MISHRA

idea of quasi-asymptotic behaviours (q.a.b.) of our ^-transformable generalized func-
tions and obtain initial and final value theorems for the W-transform of distributions.

2. The ^-Function

The Meijer's G-function is defined by the Mellin-Barnes contour integral

n r(fe,-5)nni-a,+s)
G-;(z|?;::::;?|)=G-;(zfe)=— j - p ^ — ?ds (2.1)

L El m-bj+s) II naj-s)
j = m+ 1 j = n+I

where the empty product is interpreted as unity. In (2.1) 0^/ngq, O^n^p and the path
L runs from —100 to ioo so that the poles of T(bj—s), j=l,...,m, are to the right and
all the poles of F(l— aj—s), j=\,...,n are to the left of L. Here ajt b} and z (#0) are
complex numbers. For convergence of the integral in (2.1) we need p + q<2(m + n) and
|argz|<(m + n—jp-jq)n. For various properties of the G-function refer to [9].

The kernel of our transformation is

( i 1 , " v + S l 1 ~v~s>ap) (2-2)

where z = zl + iz2, v = v1 + iv2 and s = sl + is2 are complex numbers. We shall use the
following notation:

c = minRebj, j=l,2,...,m (2.3)

d = max(Reaj—l,-v1), j=\,2,...,n

b = max.(d, —1).

Certain restrictions on the parameters of the G-function are required for the validity of
our results. These are called (A) and (B), see [9, p. 178].

Let l g

(A) l-v±s-bhftl,2,3,...,aj-^#1,2,3,... for j= 1,2,....p; h= 1,2,....g.
(B) l - v ± s - a r # 0 , ±1 , ±2, . . . ; aj-a,*0, ±1, ±2,... for y = l,2...,p; h =

Q, ± 1, ±2.
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Lemma 2.1. Let

(1) s = Si + is2 be an element of the strip Q = {seC: — vl—c<s1<v1 + min(c,d)};

(2) 0^m<Lq, O^n^p, p + q^2(m + n+l), p + 2<q;

(3) \argz\^pn,

Then

\G(z,s)\^A\z\c r(v+bh+s)r(v+bh-s) , for\z\<\, (2.4)

where c = Rebh = minlij<mRebj, and A is independent of z and s; also

\G(z,s)\^B\z\
ak-2)

, for\z\>l, (2.5)

where

d+l=Reak = max Rea} with a o = — v ^ l .
OSjSn

Proof. From Wimp [15, Theorem 2, pp. 34-35] we have

m.n + 2
2

4zx
dx

I — v + s , 1 — v — s,ap\. i (2.6)

valid under the conditions (l}-(3) of the lemma.

Now, replacing the G-function within the integral sign (2.6) by its series representation
[9, (7), p. 145] for |z |<l and by the asymptotic expansion [9, (1), p. 190] for |z |>l one
can derive the estimates (2.4) and (2.5) respectively.

For K ^ 0 , a fixed real number, we define a wedge QK in the upper half plane Cv by

a n d I S J I ^

Lemma 2.2 For complex v, /?, n and seQK, |s|—»oo,

where

(2.7)

Proof. Using the formula [9, 2.2 (2), p. 11] we have
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sin(v->;-s)7r

Next an application of the formula [9, (11), p. 33] gives

r(v+p+s)r(v+p-s)
T(v — t] + s)F( v — r\ — s)

For s e QK this yields the estimate (2.7).

for ^7i-e, e>0.

In the study of the distributional generalized Wimp transform we shall need the
following differentiation formula [9, p. 152].

The following integral is well-known [9, p. 157]:

where

n n-bj-ri) n nflj
j=m+l J=B+1

(2.9)

, - c - 1 <Rer\< - m a x ^ ^ J a , ) , and

3. The generalized Wimp transform of functions

Let s = sl + is2 be a complex variable. Then the generalized Wimp transform F(s) of a
complex valued function f(t), O^Koo, is defined by

]G(t,s)f(t)dt
o

(3.1)

whenever the integral (3.1) is convergent. The transform for s = ix was considered by
Wimp [15]. As far as is known to the author the asymptotic behaviours of the
transform have not been investigated. In what follows we shall obtain abelian theorems
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INTEGRAL TRANSFORMS IN COMPLEX DOMAINS 235

for (3.1) by relating the behaviour of f(t) when t->0 + (infinity) to the behaviour of the
transform F(s) when |s|->oo staying in the wedge QK. We shall assume that the complex
variable s e C " = {s:s = s1 + is2eC, s2>0}.

Our initial value theorem for (3.1) is:

Theorem 3.1. Let n = n1+in2 be a complex number with —1 <c + nl<0, d + n^K — 1.
Let f(t), O^f <oo, be a complex valued function such that (tdf(t)) is absolutely integrable
over (y,oo) for all y>0 and such that (t~nf(i)) is bounded on 0<t^y for all y>0. Let
the generalized Wimp transform F(s) of f(i) exist for all seCu. If there is a complex
number A for which

lim r*f{t) = \ ,

then for each fixed K^.0 with QK<=CUn {s:\s1\<vl—ti1 - 1 } ,

lim (Hv - s - r])r(v + s - nW{r])) ~l F(s) = A

where je(n) is defined by (2.9).

Proof. From (3.1) and (2.9) we have

o

= / , +1 2 (say), where for fixed y > 0,

and

Since |s|->oo, we can use the estimate (2.4) and apply Lemma 2.2 to get
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o

where At is an appropriate positive constant. Thus

' sup |
0<t<y

Now, choose — l-cc + ^ ^ 0 . Then for given e>0 we can choose y small enough such
that |/!|<e/2; fix this y.

Next we use the estimate (2.5) and apply Lemma 2.2 to /2. Then

x B|r(v + ak + s- 1)| |r(v + a k - s - 1)| J ti+t»\Vf{t)-\\dt

111* J td\f(t)-At"'\dt.
y

For d + nl +1 <0, and fixed y>0 as in Iu the last integral is absolutely convergent due
to the hypothesis on f(t). Hence I2 can be made less than e/2 by choosing s2 large
enough. This proves the theorem.

A final value theorem for the transform (3.1) is the following:

Theorem 3.2. Let rj = ri1+iri2 be complex with —l<c + ?;1<0, rf + ̂  + ^ O . Let f(t)
be a complex valued function on 0^t<oo, such that (tcf(t)) is absolutely integrable over
(0,y) for all y>0, and such that (t~nf(t)) is bounded on y^t<oo for all y>0. Let the
generalized Wimp transform F(s) of f(t) exist for all seCu. If there exists a complex
number A for which

\imr"f{t) = A,

then for each fixed K^O with Q K C C ^ O { S ^ S J ^ V ! — nt — 1},

lim (r(v-s
|s | -co
seQjc

where 3^{n) is defined by (2.9).

Proof. Proceeding as in the proof of Theorem 3.1 we have
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INTEGRAL TRANSFORMS IN COMPLEX DOMAINS 237

Since |s|->oo, using the boundedness hypothesis on (t"*/(0) w e c a n w " t e

\l2\^B1s
2
2
id+r»)sup\r''f(t)-A\]td+'»dt.

t>y

Let d + nx +1 <0. Then, for given e>0, we can choose y large enough to make |/2|<e/2;
so fix y. Also,

For — l<c + n1<0, and fixed y>0 as in l2, the last integral is absolutely convergent
due to the hypothesis on f(t). Hence \lt\ can be made less then e/2 by choosing s2 large
enough. This, coupled with the conclusion concerning Iu completes the proof of
Theorem 3.2.

4. The generalized Wimp transform of distributions

Let b and c be defined by (2.3). Then Zemanian's test function space Mcb consists of all
complex valued C°-functions (p on 7 = (0, oo) which satisfy

£,k(4>)= sup |£c b(t)t
k + 1Dk(p(t)\<oo, (4.1)

0<r< co

where £Ctb is a smooth function such that

t~" 2<t<oo.

The topology of Mcb is generated by {fJfLo- Mc,b is a complete countably multi-
normed space. Its dual is denoted by M'cb. For its various properties we refer to [18].

Lemma 4.1. For seQ*: = {seC, — vt— c<s1<vl +min(c,fc)}, G(t,s)eMc+l b+l as a
function of t > 0.

Proof. Using (2.8) we have

Using analogues of the estimates (2.4) and (2.5) we have
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1 f o r 0 < ( S ,

where b = max(rf,-1). Therefore \Jk(t)\ is bunded uniformly for all t by a constant
independent of t for each k = 0,1,2, —

In view of Lemma 4.1 we can define the generalized Wimp transform of veM'c+l b + 1

by

F[v;sl = (v(t),G(t,s)>, seQ*.

Lemma 4.2. Let veM'c+lb+l. F[v;s~] is analytic for seQkn£l* and there is a
constant P which is independent of seQk such that

2*s2vl+2max(c,b) forl<\S\<O0.

Proof. The proof of analyticity can be given in the usual way [18, p. 58]. For the
growth we apply [18, Theorem 1.8-1, p. 18] and get a constant K and a non-negative
integer N such that

\^K max sup |
0<!<oo

k t

on using inequalities (4.3) and (4.4). Here Ax and Bl are positive constants independent
of s. So that for |s|->0 + , F[t>;s] is bounded by a constant independent of s.

Further, for large s 6 Qk n Q*, proceeding as in Lemma 2.2 we can show that

| | l ( V l + c ) *TS2JI + B 2 s | ( V l + 6 ) <TS211

from which we get the required inequality.

5. Quasi-asymptotics and abelian theorems

In this section we define quasi-asymptotic behaviour (q.a.b.) of generalized functions
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in M'c b and obtain abelian theorems for the W-transform of generalized functions in
Me+1,6+1 possessing q.a.b. By M'cb(I) we mean those generalized functions in M'cb

which have support in / = [0, oo).
According to Bojanic and Karamata [1], a function L(x) is a slowly varying function

if L is real valued, positive for x > 0 and measurable on every finite interval [a ,b\
0<a<b<ao, and if

limL(ur)/L(r) = l for each u>0. (5.1)

l — oo

In [1, pp. 3-4] it is proved that for any rj>0

x»L(x)->oo and x-"L(x)->0 (x->oo); (5.2)

sup {r"L(r)}^x"L(x)(x->oo)

°-'-X (5 3)
o) '

Definition 5.1. A generalized function TeM'cb(l) has q.a.b. at infinity of order a if

lim (k*L(k)) ~l T(kt): = y(t) in M'cb, (5.4)

k-oo

and 7 has q.a.b. at zero of order a if

lim (WLtl/kfi-tTikty^yit) in M'Cib (5.5)

provided y(0^0. Then we write

7(0-7(0

in M'c b when t->oo (t-»0 + resp.). If for any a

lim {k*Uk))-lT(kt) = 0 in M'c,b

or,

lim (k°L(l/k))-lT(kt) = 0 in M'Cib,
* - o +

we say that 7 has order — oo as r-+oo (t->0 + resp.) and write

7-0
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240 R. S. PATHAK AND S. K. MISHRA

in M'cb as t->

Following the method of Drozzinov and Zav'jalov [4, p. 330] it can be shown that y
is a homogeneous generalized function of order a. Using the arguments of Gel'fand and
Shilov [5, p. 80] it follows that

y(t) = cfx+l{t), t>0,

where

for a > 0 (5.6)

for agO and a + n>0. (5.7)

Here I(t) is the characteristic function of [0, oo).
Using a standard method [14, p. 273] the following representation of elements of M'c b

can be given. A generalized function TeM'c b is of the form

N

T= £ (-iyDr,{tcb(t)t
r+iDthr(t)) (5.8)

r = O

for some non-negative integer N, where hren°(I), r = 0,l,...,N.
The following theorem gives a characterization of the elements of M'c+lb+1(T)

possessing q.a.b.

Theorem 5.2 Let T be a generalized function belonging to M'c+lb+l(T) such that for
some positive integer N

— *^t v tc+1 ,6+1 \^ /^ *-Hv/> v^*-*/

G(i) is a continuous function having support in [0, oo) and c^O. If T has q.a.b. at infinity
of order a, then there exists a complex constant Q such that

Q. (5.10)

Also, if T has q.a.b. at zero of order a, then there exists a complex constant Q such that

lim (t"~lL(l/t)yl£e+1 b+1(t)G(t) = Q. (5.11)

Conversely, if a + c + n>0, n<\; <x + b + n'<0, n'>l and (5.10) holds then T has q.a.b. at
infinity of order a. And if <x + c + n>0, n<\; <x + b + n'<0, n'>\, (5.11) holds and
Jf |G(r)| dt< oo, then T has q.a.b. at zero of order a.

Proof. Let TeM'c+ l i t +1(/) be of the form (5.9) and have q.a.b. at infinity of order a.
Then by Definition 5.1 there is an element yeM'c+l b + 1 such that
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l i m •
Jfc-00

(5.12)

where <?,</>> is a complex number. Choosing <£(t) = (/(l — t)(l -t)N Vr(iV), we have
4>(OeM<^ifc+1 = {<£eCm(/)/£fc(0)<oo,/c = O,l,...,m} fo rm<AT- l and c^O . Using (5.7)
we have

Thus (k!'-1Uk))-1Cc+l.b+1(k)G{k) tends to

as

because of (5.12) and the choice of <j>(t) above; this proves (5.10)
The proof for the case fc-*0+ is similar.

Now, to prove the converse, assume that G satisfies (5.10). Then for each
4>eMc+ub+l(I),

, 4>(t)>\= \(k*~ '

I tN+lZc+l,t+i(kt)G(kt)DNct>(t)dt
o

tN+li;c+ub+l(kt)G(kt)DN4>(t)dt
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+ J \G(kt)\Cc+l,b+Akt)/Cc+ub+MtN+lCc+i.t+MDN<t>(t)\dt'].

Now, using (4.1), for large k(> 1), we have

f
1/*

/c-c-2J|G(
0

' \u~"' du, (by (5A))

which tends to C1C1(1/(1 — »7) +1/(17' —1)) as fc->-oo for a + c + >;>0, f/<l and
tx + b + ri'<0, r]'>\.

Next for /c->0 + , using (5.11) we have
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[i/fc

J

r i/*
"'C, C J Ld/(fcr))(fctr"VC,+i.»+i(t)^

L o

£,c+Lb+i(u)/£c+i.b+i(u/k)du/k

f (l llk

'CA C[JL(l/(kt))kx-lt°+cdt+ J

+ k-i]\G(u)\u-
b'1/(u/k)-"-ldu\

l /fc

-c-z J u-a~c

1/k

+ k-»-2 J\G(u)\du\

l/fc 00 "I

L(l/fc) J u-2+n'du+k-"-2 j\G(u)\du (by (5.2))
o i J
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which tends to C1CI(l/(l->;)+l/(»;'-l)) as fc->0+ provided that a + c + n>0, n<\;
<x + b + n'<0, n'>l; and $?\G(u)\du<ao.

We shall use Theorem 5.2 in future investigations. However, the following form of
definition of q.a.b. will be used in the sequel.

Definition 5.3. A generalized function T in M'cb(T) has q.a.b. at infinity (at zero) of
order a if the limit

lim k-*T(kt) = y(t), yeM'c_b (5.13)

exists in M'ch provided y(t)^O; if the limit in (5.13) exists we write T(t)~y(t) in M'cb as
t-»oo(0 + ). If for any a.

lim k~'T(kt) = 0

in M'cb, we say that T has order — oo as t->oo(0 + ) and write T ~ 0 in M'cb as
t->oo(6 + ).

Theorem 5.4. Let T be a generalized function belonging to M'c+1 b+l(T) of the form
(5.9). / / T has q.a.b. at oo (at zero) of order a according to the Definition 5.3, then there
exists a complex constant Q such that

lim r' + lCc+ub+1{t)G{t) = Q. (5.14)
i-ao(0 + )

Conversely, if cx + b+ 1 <0 , a + c + l > 0 , and (5.14) holds, with the additional condition

]\G(t)\dt< oo
i

for q.a.b. at zero, then T has q.a.b. at infinity (at zero) of order a in the sense of Definition
5.3.

The proof is similar to that of Theorem 5.2.

The asymptotic behaviour of the generlized Wimp transform of elements
TeM'c+l b+l(T) of the form stated in (5.9) and having q.a.b. according to Definition 5.3
is now obtained by using the fact that such behaviour for T implies (5.14) as given in
Theorem 5.4.

Theorem 5.5. Let TeM'c+l b + l(T) be of the form stated in (5.9) with the additional
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assumption that G(t) is absolutely integrable over (y,co) for all y>0. Let T have q.a.b. at
zero of order a according to Definition 5.3. Let c^O and — c < a + l < — b . For the
constant Q in (5.14) and order N of T in (5.9) we have

lim ( r (v-s -a ) r (v + s -a ) / / 1 ( a ) ) - 1 F[ r ; S ]=( - l ) i V e (5.15)
| s | -oo
seQk

where Qk<=Cun {s:\si\<Vi— a— 1} and

f r(-f l j -a)r(-a)

(5.16)

n r(-^-a) []
j=m+\ j=n+l

Proof. We have

= (-l)N<(c+1,b+1U)tN+1G(t),D?G(t,s)>

A ' ? 3
+ 1 ( t f c . 1

J r v + 5 - 1 - i ' - s - " ) A . (5.17)

By the conclusion (5.14) of Theorem 5.4 there exists a complex constant Q such that as
functions

From the integrability hypothesis on G(t), (tb(ttc+ub+1(t)G(t)) is absolutely integrable on
(y, oo) for all y > 0. Further,

is bounded on 0<t^y for all y > 0 because of (5.14) as t-*0+ and the continuity of
G(t). Recalling that b = max(d, — 1) we can apply the proof of Theorem 3.1 to the
function (fCc+i,b+i(f)G(O) with n = ct and get

|s|-oo
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Hence (5.17) and (5.18) yield (5.15).

Theorem 5.6. Let TeM'c+l b+l(T) be of the form (5.9) and have q.a.b. at infinity of
order a. according to Definition 5.3. Let c^O. Then for the constant Q in (5.14) and order
N of T in (5.9) we have

l im(r (v-s -a ) r (v + s-a)/ /1(a))"1/ r [r ;s]=(-l) J VQ (5.19)
|s|-a.
seQk

where Qk(=CJn {s^s^KVi — a— 1} and Jt\{a.) is given by (5.16).

Proof. As in the proof of Theorem 5.3 we obtain (5.17) in this case. By the
conclusion (5.14) of Theorem 5.4 there exists a complex constant Q such that as
functions

t£c+i,b + i(t)G(t)~Qtx as t - oo .

Further, tc(t(c+ub + l{t)G(t)) is absolutely integrable over (0,y) (for all y>0; and
(t'"{tCc + i,b + i(t)G(t)) is bounded on y^t<cc for all y>0 because of(5.14) for t->oo and
the continuity of G(t). Since b = max(d, — 1), the proof of Theorem 3.2 applied to
{tCc+1,b+i(t)G(t)) with n = a yields (5.19) from the identity (5.17) in a similar way to the
proof of Theorem 5.3. This completes the proof.

Now we give an example of a distribution in M'c+l,fc + 1(/) which possesses q.a.b. at
infinity and at zero.

Let

(5.13)

where I(t) is the characteristic function of [0, co). Now, if

(i) p>\ and b + p — c<a<\, the TeM'c+1 b+l has q.a.b. at infinity of order
a— —b — p according to Definition 5.1 with

and if

(ii) a<\ and c + a — b>p>\, then TeM'c+1 b+l has q.a.b. at zero of order <x =
— c — a with
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