
Bull. Aust. Math. Soc. 90 (2014), 134–140
doi:10.1017/S0004972713001159

REFLEXIVE INDEX OF A FAMILY OF SUBSPACES

W. E. LONGSTAFF

(Received 30 October 2013; accepted 18 November 2013; first published online 2 April 2014)

Abstract

A definition of the reflexive index of a family of (closed) subspaces of a complex, separable Hilbert
space H is given, analogous to one given by D. Zhao for a family of subsets of a set. Following
some observations, some examples are given, including: (a) a subspace lattice on H with precisely
five nontrivial elements with infinite reflexive index; (b) a reflexive subspace lattice on H with infinite
reflexive index; (c) for each positive integer n satisfying dim H ≥ n + 1, a reflexive subspace lattice on H
with reflexive index n. If H is infinite-dimensional and B is an atomic Boolean algebra subspace lattice
on H with n equidimensional atoms and with the property that the vector sum K + L is closed, for every
K, L ∈ B, then B has reflexive index at most n.
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1. Introduction and preliminaries

Throughout this paper H will denote a complex, separable Hilbert space. By
‘subspace’ we will mean ‘closed linear manifold’, and by ‘operator’, ‘bounded linear
transformation’. All scalars will be considered complex. The set of operators on
H is denoted by B(H). If V is a set of vectors, we use 〈V〉 to denote their linear
span. If e, f ∈ H we let e ⊗ f denote the operator of B(H) of rank at most one, acting
according to e ⊗ f (x) = (x|e) f , for all x ∈ H, where (·|·) denotes the inner product on H.
We let C(H) denote the set of subspaces of H. For simplicity, the weak operator
topology on B(H) will be referred to as the weak topology. If {Mλ}λ∈Λ is a family
of subspaces,

⋂
λ∈Λ Mλ denotes their intersection and

∨
λ∈Λ Mλ denotes their closed

linear span. A family L of subspaces of H is called a subspace lattice on H if it
contains (0) and H and it is closed under the formation of arbitrary intersections and
arbitrary closed linear spans (of sets of elements of any cardinality). A subspace lattice
L on a Hilbert space is called commutative if PMPN = PN PM for all M,N ∈ L, where
PK denotes the orthogonal projection with range K ∈ C(H).

If F is a family of subspaces of H, then AlgF = {T ∈ B(H) : T (M) ⊆ M, ∀M ∈ F },
that is, AlgF denotes the set of operators on H having every element of F as an

c© 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 $16.00

134

https://doi.org/10.1017/S0004972713001159 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713001159


[2] Reflexive index of a family of subspaces 135

invariant subspace. Also, if A is a family of operators on H, LatA = {M ∈ C(H) :
T (M) ⊆ M, ∀T ∈ A}, that is, LatA is the set of common invariant subspaces of the
elements ofA. Then LatA is a subspace lattice on H and AlgF is a unital subalgebra
of B(H), for everyA ⊆ B(H), F ⊆ C(H).

For any family of subspaces F of H we have F ⊆ LatAlgF , and for any family
A of operators on H we have A ⊆ AlgLatA. A subspace lattice L on H is called
reflexive if L = LatAlgL. The notion, and notation, are due to Halmos [3, 4]. The
reader interested in reflexive subspace lattices is referred to [5, 6, 8, 10–12, 14–18] for
further reading. If G ⊆ C(H) and B ⊆ B(H) then F ⊆ G implies that AlgG ⊆ AlgF ,
and A ⊆ B implies that LatB ⊆ LatA. It follows that LatAlgLatA = LatA and
AlgLatAlgF = AlgF . So, LatA is a reflexive subspace lattice for any subset
A ⊆ B(H). In fact, a family L ⊆ C(H) is a reflexive subspace lattice on H if and
only if L = LatA for some family of operatorsA ⊆ B(H).

The following definition is analogous to one given in [21] for a family of subsets of
a set.

Definition 1.1. Let F be a family of subspaces of H. The reflexive index κH(F ) of
F is

κH(F ) = inf{|A| :A ⊆ B(H) and LatAlgF = LatA},

where |F | denotes the cardinality of F .

Note that F and LatAlgF always have the same reflexive index and, if L is a
reflexive subspace lattice on H, then κH(L) = inf{|A| :A ⊆ B(H) and L = LatA}.

In the remainder of this paper we frequently use ‘index’ to mean ‘reflexive index’.
An algebra A ⊆ B(H) of operators is called reflexive if A = AlgLatA, or

equivalently, if A = AlgF , for some family of subspaces F ⊆ C(H) (see [19,
Section 9.2]).

If X is a Banach space and if C(X) (respectively, B(X)) denotes the set of closed
linear manifolds of (respectively, the set of bounded linear transformations on) X, the
operation ‘Alg’ (respectively, ‘Lat’) can be performed on subsets of C(X) (respectively,
B(X)) and these give rise to a notion of reflexivity for subsets of C(X) (respectively,
B(X)). From this follows a definition of ‘reflexive index’ for subsets of C(X). We shall
not consider this index here. Also, we will be primarily concerned here with the notion
of reflexive index in the context of infinite-dimensional spaces.

2. Some observations

The author hopes that the more obvious of the following observations will not be
without some interest to the reader.

2.1. O1. Let A ⊆ B(H) be a family of operators. If [A] denotes the closure in the
weak (operator) topology of the algebra generated by A, then [A] is the weakly
closed algebra generated by A and LatA = Lat [A]. For this, note that A ⊆ [A]
implies that Lat [A] ⊆ LatA. On the other hand, if M ∈ LatA, then A ⊆ Alg {M}.
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But Alg {M} is a weakly closed algebra, so [A] ⊆ Alg {M}. Thus M ∈ Lat [A], and so
LatA ⊆ Lat [A].

The algebra AlgLatA is also a weakly closed algebra containing A, so [A] ⊆
AlgLatA. We need not have equality. Whereas AlgLatA always contains the identity
operator, [A] need not.

2.2. O2. For any T ∈ B(H), Lat {T } is, of course, a reflexive subspace lattice of index
one. An abstract lattice L is called attainable if there is an operator on a separable,
infinite-dimensional Hilbert space with Lat {T } order isomorphic to L. This notion
is due to Halmos. Every example of an attainable lattice leads to an example of a
reflexive subspace lattice of index one (see [19, Section 4.1] for some examples).

IfA is a family of operators on H, the index of LatA is at most |A|, the cardinality
of A. In the latter situation, where we are given A, we are interested in knowing if
there is a (strictly) smaller set of operators with the same Lat asA. On the other hand,
we are also interested in deducing facts about the index of a reflexive subspace lattice
for which only a description of the lattice structure and subspaces are provided.

A family F of subspaces of H is called transitive if AlgF = CI, that is, if only
scalar multiples of the identity operator leave all of the elements of F invariant. Of
course, C(H) is transitive. Halmos initiated the study of these in [3], where he gives
an example of a transitive subspace lattice with five nontrivial elements; an example
with four nontrivial elements, on separable infinite-dimensional Hilbert space, is given
in [9] (see also [2, 19, Section 4.7]). Of course, every transitive family of subspaces
has index one.

For an introduction to the dual notion of ‘transitive algebra’ the interested reader is
referred to [19, Ch. 8].

2.3. O3. The invariant subspace problem (see [19, Section 0.2]) for a separable,
infinite-dimensional Hilbert space H can be reformulated as: Does the reflexive
subspace lattice {(0),H} have reflexive index one? The index of the latter is at most
two. Indeed, a well-known example of a pair of operators on H having no nontrivial
common invariant subspaces is {A,B}, where the matrix of A is diagonal with respect to
some orthonormal basis {ek : k ≥ 1} of H, say Aek = αkek, where {αk}

∞
1 is a decreasing

sequence of positive real numbers converging to zero, and with B = e ⊗ f , with e, f
vectors of H having all Fourier coefficients nonzero with respect to the orthonormal
basis {ek : k ≥ 1}. (See [19, Section 8.3].)

2.4. O4. The subspace lattice {(0), H} is the simplest nest. A subspace lattice is
called a nest if it is totally ordered by inclusion. Every nest is a reflexive subspace
lattice. (This was first proved in [20].) A nest algebra is a subalgebra of B(H) of
the form AlgN , for some nest N . It is shown in [13] that every nest algebra on
a separable Hilbert space is the weakly closed algebra generated by two operators.
Thus, every nest on a separable Hilbert space has index at most two. (If {A1, A2}

generate AlgN as a weakly closed algebra then LatAlgN = N = Lat {A1, A2}.) Many
nests have index one. An operator whose lattice of invariant subspaces is a nest is
called unicellular. There are several well-known examples of unicellular operators,
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for example, Donoghue operators and the Volterra operator (see [19, Section 4.4]). Of
course, every abstract attainable totally ordered lattice gives rise to a nest with index
one; for example, see [7].

2.5. O5. If dim H < ∞, every family F of subspaces has finite index since AlgF
is finite-dimensional, so is finitely generated as a weakly closed algebra. It is still
interesting to study the notion of reflexive index in the context of finite-dimensional
spaces.

2.6. O6. The reflexive index is not invariant under lattice isomorphism. Every
atomic Boolean algebra subspace lattice on H is reflexive [4]. Let B2 be the two-
atom Boolean algebra subspace lattice on C2 with atoms 〈(1, 0)〉, 〈(0, 1)〉. Then
B2 = Lat

{[1 0
0 2

]}
, soB2 has index one. No two-atom Boolean algebra subspace lattice on

a space Cn, n ≥ 3, has index one since every operator on a nonzero finite-dimensional
space has an eigenvector.

However, reflexive index is preserved under similarity. That is, if S ∈ B(H) is
invertible and F is a family of subspaces of H, then F and SF = {S M : M ∈ F }
have the same reflexive index. This follows from the fact that LatAlgF = LatA if and
only if LatAlg (SF ) = Lat SAS −1, for any family of operatorsA ⊆ B(H).

Reflexive index is also invariant under orthogonal complements, that is, ifF ⊆ C(H)
and F ⊥ = {M⊥ : M ∈ F }, then F and F ⊥ have the same reflexive index. Indeed,
if A ⊆ B(H), then LatAlgF = LatA if and only if LatAlg (F ⊥) = LatA∗, where
A∗ = {A∗ : A ∈ A}.

3. Some examples

3.1. E1. Let H be an infinite-dimensional separable Hilbert space. Let B be the
atomic Boolean algebra subspace lattice on H ⊕ H with atoms H ⊕ (0) and (0) ⊕ H.
So B = {(0) ⊕ (0),H ⊕ (0), (0) ⊕ H,H ⊕ H}. Then AlgB =

{[X Y
Z T

]
: X, Y, Z, T ∈ B(H)

}
.

We show that B has index at most two.
Let {ek : k ≥ 1} be an orthonormal basis for H and let A and B be operators of the

type described in observation O3, with Aek = (1/2k−1)ek, for all k ≥ 1, and B = e ⊗ f ,
where e ⊥ f and with both e, f having no zero Fourier coefficients with respect to the
orthonormal basis {ek : k ≥ 1}. (For example, take e = 1

5 e1 +
∑∞

n=2((−1)n−1/2n−1)en and
f =

∑∞
n=1(1/2n−1)en.) Then B2 = 0 since B2 = e ⊗ B f = ( f |e)B = 0. It is easy to verify

that A, B have no common nontrivial invariant subspaces, once it has been observed
that Lat {A} is the atomic Boolean algebra subspace lattice with atoms {〈ek〉 : k ≥ 1},
so that Lat {A} = {

∨
k∈E〈ek〉 : E ⊆ Z+}. (Let D be the weakly closed algebra generated

by A. Since Ak → P1, in norm, where P1 denotes the orthogonal projection onto 〈e1〉,
P1 ∈ D. Then, since (2(A − P1))k → P2, where P2 denotes the orthogonal projection
onto 〈e2〉, P2 ∈ D. Next, consider (A − P1 −

1
2 P2)k, and so on. It follows that Pk ∈ D,

for all k ≥ 1, where Pk is the orthogonal projection onto 〈ek〉.)
Let X =

[A 0
0 B

]
and Y =

[B 0
0 A

]
. Clearly B ⊆ Lat {X,Y}. We claim that B = Lat {X,Y}.

We have X2 =
[A2 0
0 0

]
and Y2 =

[0 0
0 A2

]
. Now the matrix of A2 relative to the orthonormal

basis {ek : k ≥ 1} is diagonal with A2ek = (1/4k−1)ek, for all k ≥ 1. The weakly closed
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algebra generated by A2 contains Pk, for all k ≥ 1, where Pk denotes the orthogonal
projection onto 〈ek〉, so contains Qn =

∑n
k=1 Pk. Since Qn → I, strongly, it follows that

the weakly closed algebra generated by X contains P =
[I 0
0 0

]
(the orthogonal projection

onto H ⊕ (0)). Symmetrically, the weakly closed algebra generated by Y contains
Q =

[0 0
0 I

]
(the orthogonal projection onto (0) ⊕ H). Let M ∈ Lat {X, Y}. Then M is

invariant under P and Q, so (x, y) ∈ M implies (x, 0) ∈ M and (0, y) ∈ M. It follows that
M = K ⊕ L for some subspaces K, L of H. Since each of these subspaces is invariant
under A and B, each is either (0) or H, so M ∈ B.

The following theorem gives a more general result.

Theorem 3.1. Let B be an atomic Boolean algebra subspace lattice on a complex,
separable, infinite-dimensional Hilbert space with the properties:

(i) for every K, L ∈ B, the vector sum K + L is closed;
(ii) B has n atoms, where n ∈ Z+, n ≥ 2;
(iii) the atoms of B are equidimensional.

Then the reflexive index of B is at most n.

Proof. By [8, Theorem 3] there exists an invertible operator S acting on the given
Hilbert space such that B = SL, where L is a commutative subspace lattice. By
observation O6 above, we may as well suppose that B is commutative. We can
then suppose that B is a subspace lattice on H(n) = H ⊕ H ⊕ · · · ⊕ H ⊕ H with atoms
Hk = (0) ⊕ (0) ⊕ · · · ⊕ (0) ⊕ H ⊕ (0) · · · ⊕ (0) ⊕ (0), where H occurs only in the kth
position, 1 ≤ k ≤ n, and where H is a complex, separable, infinite-dimensional Hilbert
space. �

Let {ek : k ≥ 1} be an orthonormal basis for H and let A,B ∈ B(H) be the operators as
in the example immediately above. (So Aek = (1/2k−1)ek, for all k ≥ 1, and B = e ⊗ f ,
where e ⊥ f and with both e, f having no zero Fourier coefficients with respect to
the orthonormal basis {ek : k ≥ 1}.) For each 1 ≤ k ≤ n let Xk be the operator on
H(n) whose matrix is diagonal, Xk = diag (B, B, . . . , B, A, B, . . . , B, B), where the A
occurs in the kth position. We show that B = Lat {Xk : 1 ≤ k ≤ n}. Clearly, B ⊆ Lat
{Xk : 1 ≤ k ≤ n}. Now X2 = diag (0, 0, . . . , 0, A2, 0, . . . , 0, 0) and arguing as in E1 we
get that PHk = diag (0, 0, . . . , 0, I, 0, . . . , 0, 0) belongs to the weakly closed algebra
generated by Xk. Let M ∈ Lat {Xk : 1 ≤ k ≤ n}. Then M is invariant under PHk , for
every 1 ≤ k ≤ n, so M = K1 ⊕ K2 ⊕ · · · ⊕ Kn−1 ⊕ Kn, for some subspaces Kk, 1 ≤ k ≤ n,
of H. Since each of the subspaces Kk is invariant under A and B, it is either (0) or H.
Thus M is a span of atoms Hk of B and M ∈ B.

3.2. E2. We next give examples of: (a) a subspace lattice on a separable Hilbert
space with infinite reflexive index but with only five nontrivial elements; (b) a reflexive
subspace lattice on a separable Hilbert space with infinite reflexive index.

Let L1 and L2 be subspace lattices on the nonzero, complex, separable Hilbert
spaces H1 and H2, respectively. Let L be the subspace lattice on H1 ⊕ H2 defined by

L = {K ⊕ (0) : K ∈ L1} ∪ {H1 ⊕ L : L ∈ L2}.
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Then

AlgL =

{[
A B
0 C

]
: A ∈ AlgL1,C ∈ AlgL2, B ∈ B(H2,H1)

}
and

LatAlgL = {K ⊕ (0) : K ∈ LatAlgL1} ∪ {H1 ⊕ L : L ∈ LatAlgL2}.

Now let H1 be infinite-dimensional and let L1 and L2 be transitive subspace lattices.
Then

LatAlgL = {K ⊕ (0) : K ∈ C(H1)} ∪ {H1 ⊕ L : L ∈ C(H2)}

and AlgL =
{[α B

0 β

]
: α, β ∈ C and B ∈ B(H2,H1)

}
. We show that L has infinite reflexive

index.
Suppose that there exist operators Xk, 1 ≤ k ≤ n, on H1 ⊕ H2 with LatAlgL =

Lat {Xk : 1 ≤ k ≤ n}, where n ∈ Z+. Then Xk =
[αk Bk
0 βk

]
, for some scalars αk, βk and some

operators Bk, 1 ≤ k ≤ n. Let y ∈ H2, y , 0. It is readily checked that the subspace
M = 〈B1y, B2y, . . . , Bny〉 ⊕ 〈y〉 belongs to Lat {Xk : 1 ≤ k ≤ n}. It does not belong to
Lat AlgL, however. This contradiction shows that L has infinite reflexive index.

(a) If we take L1 to be the transitive lattice with four nontrivial elements given in
[9], and take H2 = C in what is immediately above, we get a subspace lattice L with
precisely five nontrivial elements, which has infinite reflexive index.

(b) With L the subspace lattice with seven elements described in (a), the reflexive
subspace lattice LatAlgL has infinite reflexive index.

3.3. E3. Finally, for every n ∈ Z+ we show that, on every Hilbert space H of
dimension at least n + 1 (possibly infinity) there is a reflexive subspace lattice of
reflexive index n.

Let n ∈ Z+ and suppose that dim H ≥ n + 1. We can suppose that H = H1 ⊕ H2,
where H1 and H2 are nonzero, complex, separable Hilbert spaces with dim H1 ≥ n
(possibly infinity). Let B1, B2, . . . , Bn be operators in B(H2,H1) for which there exists
a vector e ∈ H1 such that {B1e, B2e, . . . , Bne} is linearly independent. On H1 ⊕ H2
let Xk, 1 ≤ k ≤ n, be the operators defined by Xk =

[0 Bk
0 0

]
and let Fn be the reflexive

subspace lattice on H1 ⊕ H2 given by Fn = Lat {Xk : 1 ≤ k ≤ n}.
We show that Fn has index n. Suppose that there were n − 1 operators {Yk : 1 ≤ k ≤

n − 1} such that Fn = Lat {Yk : 1 ≤ k ≤ n − 1}. Then, sinceL = {K ⊕ (0) : K ∈ C(H1)} ∪
{H1 ⊕ L : L ∈ C(H2)} ⊆ Fn, each Yk has the form Yk =

[λk Ak
0 µk

]
, for some scalars λk, µk and

some operators Ak, 1 ≤ k ≤ n − 1. The subspace 〈A1e, A2e, . . . , An−1e〉 ⊕ 〈e〉 belongs to
Lat {Yk : 1 ≤ k ≤ n − 1}, so it belongs to Lat {Xk : 1 ≤ k ≤ n}. Now Xk(0, e) = (Bke,0), so
Bke ∈ 〈A1e,A2e, . . . ,An−1e〉, 1 ≤ k ≤ n. This contradicts the fact that {B1e,B2e, . . . ,Bne}
is linearly independent. Hence Fn has reflexive index n.

4. Some questions

Let H be a separable, infinite-dimensional Hilbert space. Every nest on H is
reflexive, and so is every finite, distributive subspace lattice [5]. More generally,
every completely distributive subspace lattice is reflexive [14]. A subspace lattice
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L is completely distributive if M =
⋂
{K− : K ∈ L and K * M}, for every M ∈ L,

where K− = ∨{L ∈ L : K * L}. Every atomic Boolean subspace lattice is completely
distributive. Also, all commutative subspace lattices are reflexive [1, 8].
Q1. Which completely distributive subspace lattices on H have finite reflexive index?
Q2. Does every finite distributive subspace lattice on H have finite reflexive index?
Q3. Does every commutative, atomic Boolean algebra subspace lattice on H with n
equidimensional atoms have reflexive index n?
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