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Abstract. We present two new proofs of the q-commuting property holding
among certain pairs of quantum minors of a q-generic matrix. The first uses elementary
quasi-determinantal arithmetic; the second involves paths in a directed graph. Together,
they indicate a means to build the multi-homogeneous coordinate rings of flag varieties
in other non-commutative settings.
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1. Introduction and main theorem. This paper arose from an attempt to
understand the ‘quantum shape algebra’ of Taft and Towber [15], which we call
the quantum flag algebra F�q(n) here. One goal was to find quasi-determinantal
justifications for the relations chosen for F�q(n). A second goal was to find some
hidden relations, withinF�q(n), known to hold in an isomorphic image. We save further
remarks on the history of the problem and the present goals for after a statement of
the theorem.

DEFINITION 1. Given two subsets I, J ⊆ [n], we say J is weakly separated by I ,
written J �. I , if (i) |J| ≤ |I| and (ii) there exist disjoint subsets ∅ ⊆ J ′, J ′′ ⊆ J such
that
� J \ I = J ′ ∪̇ J ′′,
� j′ < i for all j′ ∈ J ′ and i ∈ I \ J,
� i < j′′ for all i ∈ I \ J and j′′ ∈ J ′,
In this case, we put 〈〈J, I〉〉 = |J ′′| − |J ′|.

Given an n × n q-generic matrix X and a subset I ⊆ [n] with |I| = d, we write [[I ]]
for the quantum minor built from X by taking row-set I and column-set [d].

THEOREM 2 (q-Commuting Minors). Fix two subsets I, J ⊆ [n]. If J �. I, then the
quantum minors [[J]] and [[I ]] q-commute. Specifically,

[[J]][[I ]] = q〈〈J,I〉〉[[I ]][[J]] . (1)

A proof in the case I ∩ J = ∅ may be found in [10], while Leclerc and Zelevinsky
[13] show that [[J]][[I ]] = qa[[I ]][[J]] for some a ∈ � if and only if I and J are weakly
separated. By now, many more commutation formulas are known for much larger
collections of quantum minors (see [3, 6]). The impetus for finding such results has
been two-fold: (i) from the point of view of representation theory, such questions are
intimately tied to the study of the canonical (or crystal) bases of Lustzig and Kashiwara
[1, 8, 14]; (ii) from the point of view of non-commutative algebraic geometry, the study
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of quantum determinantal ideals provides non-commutative versions of the classical
determinantal varieties [2, 7, 9]. Our goal is different.

Given a non-commutative algebra A with a ‘quantum’ determinant D, can we
readily define an A-analogue of F�q(n) by specializing quasi-determinantal identities
to the pair (A, D)? Towards this goal, we analyse the gold standard F�q(n) from a
quasi-determinantal point of view. This idea leads to two new proofs of Theorem 2.
The first proof (Q) uses simple arithmetic involving quasi-determinants; the second
(G) involves counting weighted paths on a directed graph. Taken together, they imply
that if (A, D) satisfies some version of Theorem 9, then quasi-Plücker relations indicate
how to define the flag algebra for A.

1.1. Useful notation. Let [n] denote the set {1, 2, . . . , n} and let
([n]

d

)
denote the

subsets of [n] of size d. Given a set I and a subset I ′ ⊆ I , we sometimes write II ′
for the

set difference I \ I ′. Given a set I = {i1 < i2 < · · · < id}, we will view I as the d-tuple
(i1, i2, . . . , id) when convenient. Fix i ∈ [n] and suppose I = {i1 < i2 < · · · < id} ⊆ [n].
If there is some 1 ≤ k ≤ d with ik = i, we write posI (i) = k for the position of i in I .

Let [n]d denote the d-tuples (sequences) with entries chosen from [n]. Given
a sequence I ∈ [n]d with distinct entries and a subsequence I ′, interpret II ′

as
the complementary subsequence. Given I ∈ [n]d with distinct entries, put inv(I) :=
#

{
(j, k) : j < k and ij > ik

}
. Similarly, given sets or tuples I and J, put inv(I, J) :=

#
{
(i, j) : i ∈ I, j ∈ J, and i > j

}
. Given i ∈ [n], extend the definition of posI (i) to tuples

I ∈ [n]d with distinct entries in the obvious manner. If I, J are two sets or tuples of
sizes d, e, respectively, we define I�J to be the (d + e)-tuple (i1, . . . , id, j1, . . . , je).

Let A be an n × n matrix whose rows and columns are indexed by the sets R and C,
respectively. For any R′ ⊆ R and C′ ⊆ C, we let AR′,C′

denote the submatrix built from
A by deleting row-indices R′ and column-indices C′. Let AR′,C′ be the complementary
submatrix. In case R′ = {r} and C′ = {c}, we may abuse notation and write, e.g., Arc.
Given d-tuples I and J chosen from R and C, respectively, we let AI,J denote the matrix
built from A in the obvious manner: repeating or rearranging the rows and columns
of A as necessary.

2. Preliminaries for Q-proof.

2.1. Quasi-determinants. The quasi-determinant [5] was introduced by Gelfand
and Retakh as a replacement for the determinant over non-commutative rings R.
Given an n × n matrix A = (aij) over R, the quasi-determinant |A|ij (there is one for
each position (i, j) in the matrix) is not a polynomial in the entries aij but rather a
rational expression. We collect here those definitions and results that are needed in the
coming section. Further details may be found in [4, 10, 12]. Note that the phrase ‘when
defined’ is implicit throughout.

DEFINITION 3. Given A and R as above, if Aij is invertible over R, then the (i, j)
quasi-determinant is defined and given by

|A|ij = aij − ρi · (Aij)−1 · χj ,

where ρi is the ith row of A with column j deleted and χj is the jth column of A with
row i deleted. In particular, |A|−1

ij = (A−1)ji when both sides are defined.
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THEOREM 4 (Homological Relations). Let A be a square matrix and let i �= j (k �= l)
be two row (column) indices. We have

−|Ajk|−1
il · |A|ik = |Aik|−1

jl · |A|jk.

THEOREM 5 (Muir’s Law of Extensible Minors). Let A = AR,C be a square matrix.
Fix R0 � R and C0 � C. Say a rational expression I = I(A, R0, C0) in the quasi-minors
{|AR′,C′ |rc : r ∈ R′ ⊆ R0, c ∈ C′ ⊆ C0} is an identity if the equation I = 0 is valid. Fix
subsets L ⊆ R \ R0 and M ⊆ C \ C0. If I is an identity, then the expression I ′ built from
I by extending all minors |AR′,C′ |rc to |AL∪R′,M∪C′ |rc is also an identity.

DEFINITION 6. Let B be an n × m matrix. For any i, j, k ∈ [n] and M ⊆ [n] \ {i} with
|M| = d − 1, define rM

ji = rM
ji (B) := |B(j�M),[d]|jk|B(i�M),[d]|−1

ik . This ratio is independent
of k and is called a right-quasi-Plücker coordinate for B.

REMARK. Note that the rM
ij aren’t ratios of minors of B, as defined. It is easy to see

that |B(j�M),[d]|jk|B(i�M),[d]|−1
ik = |Bj∪M,[d]|jk|Bi∪M,[d]|−1

ik when j �∈ M. We choose to work
with generalised minors such as |B(j�M),[d]|jk for book-keeping purposes in the coming
proofs.

THEOREM 7 (Quasi-Plücker Relations). Fix an n × n matrix A, subsets M, L ⊆ [n]
with |M| + 1 ≤ |L|, and i ∈ [n] \ M. We have the quasi-Plücker relation (PL,M,i)

1 =
∑
j∈L

rL\j
ij rM

ji .

2.2. Quantum determinants. We collect standard results about the quantum
determinant that may be found in the literature [16]. An n × n matrix X = (xab) is
said to be q-generic if its entries satisfy the relations

(∀i, ∀k < l) xilxik = qxikxil

(∀i < j, ∀k) xjkxik = qxikxjk

(∀i < j, ∀k < l) xjkxil = xilxjk

(∀i < j, ∀k < l) xjlxik = xikxjl + (q − q−1)xilxjk .

Fix a field k of characteristic 0 and a distinguished invertible element q ∈ k not
equal to a root of unity. Let Mq(n) be the k-algebra with n2 generators xab subject to
the relations making X a q-generic matrix. It is known [9] that Mq(n) is a (left) Ore
domain with (left) field of fractions Dq(n).

DEFINITION 8. Given any d × d matrix A, define the row determinant detqA by

detqA =
∑

σ∈Sd

(−q)−inv(σ )aσ (1),1aσ (2),2 · · · aσ (d),d .

When A = XR,C is a submatrix of X , it is known that: (i) detqA agrees with
the analogous expression modelled after the column-permutation definition of the
determinant; (ii) swapping two adjacent rows of A introduces a q−1; and (iii) allowing
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any row of A to appear twice yields zero. Properties (i)–(iii) have the following important
consequence.

THEOREM 9 (Quantum Determinantal Identities). Let A = XR,C be a d × d
submatrix of X. Then for all i, j ∈ R and k ∈ C, we have:

∑
c∈C

Ajc · {
(−q)posR(i)−posC (c)detqAic} = δij · detqA ,

[detqA, Aik] = 0.

In particular, every submatrix of X is invertible in Dq(n). After Definition 3, we are
free to use the relations in Section 2.1 on matrices built from X . Properties (ii) and (iii)
allow us to uniquely define the quantum determinant of A = XI,C for any I ∈ [n]d and
C ∈ ([n]

d

)
. In case C = [d], we introduce the shorthand notation detqA = [[I ]]. The link

between quasi- and quantum-determinants is as follows: for all I ∈ [n]d with distinct
entries

|XI,[d]|i,d = (−q)d−posI (i)[[I ]] · [[Ii]]−1. (2)

Moreover, the factors on the right commute.

REMARK. Note, again, that our indexing sets I are d-tuples, not subsets of [n]. In
the coming proofs, the reader should find it easier to keep track of powers of q with
this convention.

Theorems 4 and 9 are sufficient to give the next result ([12], Proposition 10).

THEOREM 10. Given any i, j ∈ [n], {j} �. {i}. For any M ⊆ [n], the quantum minors
[[j�M]] and [[i�M]] q-commute according to (1).

3. Q-proof of theorem. Our first proof of Theorem 2 proceeds by induction on
|J| and rests on two key lemmas.

LEMMA 11. Given I ⊆ [n] and j ∈ [n] \ I, suppose {j} �. I. Then [[j]][[I ]] =
q〈〈j,I〉〉[[I ]][[j]].

Proof. From (PI,∅,j) and (2) we have

1 =
∑
i∈I

[[j�Ii]][[i�Ii]]−1[[i]][[j]]−1 ,

or

[[j]] =
∑
i∈I

[[j�Ii]][[i�Ii]]−1[[i]]. (3)

Theorem 10 tells us that [[j�Ii]] and [[i�Ii]] q-commute, so we may clear the denominator
in (3) on the left and get

[[I ]][[j]] =
∑
i∈I

(−q)inv(i,Ii)q−〈〈j,I〉〉[[j�Ii]][[i]]. (4)
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In the other direction, Theorem 9 tells us that [[i�Ii]] and [[i]] commute; clearing (3) on
the right yields

[[j]][[I ]] =
∑
i∈I

(−q)inv(i,Ii)[[j�Ii]][[i]]. (5)

Compare (4) and (5) to conclude that [[j]] and [[I ]] q-commute as desired. �
LEMMA 12. Given I, J, M ⊆ [n], if [[J]] and [[I ]] q-commute, then [[J ∪ M]] and [[I ∪

M]] do as well. Moreover, they do so with the same q exponent.

Proof. An easy consequence of (2) and Muir’s Law (Theorem 5). �
We are now ready for the first advertised proof of Theorem 2.

Proof of Theorem 2. Fix J, I ⊆ [n] and suppose J �. I . Note that, by definition of
‘weakly separated’, J ∪ M �. I ∪ M for all M ⊆ [n] \ (I ∪ J). After Lemma 12, we may
thus assume I ∩ J = ∅. We proceed by induction on |J|, the base case being handled
in Lemma 11.

Let j be the least element of J, i.e. inv(j, Jj) = 0, and consider (PI,Jj,j):

1 =
∑
i∈I

rI\i
ji rJj

ij .

In terms of quantum determinants, we have

[[j�Jj]] =
∑
i∈I

[[j�Ii]][[i�Ii]]−1[[i�Jj]].

By induction, we may clear the denominator to the right and get

[[j�Jj]][[I ]] = q〈〈Jj,Ii〉〉 ∑
i∈I

(−q)inv(i,Ii)[[j�Ii]][[i�Jj]]. (6)

On the otherhand, we may clear the denominator on the left at the expense of q−〈〈j,i〉〉:

[[I ]][[j�Jj]] = q−〈〈j,i〉〉 ∑
i∈I

(−q)inv(i,Ii)[[j�Ii]][[i�Jj]]. (7)

We are nearly done. First note that

q〈〈Jj,Ii〉〉 = q〈〈Jj,I〉〉 , q−〈〈j,i〉〉 = q−〈〈j,I〉〉 , and q〈〈J,I〉〉 = q〈〈j,I〉〉q〈〈Jj,I〉〉.

Using these observations to compare (6) and (7) finishes the proof. �

4. Preliminaries for G-proof.

4.1. Quantum flag algebra. The algebra F�q(n), as it is presented below, first
appeared in [15]. An equivalent presentation due to Lakshmibai and Reshetikhin
appeared concurrently [11].

DEFINITION 13 (Quantum Flag Algebra). The quantum flag algebra F�q(n) is
the k-algebra generated by symbols {fI : I ∈ [n]d, 1 ≤ d ≤ n} subject to the relations
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indicated below. (Recall that to a subset {i1 < i2 < · · · < id} ∈ ([n]
d

)
, we associate the

d-tuple (i1, i2, . . . , id).)
� Alternating relations (AI ): For any I ∈ [n]d and σ ∈ Sd ,

fσ I =
{

0, if I contains repeated indices,

(−q)−inv(σ )fI , if I = (i1 < i2 < · · · < id).
(8)

� Young symmetry relations (YI,J)(a): Fix 1 ≤ a ≤ d ≤ e ≤ n − a. For any I ∈ ( [n]
e+a

)
and J ∈ ( [n]

d−a

)
,

0 =
∑

�⊆I,|�|=a

(−q)−inv(I�,�)fI�f��J . (9)

� Monomial straightening relations (MJ,I ): For any I, J ⊆ [n], |J| ≤ |I|,

fJfI =
∑

�⊆I,|�|=|J|
(−q)inv(�,I�)fJ�I�f�. (10)

In their article, Taft and Towber construct an algebra map φ : F�q(n) → Mq(n)
taking fI to [[I ]] and show that φ is monic, with image the subalgebra of Mq(n)
generated by the quantum minors {[[I ]] : I ∈ [n]d, 1 ≤ d ≤ n}. We have already seen
that the minors [[I ]] often q-commute. This relation does not appear above, so it must be
a consequence of (8)–(10). The coming proof explicitly demonstrates this connection.

Abbreviate the right-hand side of (9) by YI,J;(a). Also, we abbreviate the difference
(lhs − rhs) in (10) by MJ,I , and the difference (lhs − rhs) in (1) by CJ,I (replacing [[-]] by
f-). As (1), (9) and (10) are all homogeneous, CJ,I must be some k-linear combination
of the expressions MK,L and YM,N;(a), modulo (8).

EXAMPLE ({1} �. {2, 3, 4}). We calculate the expressions C1,234, M1,234 and
Y1234,∅;(1) and arrange them as rows in Table 1. Viewing the table column by column,
we readily see that C1,234 = M1,234 + q2Y1234,∅;(1).

While the idea for our second proof of Theorem 2 is simple (‘perform Gaussian
elimination’), the proof itself is not. We separate out the combinatorial component
below.

4.2. Weighted paths in a directed graph. Given I, J ⊆ [n] such that J �. I , we
build the edge-weighted directed graph 	(J) = 	(J; I) as follows. Its vertex set V is the
power set P(J) and its edge set is {(A, B) | A, B ∈ V, A � B}. The weight of an edge
(A, B) ∈ 	 depends on |I|, carrying the value

α B
A = (−q)−inv(JB,BA)−inv(BA,A)+(2|JB|−|I |)|(BA)∩J ′| , (11)

with J ′ as in Definition 1.

Table 1. Finding the relation f1f234 − q−1f234f1 = 0.

C1,234 f1f234 −q−1f234f1

M1,234 f1f234 −q2f123f4 +q1f124f3 −q0f134f2

Y1234,∅;(1) f123f4 −q−1f124f3 +q−2f134f2 −q−3f234f1
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EXAMPLE. If |J| = m, then 	(J) has 2m vertices and
∑m

k=1

(m
k

)
(2k − 1) = 3m − 2m

edges. In Figure 1, we illustrate 	({1, 6}) and 	({1, 5, 6}), omitting three edges and
many edge weights in the latter for legibility.

For the remainder of the section, we assume that J �. I with J ∩ I = ∅. We write
J = J ′∪̇J ′′ = {j1 < · · · < jr′ } ∪ {jr′+1 < · · · < jr′+r′′ } (with jr′ < jr′+1), and we let r = r′ +
r′′ = |J|, s = |I| and s − r = t. In the graph 	(J; I), we consider paths π on p steps
(0 < p < r) defined as follows:

P0 = {
π = (A1, A2, . . . , Ap) | ∅ � A1 � A2 � · · · � Ap � J

}
.

We form P = P0 by adjoining the unique path 0̂ = () on zero steps and the special
path 1̂ on r steps given by

1̂ = ({jr′+1}, {jr′+1, jr′+2}, . . . , J ′′, {jr′ , . . . , jr}, . . . , {j2, . . . , jr}, J
)
.

The weight α(π ) of a path π ∈ P is given by α(0̂) = α J
∅ , for π = 0̂, and otherwise

α(π ) = α
A1
∅ · α

A2
A1

· · ·α Ap
Ap−1

· α J
Ap

.

The aim of the present discussion is to divide the paths P into two equinumerous
camps via a bijection ℘ satisfying α(℘(π )) = α(π ). This will be useful in Section 5,
where it will make a rather unwieldy sum (14) collapse to a single term. We divide P

into two parts using the function mM(-) defined as follows. Fix K ⊆ J. If K ∩ J ′ �= ∅,
put mM(K) = min(K ∩ J ′). Otherwise, put mM(K) = max(K ∩ J ′′).

DEFINITION 14. A path (A1, . . . , Ap) ∈ P shall be called regular (or regular at
position i0), if p > 0 and there exists 1 ≤ i0 ≤ p satisfying:

(a) |Ai| = i (∀ 1 ≤ i ≤ i0);
(b) Ai0 \ Ai0−1 = mM(Ai0+1 \ Ai0−1).

Here and below, we take A0 = ∅ and Ap+1 = J, as needed. A path is irregular if it is
nowhere regular. (Note 0̂ is irregular and 1̂ is regular.)

PROPOSITION 15. The regular and irregular paths in P are equinumerous.

Given an irregular path π = (A1, . . . , Ap) ∈ P, we construct a regular path ℘(π )
by inserting a new step B. If π = 0̂, put ℘(0̂) = ({j1}). Otherwise:

(1) Find the unique i0 satisfying: (|Ai| = i ∀i ≤ i0) and (|Ai0+1| > i0 + 1).
(2) Compute b = mM(Ai0+1 \ Ai0 )
(3) Put B = Ai0 ∪ {b}.
(4) Define ℘(π ) := (A1, . . . , Ai0 , B, Ai0+1, . . . , Ap).

Figure 1. The graphs 	({1, 6}) and 	({1, 5, 6}) (partially rendered).
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EXAMPLE. Table 2 illustrates the action of ℘ on P when J = J ′ ∪ J ′′ = {1} ∪ {5, 6}.
Proof of Proposition 15. Let P′ and P′′ denote the irregular and regular paths,

respectively. We reach a proof in three steps.

Claim 1: ℘(P′) ⊆ P′′.
Given π ∈ P′, the effect of ℘ (namely, adding a step B to the path π ) is to insert a

regular point, so the claim is proven if we can show that ℘(π ) ∈ P.
Since ℘(0̂) belongs to P, we turn to the irregular paths π = (A1, A2, . . . , Ap) in

P0. The only concern is that the inserted step may be B = J, which would put ℘(π ) in
P only if ℘(π ) = 1̂.

Case p < r − 1: At some point 1 ≤ i0 < p, there is a jump in set-size greater than
one when moving from Ai0 to Ai0+1. Hence, the B to be inserted will not come at the
end, but rather immediately after Ai0 .

Case p = r − 1: Let 1̂ = (A1, A2, . . . , Ar). One checks that (A1, A2, . . . , Ar−1) is
nowhere regular, and that this is the only path on r − 1 steps with this feature. Since
℘((A1, A2, . . . , Ar−1)) = 1̂, we are done.

Claim 2: ℘ is 1-1.
Suppose ℘(A1, . . . , Ap) = ℘(A′

1, . . . , A′
p′ ), and suppose we insert B and B′

respectively. By the nature of ℘, we have p = p′ and i0 �= i′0. Take i0 < i′0 and notice
that (A′

1, . . . , A′
p′ ) = (A1, . . . , Ai0 , B, Ai0+1, . . . , A′

i′0
, . . . A′

p′). In particular, B is a regular
point of (A′

1, . . . , A′
p′ ), and consequently, (A′

1, . . . , A′
p′ ) �∈ P′.

Claim 3: ℘ is onto.
Consider a path π = (A1, . . . , Ap) ∈ P′′. If p = 1, then it is plain to see that the

only irregular path is π = ({j1}), which is the image of 0̂ under ℘. So assume p > 1.
Note that |A1| = 1, for otherwise π cannot have any regular points. Now, locate the
first 1 ≤ i0 ≤ p with (a) |Ai0 | = i0; and (b) Ai0 \ Ai0−1 = mM(Ai0+1 \ Ai0−1). The path
π ′ = (A1, . . . , Ai0−1, Ai0+1, . . . , Ak) belongs to P′ and, moreover, ℘(π ′) = π . �

The map ℘ we have used has an additional nice property.

PROPOSITION 16. The bijection ℘ is path-weight preserving.

The result rests on the following result.

LEMMA 17. Let ∅ ⊆ A ⊆ B ⊆ C ⊆ J. Writing B̂ = B \ A and Ĉ = C \ B, we have

α B
A α C

B = [
(−q)2 inv(B̂∩J ′,Ĉ)−2 inv(Ĉ,B̂∩J ′′)]α C

A . (12)

Proof. From the definition of α ∗
∗ , we have

α B
A = (−q)−inv(JB,B̂)−inv(B̂,A)+(2|JA|−2|B̂|−|I |)|B̂∩J ′|,

α C
B = (−q)−inv(JC ,Ĉ)−inv(Ĉ,B̂∪A)+(2|JA|−2|B̂∪Ĉ|−|I |)|Ĉ∩J ′|,

α C
A = (−q)−inv(JC ,B̂∪Ĉ)−inv(B̂∪Ĉ,A)+(2|JC |−2|B̂∪Ĉ|−|I |)|(B̂∪Ĉ)∩J ′|.

Table 2. The pairing of irregular and regular paths via ℘.

π 0̂ (5) (6) (15) (16) (56) (5,56)
℘(π ) (1) (5,15) (6,16) (1,15) (1,16) (6,56) 1̂
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Now compare exponents on either side of (12), using identities such as

|Ĉ||B̂ ∩ J ′| = inv(Ĉ, B̂ ∩ J ′) + inv(B̂ ∩ J ′, Ĉ),

inv(Ĉ, B̂) = inv(Ĉ, B̂ ∩ J ′) inv(Ĉ, B̂ ∩ J ′′).

�
Proof of Proposition 16. Suppose that π = (. . . , A, C, . . .) and ℘(π ) inserts B

immediately after A. Putting B = A ∪ mM(C \ A) = A ∪ {b}, (12) implies that

α(℘(π )) = [
(−q)2 inv(b∩J ′,Ĉ)−2 inv(Ĉ,b∩J ′′)] · α(π ) ,

where B̂ and Ĉ are as in the lemma. Now, if b ∩ J ′ �= ∅, then b is the smallest element
in C \ A, and, in particular, inv(b, Ĉ) = 0. In this same case, b ∩ J ′′ = ∅, so inv(Ĉ, b ∩
J ′′) = 0 too. An analogous argument works for the case b ∩ J ′ = ∅. �

Before leaving path weights behind, we compute the weight of ℘−1(1̂) explicitly.

PROPOSITION 18. Given, I, J, J ′, J ′′ and 1̂ as above, we have

α(℘−1(1̂)) = (−q)|J
′|(|J ′|−1)−|J ′′ |(|J ′′|−1) × α J

∅ . (13)

Proof. Recall that π = ℘−1(1̂) is the path

π = ({jr′+1}, {jr′+1, jr′+2}, · · · , J ′′, {jr′ , . . . , jr}, . . . , {j2, . . . , jr}
)
.

Applying (12) repeatedly to α(π ) we see that

α(π ) = α
jr′+1

∅ α
jr′+1jr′+2

jr′+1

(
α

jr′+1···jr′+3
jr′+1jr′+2

· · · α J
j2···r

)
=

[
(−q)−2(1)

]
α

jr′+1jr′+2
∅

(
α

jr′+1···jr′+3
jr′+1jr′+2

· · · α J
j2···r

)
...

=
[
(−q)−2(1+2+···|J ′′|−1)

]
α J ′′
∅

(
α

jr′ ···jr
J ′′ · · · α J

j2···r
)
,

and continuing,

= (−q)−|J ′′|(|J ′′|−1)
[
(−q)2(1)

]
α

jr′ ···jr
∅

(
α

jr′−1···jr
jr′ ···jr · · · α J

j2···r
)

...

= (−q)−|J ′′|(|J ′′|−1)
[
(−q)2(1+2+···+|J ′ |−1)

] (
α J
∅

)
.

This is the desired result. �

5. G-proof of theorem. We keep the notations J ′, J ′′, r′, r′′, r, s, t from Section 4.2.
We also assume that J ∩ I = ∅. (Only minor changes to the coming proof are needed to
give the more general result.) To express the q-commuting relations as a consequence

https://doi.org/10.1017/S0017089510000509 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000509


672 AARON LAUVE

of the flag relations, it is sufficient to show that

CJ,I − MJ,I =
∑

∅⊆K�J

βK · YI∪JK ,K;(r−|K|)

for some choice of coefficients βK . We begin by writing the left-hand side as

CJ,I − MJ,I = −q〈〈J,I〉〉fI fJ +
( ∑

�⊆I, |�|=r

(−q)inv(�,I�)fJ�I�f�

)

or, replacing inv(�, I�) with |I�||�| − inv(I�,�) and inv(J, I�) with |J ′′||I| −
inv(J,�) and using |�| = |J|, as

CJ,I − MJ,I = (−q)|J
′|t+|J ′′||J|

(∑
�⊆I

(−q)−inv((I∪J)�,�)f(I∪J)�f�

)
− q〈〈J,I〉〉fI fJ .

This is to be compared with the expressions

YI∪JK ,K;(r−|K|) =
∑

�⊆I∪JK
|�|=r−|K|

(−q)−inv((I∪J)K∪�,�)(−q)−inv(�,K)f(I∪J)K∪�fK∪�.

The alternating property of the symbols fK and the product in F�q(n) play no
role in our proof, so we eliminate these distractions. Let V be the vector space over k

with basis {eA,B : A ∪ B = I ∪ J, A ∩ B = ∅ and |B| = r}. We prove the theorem in two
steps.

PROPOSITION 19. Given I, J ⊆ [n], suppose J �. I. Then there is a scalar θ so that
the vector

cm(θ ) :=
(∑

�⊆I

(−q)−inv((I∪J)�,�)e(I∪J)�,�

)
− θeI,J

is a linear combination of the vectors {yK : ∅ ⊆ K � J}, with

yK :=
∑

�⊆I∪JK
|�|=r−|K|

(−q)−inv((I∪J)K∪�,�)(−q)−inv(�,K)e(I∪J)K∪�,K∪�.

PROPOSITION 20. In the notation above, θ = (−q)−|J ′ |t−|J ′′||J|q〈〈J,I〉〉.

The first step (Proposition 19) is not obvious: note that the dimension of V is
(r+s

r

)
,

while the span of the yK has dimension (at most) 2r − 1. Nevertheless, this step follows
fairly quickly from a triangularity argument and the fact that J �. I . The second step
(Proposition 20) will follow from the results of Section 4.2, together with a careful
book-keeping in the proof of the first step.

The following total order on the basis of V will be used in the coming proofs: say
(A, B) ≺ (C, D) if B ∩ J precedes D ∩ J in the dictionary (viewing the ordered sets as
words on the letters {1, 2, 3, . . .}), or if B ∩ J = D ∩ J and B ∩ I precedes D ∩ I . For
example, if I = {2, 3, 4, 5} and J = {1, 6, 7}, then

(1567, 234) ≺ (1367, 245) ≺ (1347, 256) ≺ (2347, 156).
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Proof of Proposition 19. We begin with the observation that many of the basis
vectors eA,B in the definition of yK carry the same coefficient: for fixed �′ ⊆ J \ K ,
(−q)−inv((I∪J)K∪(�′∪�),�′∪�)(−q)−inv(�′∪�,K) is invariant as � varies in I . This is true because
J �. I . We collect terms with equal coefficients and define the auxiliary vectors

eK ′
:=

∑
�⊆I,|�|=r−|K ′|

(−q)−inv((I∪J)K ′∪�,�)(−q)−inv(�,K ′)e(I∪J)K ′∪�,K ′∪�

for each ∅ ⊆ K ′ ⊆ J. Given K � J, by construction we have

yK =
∑

K⊆K ′⊆J

αK,K ′ eK ′

for some scalars αK,K ′ ∈ k. Note, also, that cm(θ ) = e∅ − θeJ .

Since the least values of eA,B appearing in the supports of the vectors eK are
distinct, the latter are linearly independent (and span a subspace of V of dimension
2r). Moreover, since the αK,K above are identically equal to 1, we have

span{yK : K � J} = span{eK : K � J}

by triangularity. Finally, since we have no vector yJ to work with, we see that the vector
cm(θ ) = e∅ − θeJ belongs to the span of the yK for a unique coefficient θ . �

Proof of Proposition 20. In order to properly identify θ , we must first identify the
coefficients αK,K ′ in the previous proof.

Claim: The scalars αK,K ′ appearing in the description of the vectors yK are precisely
the edge weights α K ′

K from Section 4.2.

We leave the proof of this claim to the reader. The next step is to perform Gaussian
elimination on a certain matrix. Table 3 displays this matrix for J = J ′ ∪ J ′′ = {1} ∪
{5, 6} and should make our intentions clear.

We know from Proposition 19 that we can clear most entries in the first row
of this matrix, resulting in a new row (y∅)′ = 1e∅ + θeJ = cm(θ ) for some θ . Careful

Table 3. Writing the vectors yK in terms of the eK ′
.

e∅ e1 e5 e6 e15 e16 e56 e156

y∅ 1 α 1
∅ α 5

∅ α 6
∅ α 15

∅ α 16
∅ α 56

∅ α 156
∅

y1 1 α 15
1 α 16

1 α 156
1

y5 1 α 15
5 α 56

5 α 156
5

y6 1 α 16
6 α 56

6 α 156
6

y15 1 α 156
15

y16 1 α 156
16

y56 1 α 156
56
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book-keeping shows that

θ = α J
∅ −

⎛
⎝ ∑

∅�K�J

α K
∅ α J

K

⎞
⎠ +

⎛
⎝ ∑

∅�K1�K2�J

α
K1

∅ α
K2

K1
α J

K2

⎞
⎠ − · · ·

· · · + (−1)r−1

⎛
⎝ ∑

∅�K1�···�Kr−1�J

α
K1

∅ α
K2

K1
· · ·α J

Kr−1

⎞
⎠ . (14)

In other words, θ is a signed sum of path weights α(π ), with π running over all paths in
P save for 1̂. Note that the sign attached to π in (14) changes according to the number
of steps in π . Since the bijection ℘ from Section 4.2 increases the number of steps by
one and preserves path weight, we conclude that θ depends only on π = ℘−1(1̂). More
precisely,

θ = (−1)|J|−1 × α
(
℘−1(1̂)

)
= (−1)|J|−1(−q)|J

′|(|J ′|−1)−|J ′′ |(|J ′′|−1) × α J
∅

= (−1)|J|−1(−q)|J
′′|−|J ′|(−q)|J

′||J ′|−|J ′′||J ′′|−|I ||J ′|

= q〈〈J,I〉〉(−q)−|J ′|t−|J ′′ ||J| ,

as desired. �
With Proposition 20 proven, Theorem 2 is finally demonstrated (modulo the

Taft–Towber isomorphism φ). Moreover, we achieve the second goal stated in the
introduction. A brief discussion of the first goal follows.

6. From quasi- to quantum determinantal varieties. The algebra F�q(n) is a
quantum deformation of the classic multi-homogeneous coordinate ring of the full flag
variety over GLn. In [15], it is admitted that finding the proper form of the relations
was somewhat difficult. In [3] we see a completely different (equivalent) set of relations.
One hopes to proceed in a less ad-hoc manner. Perhaps a theory of non-commutative
flag varieties using quasi-Plücker coordinates could help explain the choices for the
relations in F�q(n). In [12], it is shown that any relation (YI,J)(a) has a quasi-Plücker
coordinate origin. Section 3 shows that (1) does too. The second proof of Theorem 2
shows that a great many instances of (MJ,I ) do as well: to see this, note that the roles
of MJ,I and CJ,I were interchangeable there. The question of whether and to what
extent the gap (the case J ��. I) may be filled by finding new quasi-Plücker coordinate
identities is an interesting one. For example, it could be used to provide flag algebras
in a variety of familiar settings, such as Yangian or super algebras. Towards a partial
answer, we leave the reader to verify that

(PI,Jj,j) ⇒ (MJ,I ),

whenever I, J ⊆ [n] are such that |J| ≤ |I| and Jj ⊆ I .
Looking past flag algebras to more general determinantal varieties, the same

question is valid. In this direction, one might look at Goodearl’s article [6], departing
from, say, the quasi-minor identities in [10]. Some of Goodearl’s relations evidently
have quasi-determinantal origins. A careful study of which relations have this property
would be the subject of another paper.
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