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This paper presents a novel approach for simulating plasma instabilities in tokamak
plasmas using the piecewise field-aligned finite element method in combination with
the particle-in-cell method. Our method traditionally aligns the computational grid, but
defines the basis functions in piecewise field-aligned coordinates to avoid grid defor-
mation while naturally representing the field-aligned mode structures. This scheme is
formulated and implemented numerically. It also applies to the unstructured triangu-
lar meshes in principle. We have conducted linear benchmark tests, which agree well
with previous results and traditional schemes. Furthermore, multiple-n simulations are
also carried out as a proof of principle, demonstrating the efficiency of this scheme in
nonlinear turbulence simulations within the framework of the finite element method.
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1. Introduction

A variety of waves and instabilities in tokamak plasmas are characterised by scale
separation between the parallel and perpendicular directions to the magnetic field B,
namely, k|| � k⊥, where k|| and k⊥ are the wave vectors in the parallel and perpen-
dicular directions, respectively. To simulate these waves and instabilities, especially
in the high-n limit, where n is the toroidal mode number, theoretical and numeri-
cal schemes have been developed including the ballooning representation (Connor
et al. 1979; Cheng et al. 1985), the mode structure decomposition (MSD) approach
(Zonca & Chen 2014; Lu et al. 2012, 2013, 2017 ) and the flux-coordinate indepen-
dent (FCI) scheme (Hariri & Ottaviani 2013; Stegmeir et al. 2018; Michels et al.
2021). As a specific numerical treatment, the field-aligned coordinates and flux tube
method have been developed for gyrofluid turbulence simulations (Beer et al. 1995)
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and have been shown to be an efficient scheme in gyrokinetic simulations (Lin et al.
1998; Wang et al. 2011; Chen & Parker 2007b). The metric procedure for flux
tube treatments of toroidal geometry has been developed previously to avoid grid
deformation (Scott 2001).

While the field-aligned coordinates used in most codes have been based on the
finite difference scheme, their application in the framework of the finite element
method (FEM) is still not available in particle simulations of magnetically confined
plasmas even though many hybrid or gyrokinetic codes are based on FEM (Kraus
et al. 2017; Kleiber et al. 2024; Lanti et al. 2020; Hatzky et al. 2019; Huijsmans
et al. 2023; Hoelzl & Huijsmans 2023; Holderied et al. 2021). Previous studies have
introduced the field-aligned discontinuous Galerkin method for anisotropic wave
equations (Dingfelder & Hindenlang 2020). A partially mesh-free approach has
also been proposed for representing anisotropic spatial variations along field lines
(McMillan 2017). FEM has advantages in terms of conservation properties and high
accuracy in particle simulations. Gyrokinetic particle codes have been developed for
the studies of turbulence, Alfvén waves and energetic particle physics in both toka-
maks (Lanti et al. 2020; Huijsmans et al. 2023; Lu et al. 2019a; Hoelzl & Huijsmans
2023) and stellarators (Jost et al. 2001; Kleiber et al. 2024). While various schemes
have been developed to efficiently represent the field-aligned mode structures such
as the Fourier filter in ORB5 (Lanti et al. 2020), the phase factor in EUTERPE and
the high-order differential operator-based spatial filter in JOREK (Huijsmans et al.
2023), a field-aligned FEM approach has not yet been developed.

In this work, we focus on the formulation and implementation of the field-aligned
finite element method. The scheme we propose is characterised by two key features:

(i) the computational grids are aligned in a traditional pattern without any shift;

(ii) the finite element basis functions are defined on piecewise field-aligned coordi-
nates, with each basis function being continuous along the magnetic field line.
When the cubic spline is used, the C2 continuity is maintained.

The rest of the paper is organised as follows. In § 2, the models and equations are
detailed. The numerical schemes are described in § 3. In § 4, the simulation results
are listed. In § 5, we give the conclusions and outlook.

2. Models and equations
2.1. Formulation in 3-D straight field line coordinates

2.1.1. Coordinates and magnetic field
In the curvilinear coordinates (X , Y ,Z), considering the magnetic field pointing in
the (Y ,Z) direction, the field is expressed as B = ∇ψY × ∇Z − ∇ψZ × ∇Y , where
ψY and ψZ are flux functions and are independent of Y and Z, namely, ψY =
ψY (X ), ψZ =ψZ(X ). The twisting of the magnetic field along Y and Z is described
by

q̄ ≡ BZ

BY = ∂ψZ

∂ψY
, (2.1)

where q̄ = q̄(X ), BY ≡ B · ∇Y , BZ ≡ B · ∇Z. Defining a Clebsch coordinate

A ≡ Y − Z
q̄
, (2.2)
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FIGURE 1. Grids for simulations and the local supports where the basis functions are non-zero.
The linear basis functions are adopted. Grey lines represent the Y and Z grids, while the dashed
parallelograms, which match the colour of basis function Nj,k, represent the local supports. The
overlaps between different basis functions are shown. The basis function Nj,k overlaps with itself
and two other functions Nj′,k′ when k′ = k, as shown by the fact that N0,0 overlaps with N1,0 and
N−1,0. For k′ = k − 1, Nj,k overlaps with the other four basis functions (the overlap between
N1,1 with Nj′=−1,0,1,2,k′=0).

the magnetic field can be rewritten as

B = −q̄(∇ψY × ∇A) = −q̄(∂XψY )∇X × ∇A. (2.3)

Two Clebsch coordinates systems can be chosen as follows:

(i) (X , A ≡ Y − Z/q̄,Z), which is well defined if q̄ �= 0;

(ii) (X ,K ≡ q̄Y − Z,Z), which is well defined if q̄ �= ∞.

Other choices are possible by choosing the third coordinate as Y , giving the
(X , Y , A) or (X , Y ,K) coordinates. In the following discussion, we adopt the first
choice (X , A,Z) since we consider the studies of the tokamak plasmas for which
q̄ �= 0 but q̄ = ∞ at the so-called ‘X’ point.

2.1.2. Piecewise field-aligned finite elements and partition of unity
The simulation grids are written as (Xi, Yj,Zk), where i, j, k are the grid indices
along X , Y ,Z, respectively. We show the construction of the piecewise field-aligned
linear basis functions in figure 1, where the grey lines indicate the Y ,Z grids. If
cubic B-spline basis functions are adopted, each basis function covers four intervals
in each direction. The red arrow indicates the magnetic field. Instead of constructing
a global Clebsch coordinate A, the piecewise Clebsch coordinate Ak depends on the
index of the subdomain in the Z direction,
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4 Z. Lu and others

FIGURE 2. Tokamak geometry with the piecewise field-aligned basis functions. The directions
of the magnetic field and the alignment of the basis functions are different from (left) the inner
surface to (right) the outer surface. Along the toroidal direction, the red lines follow the magnetic
field. The centre of local support is at the node of the traditional grid. Only the right/left half of
the local support of the cubic basis function (the two middle sections in the poloidal direction)
on the outer/inner surface is shown.

Ak = Y − Z − Zk

q̄
. (2.4)

This definition is similar to the shifted metric procedure for the finite difference
scheme (Scott 2001), but our method is adapted for the finite element method. The
piecewise field-aligned basis functions are defined in the coordinates X , Ak,Z. The
function δ� in configuration space is represented as a linear combination of the
basis functions,

δ�=
∑
i,j,k

δ�i,j,kNi(X )Nj(Ak)Nk(Z), (2.5)

where N is the basis function. In figure 1, we show the linear basis functions in
(Y ,Z) space for a given X , where Nj,k ≡ Nj(Ak)Nk(Z). In the Y direction, each
basis function Nj,k overlaps with itself and two other functions (in total three) Nj′,k′
when k′ = k, as shown by the overlap of N0,0 with Nj′=1,−1; k′=0. However, when
k′ �= k, each basis function Nj,k overlaps with four other basis functions Nj′,k′=k−1,
as shown by the overlap between N1,1 and Nj′=2,1,0,−1; k′=0. Additionally, Nj,k over-
laps with four other basis functions when k′ = k + 1; for instance, N1,1 overlaps
with Nj′=2,1,0,−1; k′=2. In figure 1, we illustrate the basic principles using a uni-
form magnetic field and linear basis functions. This simplified set-up is intended
to demonstrate the foundational concepts. A more general case is considered in
our code implementation, allowing for varying equilibrium magnetic fields, with
cubic B-splines adopted. Nevertheless, the essential components are already demon-
strated in figures 1 and 2 (to be discussed in the next section), and the more general
implementation can be readily derived from this set-up.

For each direction, the partition of unity is satisfied,∑
i

Ni(α = αp) = 1, α ∈ [X , A,Z], (2.6)
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where αp indicates a given position of a marker or a sampling point. In the three-
dimensional case, ∑

i

∑
j

∑
k

Ni(Xp)Nj(Ap,k)Nk(Zp)

=
∑

j

∑
k

Nj(Ap,k)Nk(Zp)
∑

i

Ni(Xp)

=
∑

j

∑
k

Nj(Ap,k)Nk(Zp)

=
∑

k

Nk(Zp)
∑

j

Nj(Ap,k = Yp − (Zp − Zk)/q̄(Xp))

=
∑

k

Nk(Zp) = 1, (2.7)

where Ap,k denotes the coordinate A at the particle location and its dependence
on k is specified in the subscript. We have demonstrated the partition of unity
for this scheme, which has also been verified numerically in our implementation.
An equivalent and intuitive proof of the partition of unity can also be found in a
mesh-free scheme (McMillan 2017).

2.2. Formulation in TRIMEG-GKX for tokamak plasmas
We have modified the previous version of the TRIMEG-GKX code (Lu et al.

2021, 2023) to deal with experimental equilibria starting from the EQDSK file and
to incorporate the piecewise field-aligned FEM. In a tokamak geometry with nested
magnetic surfaces, the magnetic field is specified by

B = ∇ψ × ∇φ + F∇φ, (2.8)

where ψ is the poloidal magnetic flux function and F is the poloidal current function.
We formulate this method using tokamak coordinates (r, φ, θ ) since TRIMEG-GKX
deals with the core plasma. This method can be readily extended to the whole device
simulation using the unstructured triangular meshes in (R, φ,Z) coordinates, which
enables the studies of the edge and scrape-off layer physics. A possible application
is the combination of this piecewise field-aligned FEM and the unstructured trian-
gular mesh in TRIMEG-C1 (Lu et al. 2019a, 2024), which is beyond the scope of
this work and will be reported in the future. In tokamak coordinates, the radial-
like coordinate is defined as r =√(ψ −ψedge)/(ψaxis −ψedge) and the poloidal-like
coordinate as θ = arctan ((Z − Z0)/(R − R0)) for θ ∈ [−π/2, π/2). The Jacobian of
r, φ, θ is defined as J = (∇r × ∇φ · ∇θ )−1. In addition, we implemented an ana-
lytical ad hoc equilibrium with concentric circular magnetic flux surfaces using a
radial-like coordinate ρ =√(R − Raxis)2 + (Z − Zaxis)2, which not only recovers the
ad hoc equilibrium in ORB5 (Lanti et al. 2020) but also applies to a reversed shear
safety factor profile (Meng et al. 2022). Another choice for a radial-like coordi-
nate with r = (ψ −ψedge)/(ψaxis −ψedge) provides an improved resolution near the
plasma edge to capture the edge instabilities and will be considered in the future. In
r, θ, φ directions, we use uniform grid spacing.

The safety factor is

q(r, θ ) ≡ B · ∇φ
B · ∇θ = JF

R2∂rψ
. (2.9)
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6 Z. Lu and others

Choice of η Pros Cons
η= θ̄ − (φ − φk)/q̄, φ More orthogonal Symmetry breaking along φ
θ̄, η= φ − φk − q̄θ̄ Symmetry along η Less orthogonal

TABLE 1. Different choices of the Clebsch coordinates. For the sake of simplicity, we choose
φ as the toroidal angle but adapt θ to θ̄ so that (r, θ̄ , φ) is a straight field line coordinate system.

The piecewise field-aligned coordinate ηk in the subdomain centred at the φk grid is
obtained as follows:

ηk(r, θ, φ) = θ −
∫ φ

φk

dφ′ 1

q(r, θ ′(r, φ′), φ′)
, (2.10)

where the integral is along the magnetic field line and thus q = q(r, θ ′, φ′), θ ′ is
determined by following the magnetic field while varying φ′, namely, dθ ′/dφ′ =
1/q(r, θ ′, φ′), φk and φ denote the integral’s starting and end points, respectively.
Equation (2.10) is general and has been implemented in this work. Specifically, in
the straight field line coordinates r, θ̄ , φ̄, we readily get

ηk(r, θ̄ , φ̄) = θ̄ − φ̄ − φ̄k

q̄
, (2.11)

which can be constructed in other codes that use straight field line coordinates (q is
constant in a magnetic flux surface) such as EUTERPE (Kleiber et al. 2024).

The piecewise field-aligned FEM can be constructed for three-dimensional geom-
etry with a similar treatment as that shown in figure 1, but with different directions
of the magnetic field and a consequent different alignment of the basis functions at
various radial locations, as indicated in figure 2.

In tokamak plasmas, the pros and cons of the two choices of the field-aligned
coordinates are shown in Table 1. Using the r, η, φ coordinates, it is possible
to treat the ‘X’ point at the separatrix of the tokamak plasma where q = ∞,
which is one motivation of the TRIMEG code (Lu et al. 2019a). By choosing
(r, η= θ̄ − (φ − φ̄k)/q̄, φ) instead of (r, θ̄ , η= φ − φk − q̄θ̄), η is more orthogonal
to the other coordinate φ than to θ̄ since the magnetic field is mainly along the
toroidal direction. It should be noted that the equilibrium variables along φ with
fixed r, η= θ̄ − (φ − φk)/q̄ are not constant anymore. The symmetry along the coor-
dinate η= φ − φk − q̄θ̄ remains if choosing (r, θ̄ , η= φ − φk − q̄θ̄ ). Some detailed
discussions can be found in the previous work and the references therein (Lu et al.
2012; Scott 2001; Zonca & Chen 2014).

2.3. Discretisation of the distribution function and marker initialisation
Following the formulation in the previous δf work (Hatzky et al. 2019; Lanti et al.

2020; Kleiber et al. 2024; Mishchenko et al. 2019), Ng markers are used with a given
distribution,

g(z, t) ≈
Ng∑

p=1

δ[zp − zp(t)]
Jz

, (2.12)
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where z is the phase space coordinate, Ng is the marker number, δ is the Dirac
delta function, Jz is the corresponding Jacobian, z = (R, v‖, μ≡ v2⊥/(2B)) and R is
the real space coordinate. For the full f model, the total distribution of particles is
represented by the markers,

f (z, t) = Cg2fPtot(z, t)g(z, t) ≈ Cg2f

Ng∑
p=1

pp,tot(t)
δ[zp − zp(t)]

Jz
, (2.13)

where, for the constant Cg2f ≡ Nf /Ng, Nf /g is the number of particles/markers, and
g and f indicate the markers and physical particles, respectively. For each marker,

pp,tot(t) = 1

Cg2f

f (zp, t)
g(zp, t)

= const, (2.14)

for collisionless plasmas since

dg(z, t)
dt

= 0,
df (z, t)

dt
= 0. (2.15)

The expression of Ptot(z, t) (and consequently, pp,tot) can be readily obtained as

Ptot(z, t) = 1

Cg2f

f (z, t)
g(z, t)

= nf

〈nf 〉V
〈ng〉V

ng

fv
gv
, (2.16)

where nf is the density profile and fv is the distribution in velocity space, namely,
the particle distribution function f = nf (R)fv(v‖, μ), and 〈. . .〉V indicates the volume
average. There are different choices of the marker distribution functions as discussed
previously (Hatzky et al. 2019; Lanti et al. 2020). In our previous work (Lu et al.
2023), the markers are randomly distributed in the toroidal direction and in the
(R,Z) plane, but the distribution in velocity space is identical to that of the physical
particles, which leads to

pp,tot(z, t) = φwidSR
Vtot

, (2.17)

where φwid is the width of the simulation domain in the toroidal direction, S is the
area of the poloidal cross-section, Vtot is the total volume. Equation (2.17) is reduced
to pp,tot(z, t) = nf R/(〈nf 〉V R0) for the tokamak equilibrium with concentric circular
flux surfaces. In this work, as the first scheme, markers are loaded uniformly in r2,
θ and φ directions, which yields

Ptot(z, t) = nf

〈nf 〉V V
Jrwθwφw

rmid

r
, (2.18)

where rmid = (rmin + rmax)/2 is the middle location of the simulation domain, rw, θw
and φw are the widths in the radial, poloidal and toroidal directions. As the second
scheme, markers are loaded uniformly in r, θ and φ directions, which yields

Ptot(z, t) = nf

〈nf 〉V V
Jrwθwφw. (2.19)

In TRIMEG-GKX code, the scheme in (2.18) is used more often since the poloidal
Fourier filter is not used and thus we use the uniform loading in space to prevent a
significant drop in the number of markers per cell near the plasma edge.
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2.4. Electrostatic gyrokinetic quasi-neutrality system
In this work, we adopt the electrostatic gyrokinetic model to minimise the technical

complexity related to the electromagnetic model. The time step size is set small
enough so that the so-called omega-H mode (Lee 1987) does not make the simulation
crash.

2.4.1. Gyrocentre’s equations of motion
The gyrocentre’s equations of motion are decomposed into the equilibrium part,
corresponding to that in the equilibrium magnetic field, and the perturbed part due
to the perturbed field

Ṙ = Ṙ0 + Ṙ1, (2.20)

v̇‖ = v̇‖,0 + v̇‖,1. (2.21)

The gyrocentre’s equations of motion are consistent with previous work (Hatzky
et al. 2019; Kleiber et al. 2024; Lanti et al. 2020; Mishchenko et al. 2023, 2019), but
are reduced to the electrostatic limit in this work,

Ṙ0 = u‖b∗ + mμ
qB∗‖

b × ∇B, (2.22)

v̇‖,0 = −μb∗ · ∇B, (2.23)

Ṙ1 = b
B∗‖

× ∇〈δ�〉, (2.24)

v̇‖,1 = − qs

ms
b∗ · ∇〈δ�〉, (2.25)

where b∗ = b + (ms/qs)v‖∇ × b/B∗‖, b = B/B, B∗‖ = B + (ms/qs)v‖b · (∇ × b).
The gyrocentres’ equations of motion are expressed in (r, φ, θ ) coordinates by

keeping the dominant terms similar to the early treatment in the EUTERPE code
(Jost et al. 2001). The normalised equations are written where the velocity is nor-
malised to vN , vN = √

2TN/mN , where TN is the temperature unit. The length is
normalised to RN = 1 m and the time is normalised to tN = RN/vN . In addition,
we define the reference Larmor radius as ρN = mNvN/(eBref ) since it appears with
specific physics meaning related to the magnetic drift velocity and the finite Larmor
radius effect, where mN is the proton mass and Bref is the reference magnetic field.
The parallel velocity and the magnetic drift velocity in equilibrium are given by

ṙ0 = Cd
F
J
∂θB, (2.26)

θ̇0 = Bθ

B
v‖ − Cd

F
J
∂rB, (2.27)

φ̇0 = Bφ

B
v‖ + Cd∂rψ(grrgφφ∂rB + grθgφφ∂θB), (2.28)

Cd = m̄s

ēs
ρN

Bref

B3
(v2‖ +μB), (2.29)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000212
Downloaded from https://www.cambridge.org/core. IP address: 216.73.217.6, on 12 Jul 2025 at 06:14:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000212
https://www.cambridge.org/core


Journal of Plasma Physics 9

where Bα ≡ B · ∇α is the contra-variant component of the equilibrium magnetic field
and gαβ ≡ ∇α · ∇β is the metric tensor. The equation due to the mirror force is given
by

v̇‖,0 = − μ

JB
∂rψ∂θB. (2.30)

Regarding the perturbed equations of motion, the equilibrium variables are cal-
culated in (r, φ, θ ) coordinates, but ∂r〈δ�〉, ∂θ 〈δ�〉 and ∂φ〈δ�〉 are calculated in
r, φ, η coordinates. Especially, b · ∇〈δ�〉 is directly calculated in (r, φ, η) using
b · ∇ = b · ∇φ∂/∂φ|r,η.

The E × B velocity is given by

ṙ1 = −∂rψ
B2

grr

R2
∂φ〈δ�〉 + F

JB2
∂θ 〈δ�〉, (2.31)

θ̇1 = −∂rψ
B2

grθ

R2
∂φ〈δ�〉 − F

JB2
∂r〈δ�〉, (2.32)

φ̇1 = ∂rψ

B2R2

(
grr∂r〈δ�〉 + grθ ∂θ 〈δ�〉) , (2.33)

where ∂r〈δ�〉, ∂θ 〈δ�〉 and ∂φ〈δ�〉 are in (r, φ, θ ) coordinates and need to be cal-
culated from the Clebsch coordinates r, φ, η. Using the chain rule, we readily have

∂r|φ,θ = ∂r|φ,η + (∂rη)∂η, (2.34)

∂θ |r,φ = (∂θη)∂η, (2.35)

∂φ|r,θ = ∂φ|r,η + (∂φη)∂η. (2.36)

The gyro-average 〈δ�〉 is calculated in (r, θ, φ) coordinates. The equation due to the
parallel perturbed field is

v̇‖,1 = − es

ms

Bφ

B
∂φ|r,η〈δ�〉. (2.37)

2.5. Field equation
Since we focus on the electrostatic drift waves, the quasi-neutrality equation is

adopted. In addition, the polarisation density is expressed in the long wavelength
limit. Then, the quasi-neutrality equation is given by

∇ · (GP∇⊥δ�)= −
∑

s

esδns, GP =
∑

s

Gs, Gs = |es|ns

ωc,sB
, (2.38)

where ωc,s = |es|B/ms is the cyclotron frequency.
The rigorous expression in (r, θ, φ) or (r, η, φ) is given by

1

J
∂α(JGsgαβ∂βδ�) − 1

J
∂α(JGs∇α · bb · ∇β∂βδ�) = −

∑
s

esδns, (2.39)

where α, β ∈ (r, θ, φ) for the previous scheme we have implemented (Lu et al. 2023)
or α, β ∈ (r, η, φ) for the piecewise field-aligned FEM and the Einstein summation
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rule is adopted. Since the poloidal cross-section is a good approximation of the
perpendicular surface, the simplified expression is given by

1

J
∂γ (JGsgγ ι∂ιδ�) = −

∑
s

esδns, (2.40)

where γ, ι ∈ (r, θ ) or γ, ι ∈ (r, η). In this work, both expressions are implemented
numerically, but no significant differences are found in the growth rate for the base
case with n = 5 in § 4. Thus, the following studies are all based on the simplified
expression of the field equation.

When the piecewise field-aligned FEM is used, the metric tensor gαβ is calculated
using the chain rule as follows (note η= ηk):

grη = (∂rη)grr + (∂θη)grθ + (∂φη)gφθ , (2.41)

gηη = (∂rη)2grr + (∂rη)(∂θη)grθ + (∂θη)(∂rη)gθr + (∂θη)2gθθ , (2.42)

gφη = (∂rη)grφ + (∂θη)gφθ + (∂φη)gφφ . (2.43)

The metric tensors grr, grφ and gφr in (r, η, φ) are the same as those in (r, θ, φ).

3. Numerical implementation
3.1. General description

The TRIMEG-GKX code is based on structured meshes for studying the core
plasmas in tokamaks (Lu et al. 2021, 2023). It is written in Fortran. Object
Oriented Programming (OOP) concepts are considered with a similar structure to
the TRIMEG-C0/C1 code based on the unstructured meshes (Lu et al. 2019a, 2024).
The gyrokinetic field-particle system is decomposed into different classes, namely,
equilibrium, particle, field, solver and B-spline classes. The application of the gyroki-
netic field-particle classes is constructed by other basic classes. The kernel of the
Fortran code is approximately14 000 lines. The PETSc library is adopted to solve lin-
ear field equations using the KSP solver. The shared memory in the MPI3 standard
is used to store the three-dimensional (3-D) field with affordable memory consump-
tion. The equilibrium variables are represented using the B-splines (Williams 2008).
The FEM is implemented using cubic splines with the details provided in our previ-
ous work (Lu et al. 2023). The wedge number of the torus, Lφ,mult, is introduced to
facilitate simulations by restricting the simulated region in the toroidal direction to
1/Lφ,mult of the entire torus. For simulations involving a single toroidal harmonic,
Lφ,mult can be set equal to the toroidal mode number n. In contrast, for nonlinear
simulations with multiple n values, Lφ,mult is typically set to 1 to include toroidal
harmonics n = 0, 1, 2, 3, . . . . However, other positive integer values of Lφ,mult can
also be used to simulate harmonics n = 0, Lφ,mult, 2Lφ,mult, 3Lφ,mult, . . . .

3.2. The 3-D field-aligned FEM solver and the mixed 2-D1F solver
For the comparison with the 3-D field-aligned FEM solver, a mixed 2-D1F solver

is also developed in this work, following the previous work (Lu et al. 2019a), but
using structured meshes and cubic splines. For the 3-D solver, the size of the grids
is (Nr,Nθ ,Nφ) and (Nr,FEM,Nθ,FEM,Nφ,FEM) basis functions are adopted to rep-
resent functions in the simulation domain, where Nr,FEM = Nr +�N , Nθ,FEM = Nθ ,
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Nφ,FEM = Nφ , which are consistent with the boundary conditions, where �N = 2
since cubic splines are adopted. We apply the periodic boundary conditions in the
(θ, φ) directions and implement the Dirichlet and Neumann boundary conditions
in the r direction. In poloidal and toroidal directions, the cubic finite element basis
functions N(x) are as follows:

N inner
cubic (x) =

⎧⎪⎪⎨
⎪⎪⎩

4/3 + 2x + x2 + x3/6 if x ∈ [−2,−1),
2/3 − x2 − x3/2 if x ∈ [−1, 0),
2/3 − x2 + x3/2 if x ∈ [0, 1),
4/3 − 2x + x2 − x3/6 if x ∈ [1, 2).

(3.1)

Along θ and φ, the ith basis function is Ni = Ncubic(x + 1 − i). In the radial direction,
Ni is the same as those in poloidal/toroidal directions as i � 4 or i �Nr,FEM − 3. The
first basis function is

Nouter,1
cubic (x) =

{
0 if x ∈ [−2, 1),
−x3 + 6x2 − 12x + 8 if x ∈ [1, 2).

(3.2)

The second basis function is

Nouter,2
cubic (x) =

⎧⎨
⎩

0 if x ∈ [−2, 0),
7x3/6 − 3x2 + 2x if x ∈ [0, 1),
4/3 − 2x + x2 − x3/6 if x ∈ [1, 2).

(3.3)

The third basis function is

Nouter,3
cubic (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ∈ [−2,−1),
−x3/3 − x2 + 2/3 if x ∈ [−1, 0),
x3/2 − x2 + 2/3 if x ∈ [0, 1),
−x3/6 + x2 − 2x + 4/3 if x ∈ [1, 2).

(3.4)

The last three basis functions are a symmetric mapping of the first three basis func-
tions to the middle point of the simulation domain. All radial basis functions are
constructed according to Ni = Ncubic(x + 1 − i), where i ∈ [1,Nr,FEM ].

The matrix form of the quasi-neutrality equations is

¯̄MP,L,ii′,jj′,kk′ · δ�i′j′k′= CPδNi,j,k, (3.5)

where δ� is normalised to mNv2
N/e and CP = 1/ρ2

N .
For the 3-D field-aligned FEM solver,

¯̄MP,L,ii′,jj′,kk′=
∑

m̄s

∫
dr dθ dφ JÑijk∇ ·

[
n0s

B2
ref

B2
∇⊥Ñi′j′k′

]
,

δNi,j,k=
∑

s

Cp2g,s

Ng∑
p=1

wpÑijk(rp, ηp,k, φp), (3.6)

where Ñijk(r, η, φ) = Ni(r)Nj(ηk)Nk(φ), Cp2g,s = −q̄s〈n〉V Vtot/Ng, 〈. . .〉V indicates
the volume average and Vtot is the total volume.
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For the 2-D1F solver, we have

¯̄MP,L,ii′,jj′,kk′=
∑

m̄s

∫
dr dθ dφ JNiNjeikφ∇ ·

[
n0s

B2
ref

B2
∇⊥(Ni′Nj′e

−ikφ)δk,−k′

]
,

δNi,j,k=
∑

s

Cp2g,s

Ng∑
p=1

wpNi(rp)Nj(θp)e−ikφp, (3.7)

where Ni = Ni(r), Nj = Nj(θ ), δi,j = 1 if i = j and δi,j = 0 if i �= j. The grid variables
δ�ijk and δNijk and the particles interact in the ‘scatter’ and ‘gather’ processes. The
scatter operation assigns charge density and current density back to the grid. In the
gather operation, field values are interpolated at the position of the particles. In the
scattering process using the 3-D field-aligned FEM, the values of the basis function
Ñijk(r, η, φ) is calculated at the particle location, but in (r, η, φ) coordinates, as
shown in (3.6). Thus, the grid value δNijk is obtained by taking into account all
particles where Ñijk(r, η, φ) does not vanish. In the gathering process using the 3-
D field-aligned FEM, as the specific application of (2.5), the field at the particle
location is

δ�(rp, θp, φp) =
∑
i,j,k

δ�i,j,kNi(rp)Nj(ηk,p)Nk(φp). (3.8)

The B-spline coefficients of η(r, θ, φ) are stored in a three-dimensional matrix in
the TRIMEG code as it also applies to the open field line region when the R, φ,Z
coordinates are used and the three-dimensional interpolation is evoked in both the
‘gather’ and ‘scatter’ processes. As a future optimisation for core plasma simulations
using the numerical equilibrium, η can be reduced to η= θ̄ − φ/q̄ in the straight
field line coordinate (r, φ, θ̄) where q̄ ≡ B · ∇φ/ B · ∇ θ̄ is independent of θ̄ , which
is more efficient as only a one-dimensional interpolation of q̄(rp) is needed.

3.3. Matrix construction using the piecewise field-aligned FEM
There are different ways to calculate the matrix and stiffness matrices using the

piecewise field-aligned FEM. Note that the partition of unity is always satisfied. The
main difference is the numerical efficiency and accuracy in the matrix generation.

3.3.1. The rigorous numerical integral
The general form of the element of the mass/stiffness matrix is

Mii′,jj′,kk′=
∫

d
→
x ∂d1Ni(X )∂d′

1
Ni′(X )

×∂d2Nj(Ak)∂d′
2
Nj′(Ak′)∂d3Nk(Z)∂d′

3
Nk′(Z), (3.9)

where i, j, k indicate the row indices, d1, d2 and d3 indicate the differential orders
in the three directions, and ′ indicates the variables of the matrix column. We use
the cubic B-spline basis functions. Each basis function Ni is defined in four sections
of the meshes. In X and Z directions, the overlaps of two basis functions can be
one, two, three or four sections. However, in the Y direction, the overlap can be a
fractional length of the sections, as shown in figure 1. As a result, the integral region
needs to be identified first, as shown in figure 3, where ∂d2Nj(Ak)∂d′

2
Nj′(Ak′) needs to
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FIGURE 3. The numerical integral using the Gauss–Legendre quadrature when k′ �= k, where k
and k′ are the indices in the toroidal direction.

be integrated between the vertical red dashed line and the vertical blue dashed line.
The Gauss–Legendre quadrature points are generated in this overlapping region and
the integral is numerically calculated from the summation. This scheme is challenging
to extend to unstructured triangular meshes since it is more complicated to identify
the overlapping regions.

3.3.2. The mixed particle-wise–basis-wise construction
In addition to the rigorous numerical integral in § 3.3.1, the mixed particle-wise–
basis-wise construction is also possible with a minor loss of accuracy. As shown in
figure 3, the Gauss–Legendre points are generated along the basis function of the
row in the matrix, and the corresponding values of the basis function of the col-
umn in the matrix are calculated at the same Y locations. Then the integral of the
term ∂d2Nj(Ak)∂d′

2
Nj′(Ak′) is calculated using the values at these points, indicated by

the red circles in figure 3. This scheme can be less accurate than the rigorous inte-
gral, but is easier to extend to unstructured triangular meshes in TRIMEG-C0/C1
(Lu et al. 2019a, 2024), as will be developed in the future.

3.3.3. Particle-wise construction using the Monte Carlo integration and importance
sampling

The mass and stiffness matrices are calculated using the Monte Carlo integration,
instead of the Gaussian quadrature, to avoid the complexities of identifying the non-
conforming intersection surfaces of different volumes. The integral can be generally
calculated using the Monte Carlo integration in connection with the importance
sampling,

I ≡
∫

d
→
x K(

→
x ) ≈

∑
i

K(x→ )

g(x→ )
, (3.10)

where K is the integrand and g(x→ ) is the distribution of the sampling points. For
uniformly distributed sampling points,
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Scheme Pros Cons
Rigorous High accuracy Not applicable for unstructured meshes
Mixed Applicable for unstructured meshes Less accurate than rigorous integral
Monte Carlo Applicable for unstructured meshes Marker noise (1/

√
Ng)

TABLE 2. Properties of different schemes for matrix construction.

I ≈ V
N

∑
i

K(
→
x ). (3.11)

In general geometry, uniform loading can be adopted along three coordinates
(X , Y ,Z) and thus,

g(
→
x ) = N

JXwYwZw
, (3.12)

where J is the Jacobian, and Xw, Yw and Zw are the width along X , Y and Z,
respectively. This scheme can be less accurate than the rigorous integral and the
mixed scheme, but is easier to extend to two-dimensional unstructured triangular
meshes or three-dimensional unstructured meshes.

The properties of the three methods of matrix construction are listed in Table 2.
While the rigorous scheme gives high accuracy, it cannot be directly applied to the
unstructured meshes adopted in TRIMEG-C1 since it is complicated to identify the
overlapping regions of different triangles. The mixed and the Monte Carlo schemes
apply to the unstructured meshes, but are not as accurate as the rigorous scheme.

4. Simulation results

In this work, the GA-STD case (core) parameters are adopted as reported in the
previous benchmark work (Görler et al. 2016). Concentric circular magnetic flux
surfaces are adopted. The equilibrium density and temperature profiles, denoted as
H(r̃), and the normalised logarithmic gradients R0/LH are given by

H(r̃)
H(r̃0)

= exp

[
−κHwH

a
R0

tanh

(
r̃ − r̃0

wHa

)]
, (4.1)

where r̃ =√(R − Raxis)2 + (Z − Zaxis)2, LH = − [d ln H(r̃)/dr̃
]−1 is the characteris-

tic length of profile H(r̃) and r̃0 = a/2. The ion-to-electron mass ratio is mi/me =
1836 and the deuterium (mi/mp = 2) is the only ion species where mp is the mass of a
proton. The on-axis magnetic field B0 = 2T, ρ∗ = ρi/a = 1/180, ρi = √

2Timi/(eB0),
aspect ratio ε = a/R0 = 0.36, Te/Ti = 1, characteristic length of temperature and
density profiles R0/LTi = −(d ln Ti/dr̃)−1 = 6.96, R0/LTe = −(d ln Te/dr̃)−1 = 6.96,
R0/Ln = −(d ln n/dr̃)−1 = 2.23, and collision frequency νcoll = 0.

4.1. Single toroidal harmonic simulations for benchmark
The 2-D1F field solver is used in the benchmark with the GENE results in the

previous work (Görler et al. 2016). The simulation for the n = 25 mode is carried
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FIGURE 4. (left) Two-dimensional mode structure and (right) the radial structure of the ITG
mode for n = 25.

out using 8 × 106 electrons and 106 ions. For electrons, the gyro-average is switched
off while the 4-point gyro-average is adopted for ions. The mass ratio is mi/me =
1836. The reference Larmor radius is ρN = 0.0033422 m. The time step size is
�t = 10−4RN/vN for n = 25. The 2-D mode structure is shown in figure 4.

The growth rate of the ITG mode for different values of the toroidal mode number
n is studied. The growth rate is measured using the total field energy. The total field
energy is defined as

E� = −CP

∫
dV

1

GP
δ�̄δN̄, (4.2)

where GP is defined in (2.38) and E� is an approximate value of the field energy
in δ� in the limit |k‖/k⊥| � 1 and |∇⊥ ln GP|/|∇ ln δ�̄| � 1. A reasonably good
agreement is observed between the results from the TRIEMG-GKX code and the
GENE code, as shown in figure 5. The time step size is small enough to stabilise
the omega-H mode and is at least smaller than 10−3 of the ITG period, sufficient to
resolve the ITG mode accurately. The simulations with 4 × 106 and 8 × 106 electron
markers give similar growth rates as an indicator of the convergence concerning the
marker number. Note that the quasi-neutrality equation in the long wavelength is
adopted in this work, while in GENE, there is no truncation in the quasi-neutrality
equation, which can lead to the discrepancy for high-n modes as shown in figure 5.
The discrepancy at n ≈ 32 (namely, kyρs ≈ 0.5 using the notation in the previous
work by Görler et al. 2016) is expected.

4.2. Comparison of the field-aligned FEM solver and the 2-D1F solver

4.2.1. Simulation of the ITG mode
The 3-D piecewise field-aligned FEM solver is verified by comparing it with the
2-D1F solver using the economical CBC parameters. Since the grids are still
arranged in a traditional pattern without any shift, the toroidal Fourier filter can be
readily applied in the 3-D solver. The parameters are the same as the nominal ones
except the mass ratio mi/me = 100 and the reference Larmor radius ρN = 0.01 m.
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FIGURE 5. Growth rate of ITG mode for different values of the toroidal mode number n.

From our simulations using various values of ρN = 0.02, 0.01, 0.005, the computa-
tional cost to avoid a numerical crash depends on several physics parameters as
follows:

Ccomp ∝ C�tCmarkerCme ≈ ρ−1
N ρ−2

N m−1/2
e , (4.3)

where C�t is due to the reduction of the time step size �t as ρN decreases, Cmarker is
due to the increment of the marker number as ρN decreases, and Cme is due to the
reduction of the time step size �t as me decreases. As a result, larger ρN is adopted
to make the simulation less costly. For the 3-D field-aligned FEM solver, the toroidal
Fourier filter is applied to simulate a single toroidal harmonic. The comparison is
shown in figure 6. A good agreement is observed.

4.2.2. Simulations of the zonal flow residual
For collisionless zonal flow dynamics, the Rosenbluth–Hinton residual flow test
is widely used to evaluate the validity and accuracy of gyrokinetic simulations.
The flat q profile, and the uniform density and temperature profiles are adopted.
The dimensionless parameters are ρN = 0.01 (i.e. a/ρ∗ ≈ 60) and the mass ratio
mi/me = 100. The on-axis magnetic field and the major and minor radii are the
same as the GA-STD case in the previous sections. The radial, poloidal and
toroidal grid numbers are (32, 64, 8) for the 3-D field-aligned solver, with n = 0
toroidal Fourier filter. For the case with the traditional 2-D1F solver, the radial
and the poloidal grid numbers are (32, 64). The ion and electron marker num-
bers are 4 × 106 and 106, respectively. The time step size is �t = 0.01RN/vN .
As an initial condition, the perturbed density is introduced by setting the marker
weight according to δf /f0 = Aw exp [−(r − rw,c)2/�2

w], where Aw = 10−8, rw,c = 0.5,
�w/a = 0.1 and r = ρ/a. The whole torus is simulated with the wedge number
Lφ,mult = 1.
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FIGURE 6. Growth rate and frequency of ITG mode for different values of the toroidal mode
number n, using the 2-D1F scheme and the 3-D field-aligned FEM.

The time evolution of the scalar potential simulated using the 3-D field-aligned
FEM solver for q = 2.1 is shown in the left frame of figure 7. A probe at rprob = 0.5
is used to measure the time evolution of the scalar potential δ�prob. The scalar
potential oscillates and reaches the residual level given by RZF = 1/(1 + q2√r/R0)
(Rosenbluth & Hinton 1998). As drift kinetic electrons are included in our simu-
lation model, the high-frequency oscillation (‘ωH mode’) exists (Lee 1987) in the
presence of the non-zonal component with finite k‖, which is observed in the time
evolution in the left frame of the figure (the small magnitude high-frequency oscilla-
tions). The dashed red line denotes the theoretical value of the Rosenbluth–Hinton
(R-H) zonal flow residual. The zonal flow residual from the simulation agrees with
the theoretical value at the end of the simulation. Using the 2-D1f and the new 3-D
solver, the zonal flow residual is simulated with different safety factor values, as
shown in the right frame of figure 7. The zonal flow residual is calculated by aver-
aging δ�prob in ∼ 30RN/vN at the end of each simulation. The right frame shows a
good agreement between the simulation results and the theoretical values. However,
the field-aligned FEM solver does not give any computational benefit in simulating
the zonal flow residual as the memory consumption and the computational cost are
both higher than with the 2-D1F solver. The field-aligned FEM solver is expected to
be more useful in multi-n simulations.
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FIGURE 7. (Left) Time evolution of the scalar potential at the probe position simulated using
the 3-D field-aligned FEM solver. (Right) Zonal flow residual for different safety factor values
q calculated using the 2-D1F solver and the 3-D field-aligned FEM solver compared with the
theoretical result (red dashed line).

4.3. Simulations of the nonlinear evolution
The nonlinear simulation is performed using the 2-D1F and the 3-D solvers with

a diagnostic that traces the energy flux. To make the simulation affordable and the
ρN value relatively small, we choose ρN = 0.0066844, namely a/ρN = 90. The mass
ratio is mi/me = 100. For the case of a 2-D1F solver, we simulate the most unstable
toroidal harmonic, using 106 ion markers and 2.5 × 105 electron markers, with the
time step size �t = 0.002RN/vN . For the case of a 3-D solver, we use 8 × 106 ion
markers and 106 electron markers, with �t = 0.005RN/vN . The time evolution of the
total field energy is shown in the left frame of figure 8. For this case, the n = 10 torio-
dal harmonic is the most unstable mode with a growth rate γn=10 = 0.248vN/RN . The
time evolution of the field energy is very similar during the exponentially growing
stage att< 40RN/vN between the multi-n simulation with the 3-D field-aligned FEM
solver and the single-n simulation with the traditional 2-D1F solver. The nonlinear
saturation level in the multi-n simulation is higher than that in the single n simula-
tion as other n components also contribute to the field energy. The energy flux is
calculated according to Q = ∫ dv3(mv2/2)δf ṙ1/|∇r|, where ṙ1 is the perturbed radial
velocity in (2.31), consistent with our previous studies (Hatzky et al. 2002; Lu et al.
2019b). The time evolution of the energy flux is shown in the right frame of figure. 8.
The radial averaged value of the energy flux is calculated to improve the statistic
reliability in 0.60895<ρ/a< 0.75105 with ρ =√(R − Raxis)2 + (Z − Zaxis)2, where
the magnitude of the energy flux is significant. The energy flux increases in the
exponentially growing stage t< 50RN/vN and decreases in the nonlinear stage after
t ≈ 100RN/vN , as there is no particle or energy source in the simulation. Longer
time scale nonlinear simulations with smaller ρN and particle and heat sources merit
more effort in the future.

4.3.1. Multi-toroidal harmonic simulations with nominal ρN/a
The multi-n nonlinear simulations are carried out without any Fourier filter. Buffer
regions are applied in the inner and outer boundaries to minimise the noise near
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FIGURE 8. Time evolution of (left) the total field energy and (right) the energy flux.

the simulation boundary. The nominal parameters are adopted except mi/me = 100.
The grid numbers along the radial, poloidal and toroidal (parallel) directions are
Nr = 96,Nθ = 192,Nφ = 8, respectively. The time step size is �t = 0.0025RN/vN .
Here, 32 × 106 electrons and 4 × 106 ions are used. The simulation is run on 16
nodes (AMD EPYC Genoa 9554) of the Viper supercomputer at MPCDF, with
128 CPU cores on each node, with a processor base frequency of 3.1 GHz and a
max turbo frequency of 3.75 GHz. It takes ∼ 1.136 hours to simulate one normalised
time unit tN = RN/vN.

The statistic error is indicated by the unbiased estimator of the variance (Hatzky
et al. 2019). Generally, the statistical error for Ng markers is given as

εE = σ√
Ng
, (4.4)

where σ is the standard deviation. The standard deviation of the total particle
number is given by

σn =

√√√√√√∑
s

1

Nmk,s − 1

⎡
⎢⎣ Ng∑

p=1

w2
s,p − 1

Nmk,s

⎛
⎝ Ng∑

p=1

ws,p

⎞
⎠

2

+ εVar,n

⎤
⎥⎦, (4.5)

where εVar,n is the statistical error of the variance of the total perturbed density,
which is a minor correction to the first term when the marker number is sufficiently
large. The standard deviation of the total current is given by

σj =

√√√√√√∑
s

q2
s

Nmk,s − 1

⎡
⎢⎣ Ng∑

p=1

(v‖,pws,p)2 − 1

Nmk,s

⎛
⎝ Ng∑

p=1

v‖,pws,p

⎞
⎠

2

+ εVar,j

⎤
⎥⎦ ,(4.6)

where εVar,j is the statistical error of the variance of the total perturbed current. The
errors of the total perturbed density and current are shown in figure 9. The standard
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FIGURE 9. Standard deviation of the total perturbed density σδn (red line) and current σδj (black
dashed line) (32 × 106 electrons and 4 × 106 ions). A case with half the marker numbers (16 ×
106 electrons and 2 × 106 ions) is also shown, where σδn is given by the blue dashed line and
σδj is given by the dashed magenta line.

deviation is reasonably low during the nonlinear stage, suggesting the quality of the
simulation. The two cases with different numbers of markers give a similar evolution
of σn and σj, which indicates that the noise level is decreasing according to (4.4).
In addition, the error increases slowly, but does not change dramatically in the
nonlinear stage, indicating that it does not significantly worsen.

The time evolution of the total field energy is shown in figure 10. The zonal part
(n = 0) and the turbulent part (n �= 0) are separated, and the corresponding total field
energy is calculated. The growth rate of the zonal part is close to twice that of the
turbulent part, supporting that the zonal component is due to the beat-driven exci-
tation (Chen et al. 2024a, b). Compared with the previous simulation for the studies
of the zonal flow generation due to single toroidal harmonics (Wang et al. 2022), we
have included all the toroidal harmonics 0 � n� 35 and thus γZF/γturb can deviate
slightly from 2, which can also be due to the error in the fitting procedure related
to the finite duration of the exponentially growing linear stage in our case. Our pur-
pose is mainly to demonstrate the capability of the piecewise field-aligned FEM for
multi-n simulations and more dedicated studies on the zonal flow generation will be
our future work.

The turbulent part of the 2-D mode structure is also visualised. The most unstable
mode appears in the linear stage and becomes dominant, as shown in the left frame
of figure 11. Note that the exponentially growing stage is not very long since we start
the simulation with the initial perturbed level of δf /f0 ∼ 10−3 for nonlinear cases and
the 2-D mode structure is not a pure state of a single toroidal harmonic, but a state
with several unstable toroidal harmonics. As a result, the 2-D mode structure is not
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FIGURE 10. Time evolution of field energy for multiple n simulation using 3-D field-aligned
FEM for nominal parameters (ρN = 0.0033422 m) except mi/me = 100. The growth rates γ of
the zonal component (n = 0) and the turbulent part (n �= 0) of the total field energy are calculated
using the linear fit of the time evolution of the logarithmic total field energy during the stable
linear stage indicated by the two dashed red lines.

as pure as the single n linear result in figure 4. In the nonlinear stage, the most
unstable mode reaches its saturation level, and the turbulence spreads in the radial
direction, as shown in the right frame where the zonal component is extracted to
illustrate the features of the turbulent part.

The mode structure in the magnetic flux surface at r = rc = 0.5a is visualised in the
left frames of figure 12. The mode structures are aligned along the magnetic field
lines. Note that although the parallel grid number is small (Nφ = 8), the construction
of the field in the toroidal direction is possible since the parallel mode structure
is smooth. The Fourier components are calculated and the logarithmic amplitude
is shown in the right frames. In the linear stage at t = 30RN/vN , the peak of the
spectrum is at n ≈ 25, consistent with the linear results in figure 5. In the nonlinear
stage at t = 50RN/vN , other toroidal harmonics also grow. Specifically, the low-
n harmonics have a significant amplitude, consistent with previous particle-in-cell
gyrokinetic turbulence simulations (Wang et al. 2011).

The features of the nonlinear evolution are summarised in figure 13. The radial
profile of the turbulence intensity is calculated by extracting the zonal component
(n = m = 0) and integrating it along the toroidal and the poloidal directions, as
shown in the left frame. In the linear stage (t = 30RN/vN ), the mode is localised near
r = 0.5a, as indicated by the red dashed line. In the nonlinear stage (t = 50RN/vN ),
the nonlinear spreading occurs and the radial structure of 〈δ�2〉θ is broader than
that of the linear structure, consistent with that in figure 11 and the previous
simulations (Mishchenko et al. 2023). The spectrum of the toroidal harmonics
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FIGURE 11. The 2-D mode structure (left) in the linear stage at t = 30RN/vN and (right) in the
nonlinear saturated stage at t = 50RN/vN .

δ�n ≡∑m |δ�mn|2 is calculated by summing up the poloidal harmonics (over m) for
each n. Consistent with the spectrum pattern in the right frame of figure 12, in the
linear stage (t = 30RN/vN ), the spectrum of the toroidal harmonics peaks at n ≈ 25,
as shown in the right frame of figure 13. In the nonlinear stage (t = 50RN/vN ),
other toroidal harmonics, especially the low-n harmonics, also grow to a certain
magnitude as indicated by the red line. Note that the simulation time in our non-
linear simulations is limited to 50RN/vN merely to demonstrate the capability of
the piecewise field-aligned FEM by simulating the early nonlinear evolution. Longer
simulations of the turbulent time scale (Bottino et al. 2011) rely on the complete
form of the gyrocentres’ equations of motion and the noise control schemes such
as the coarse-graining algorithm (Chen & Parker 2007a) and the weight smoothing
operator (Sonnendrücker et al. 2015).

5. Conclusions

We have formulated and implemented a piecewise field-aligned finite element
method in tokamak geometry with magnetic shear. On one hand, the computational
grids are aligned in the traditional pattern and the centres of the basis functions are
located at the grid vertices. On the other hand, the finite element basis functions
are defined on piecewise field-aligned coordinates. The linear and nonlinear simu-
lations demonstrate the features of this scheme. Our discussions and results are in
the framework of the finite element method (FEM), consistent with the previous
theoretical and numerical work (Connor, Hastie & Taylor 1979; Cheng, Chen &
Chance 1985; Beer, Cowley & Hammett 1995; Scott 2001; Lu, Zonca & Cardinali
2012; Zonca & Chen 2014), but extending it to FEM. The good properties of this
scheme are as follows.

(i) It is formulated in the framework of the finite element method and conserva-
tion properties are inherited since the partition of unity is satisfied.

(ii) Strong grid deformation is avoided due to the piecewise treatment in defining
the finite element basis functions.
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FIGURE 12. (left) Mode structure δ�(rc, θ, φ) in the magnetic flux surface at r = rc and (right)
the Fourier spectrum δ�m,n(rc). The linear and nonlinear structures are shown in the upper
frame and lower frame, respectively. Note that the maximum toroidal mode number n in the
simulation is limited by the poloidal grid number with the given profile of the safety factor q.
However, for the Fourier decomposition of the mode structure, the field value δ� is calculated in
a denser grid in (r, θ, φ) coordinates with 512 and 1024 grid points along φ and θ , respectively.
Thus, the Fourier component δ�m,n is less reliable for n> 35, but physically, its magnitude
should be small due to the finite Larmor radius effect.

(iii) High efficiency is expected in multi-n nonlinear simulations due to the reduced
grid number in the parallel direction.

(iv) It applies to particle (Lagrangian) and Eulerian schemes using the finite
element method.

(v) The separation of the parallel direction from the two perpendicular directions
enables the optimised treatment in the parallel direction for solving the ideal
Ohm’s law (Hatzky et al. 2019).

(vi) The combination with a toroidal Fourier filter, partial torus simulations and
the application with open field lines is possible.

The piecewise field-aligned FEM has been implemented in TRIMEG-GKX code
for the electrostatic particle simulations with drift kinetic electrons and gyroki-
netic ions. The Cyclone base case benchmark shows reasonable agreement between
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FIGURE 13. (left) Radial mode structure and (right) spectrum of the toroidal harmonics in the
linear stage (t = 30RN/vN ) and nonlinear stage (t = 50RN/vN ).

the TRIMEG-GKX results and the GENE results regarding the simplification in
TRIMEG-GKX. The single toroidal harmonic simulations show agreement between
the traditional 2-D1F solver (FEM in the poloidal plane and the particle-in-Fourier in
the toroidal direction) and the 3-D field-aligned FEM solver. The multi-n simulations
demonstrate the capability of the field-aligned FEM in nonlinear turbulence studies.
The nonlinear evolution of the ITG turbulence is simulated. The radial intensity pro-
file and the spectrum of the Fourier modes demonstrate the nonlinear spreading of
the ITG turbulence in real space and spectrum space.

As further applications, this scheme can be applied to the gyrokinetic simulations
using unstructured meshes (Lu et al. 2019a, 2024) for electromagnetic particle sim-
ulations (Hatzky et al. 2019; Lanti et al. 2020; Lu et al. 2023; Mishchenko et al.
2023), for the whole device modelling. It can also be useful for particle simulations
in stellarators (Kleiber et al. 2024), especially for multi-n nonlinear simulations.
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