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Number of Right Ideals and a q-analogue
of Indecomposable Permutations

Roland Bacher and Christophe Reutenauer

Abstract. We prove that the number of right ideals of codimension n in the algebra of noncommu-
tative Laurent polynomials in two variables over the ûnite ûeld Fq is equal to

(q − 1)n+1q
(n+1)(n−2)

2 ∑

θ
qinv(θ) ,

where the sum is over all indecomposable permutations in Sn+1 and where inv(θ) stands for the
number of inversions of θ.

1 Introduction

Indecomposable permutations and subgroups of ûnite index of the free group F2 are
equinumerous. More precisely, the latter number was computed by Hall [H] and the
former by Comtet [Cm], and it turns out that the number of subgroups of index n
is equal to the number of indecomposable permutations in Sn+1. To the best of our
knowledge, thiswas ûrst noticed byDress and Franz [DF1]who gave a bijective proof.
Sillke [Si], Ossona deMendez and Rosenstiehl [OR], and Cori [Cr] discoveredmore
bijections. In _eorem 10.3 (a keystone for proving _eorem 2.1, our main result)
we give a further bijection based on a natural correspondence between subgroups of
ûnite index and regular right congruences of freemonoids.

Note that subgroups of the free group F2 are also naturally in bijectionwith rooted
hypermaps; see [Cr]. Indecomposable permutations also appear in the study of planar
maps; see [B]. Furthermore, they form a free generating set of the bialgebra of per-
mutations, which is therefore a free associative algebra [PR], and they index a basis
of its primitive elements [AS]. More elementary is the folklore result that the dis-
joint union of all permutation groups is a free monoid under shi�ed concatenation,
freely generated by the set of indecomposable permutations (a proof can be found in
[P]). _is yields a generating function (see [C]) allowing us to count indecomposable
permutations easily.

Our main result is a q-analogue of the bijections mentioned above. We consider
the polynomial

Pn+1(q) = ∑
θ∈Indecn+1

qinv(θ)
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enumerating indecomposable permutations by inversions. We show that this poly-
nomial, corrected by the factor (q − 1)n+1q((n+1)(n−2))/2 , enumerates right ideals of
ûnite index n in the group algebra of the free group ⟨a, b⟩ on two generators over the
ûnite ûeld Fq (_eorem 2.1).
A key ingredient of our proof is a particular case of a result due to Haglund [H].

_e number of invertible matrices over Fq with support included in a ûxed parti-
tion is given by a polynomial that counts, essentially by inversions, the number of
permutation-matrices with the same support property. _ese polynomials are rook
polynomials [GR]. _ey count the number of nonattacking positions of rooks on a
chess board.
A last ingredient of the proof is a study of preûx-free sets and preûx-closed sets

with respect to the alphabetical order in the free monoid {a, b}∗ (or equivalently in
binary trees). In particular, our Lemma 6.4, a somewhat technical formula linking
diòerent parameters, seems to be new.

_is article is a sequel to [BR], where we have shown that the number of right
ideals of index n of the free associative algebra on two generators over Fq is given
by qn(n+1)Cn(1/q), where Cn(q) (deûned recursively by C0(q) = 1 and Cn+1(q) =

∑
n
k=0 q

(k+1)(n−k)Ck(q)Cn−k(q)) is the Carlitz–Riordan q-analogue of the n-th Cata-
lan number (2n

n )
1

n+1 , a result that was implicit in Reineke’s article [R]. We use several
results of our previous paper: a description of preûx-free and preûx-closed sets of
right ideals in the free associative algebra, based on the fact that this algebra is a ûr
(free ideal ring), in the sense of Cohn [C], and a noncommutative version of Buch-
berger’s algorithm for the construction of Gröbner bases.

_e paper is organized as follows. Section 2 states our main result, _eorem 2.1,
which enumerates right ideals of codimension n in the Fq-algebra Fq⟨a, b, a−1 , b−1⟩

of noncommutative Laurent polynomials in two free noncommuting generators a, b.
Section 3 discusses inversions and hooks. Section 4 recalls and proves a result of
Haglund enumerating speciûc invertiblematrices. Sections 5–7 are devoted to preûx-
free and preûx-closed sets and some of their properties. Sections 8–10 discuss right
congruences in freemonoids and indecomposable permutations associated with reg-
ular right congruences of the free monoid {a, b}∗. Sections 11 and 12 present right
ideals in Fq⟨a, b⟩ and Fq⟨a, b, a−1 , b−1⟩. _e remaining sections contain a proof of
_eorem 2.1 and a few concluding remarks.

2 Main Result

Apermutation σ ∈ Sn of the set {1, . . . , n} is decomposable if σ({1, . . . , i}) = {1, . . . , i}
(and σ({i+1, . . . , n}) = {i+1, . . . , n}) for some i in {1, . . . , n−1}. A permutation σ is
indecomposable otherwise, i.e., if σ({1, . . . , i}) /= {1, . . . , i} for all i in {1, 2, . . . , n−1}.
An inversion of a permutation σ ∈ Sn is a pair of distinct integers i , j with 1 ≤ i <

j ≤ n such that σ(i) > σ( j). We write inv(σ) for the number of inversions of σ .
We denote by K⟨a, b, a−1 , b−1⟩ the ring of noncommutative Laurent polynomials

in noncommuting variables a, b over a ûeld K. Equivalently, K⟨a, b, a−1 , b−1⟩ is the
K-algebra of the free group generated by a, b.
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_eorem 2.1 Given a ûnite ûeld Fq , the number of right ideals having codimension
n of the Fq-algebra Fq⟨a, b, a−1 , b−1⟩ of noncommutative Laurent polynomials in two
free noncommuting generators a, b is equal to

(2.1) (q − 1)n+1q
(n+1)(n−2)

2 ∑
θ∈Indecn+1

qinv(θ) ,

with Indecn+1 denoting the subset of all indecomposable permutations in Sn+1. Equiva-
lently, formula (2.1) is also given by

(2.2) (
q − 1
q

)
n+1

∑
θ∈Indecn+1

qp(θ) ,

where p(θ) is equal to the cardinality of the set

{(i , j) ∶ 1 ≤ i , j ≤ n + 1 and j < θ(i) or i > θ−1
( j)} .

_e ûrst polynomials Pn+1(q) = ∑θ∈Indecn+1
qinv(θ) corresponding to n = 0, 1, 2, 3

are 1, q, q3 + 2q2, and q6 + 3q5 + 5q4 + 4q3.
_e generating series of all these polynomials is easy to compute as follows. _e

shi�ed concatenation α ⋅ β ∈ Sm+n of two permutations α ∈ Sm and β ∈ Sn is the
permutation of {1, . . . , n + m} deûned by α ⋅ β(i) = α(i) if i ∈ {1, . . . ,m} and by
α ⋅ β(i) = m + β(i − m) if i ∈ {m + 1, . . . ,m + n}. _e disjoint union M = ⋃n∈N Sn
(with S0 acting on the empty set), endowed with shi�ed concatenation, is the free
(noncommutative) monoid generated by the set ⋃∞n=1 Indecn of all indecomposable
permutations; see [Cm]. Since inv(α ⋅ β) = inv(α) + inv(β), the map inv∶M → N
deûnes amorphism from themonoidM onto the additivemonoid N. Freeness ofM
over ⋃∞n=1 Indecn implies the formula

∑
n∈N

tn ∑
σ∈Sn

qinv(σ)
=

∞
∑
k=0

(
∞
∑
n=1

tn ∑
σ∈Indecn

qinv(σ)
)

k
= ( 1 −

∞
∑
n=1

tn ∑
σ∈Indecn

qinv(σ)
)
−1

for the generating series of the number of permutations with a given number of in-
versions. An easy induction yields the well-known identity

∑
σ∈Sn

qinv(σ)
= (1)(1 + q) ⋅ ⋅ ⋅ (1 + q + ⋅ ⋅ ⋅ + qn−1

) = (q − 1)−n
n
∏
k=1

(qk
− 1),

where the right-hand side involves the classical q−analogue of the factorial function.
_erefore, we have

∑
n≥0

(1)(1 + q) ⋅ ⋅ ⋅ (1 + q + ⋅ ⋅ ⋅ + qn−1
)tn = ( 1 − ∑

k≥1
Pk(q)tk)

−1
.

3 Inversions and Hooks

We represent a permutation σ ∈ Sn by its permutation matrix, with a 1 in row i
and column σ(i), for each i , 1 ≤ i ≤ n, and with 0 s elsewhere. (With this con-
vention, well-suited to the group-structure of Sn , a permutation matrix Mσ acts by
right-multiplication v ↦ v ⋅ Mσ through the coordinate-permutation v i ↦ vσ(i)
on a row-vector v = (v1 , . . . , vn).) A hook of a coeõcient 1 in such a matrix is the
set of 0 s that are located either on the same row at its le� or on the same column
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Figure 1

and below it. In other words, the hook associated with (i , σ(i)) is the set of en-
tries with coordinates (i , j), j < σ(i), or (k, σ(i)), k > i. Setting j = σ(i), we have
{(k, σ(i), k > i} = {(k, j), k > σ−1( j)}. _is shows that the number p(θ) introduced
in_eorem 2.1 enumerates the union of all hooks of the indecomposable permutation
θ ∈ Sn+1.

Hooks are in general not disjoint and can also be enumerated as follows. An inver-
sion of σ gives rise to a pair of 1 s (in the permutation matrix of σ) that are incompa-
rable with respect to the order on entries induced by the natural order of N ×N (i.e.,
one of the coeõcients 1 has a higher row-index, the other a higher column-index). A
version of σ is a pair i < j of distinct integers such that σ(i) < σ( j). Equivalently,
a version corresponds to a pair of 1 s (in the permutation matrix of σ) whose entries
are comparable for the natural order on N × N. Denote by inv(σ) and by v(σ) the
number of inversions and of versions of σ . We have

(3.1) p(σ) = 2 inv(σ) + v(σ) = inv(σ) + (
n
2
).

_e ûrst equality follows from Figure 1, which shows that each inversion increases
p(σ) by 2 (le� part of Figure 1), whereas a version adds only 1 corresponding to a
unique 0 contained in both hooks (right part of Figure 1). _e observation that the
sum inv(σ)+v(σ) is equal to the number (n

2) of all 2-subsets in {1, . . . , n} shows the
second equality. Rewriting the equality p(θ) = inv(θ) + (

n+1
2 ) as

p(θ) − n − 1 = inv(θ) +
(n + 1)(n − 2)

2
,

we deduce equality of formulae (2.1) and (2.2) from (3.1) and the trivial identity

(n + 1)(n − 2)
2

+ n + 1 =
n(n + 1)

2
.

4 A Theorem of Haglund

Let λ = (λ1 , . . . , λ l) be a partition, with 0 ≤ λ1 ≤ ⋅ ⋅ ⋅ ≤ λn ≤ n. We associatewith it the
subset Eλ of [n] × [n] deûned by Eλ = ⋃1≤i≤n{i} × [λ i], where [k] = {1, . . . , k}. _e
following result is a particular case of [Hg,_eorem 1].

_eorem 4.1 _e number of n × n invertiblematrices over Fq whose nonzero entries
lie in Eλ is equal to (q − 1)n

∑σ qp(σ), where the sum is over all permutations in Sn
whosematrices have nonzero entries only in Eλ .
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We have stated the variant of [LLMPSZ], the actual formulation in [Hg] is slightly
diòerent.
For later use, we denote by Hλ(q) the polynomial appearing in _eorem 4.1. _e

polynomial Hλ(q) is of course zero if λ i < i for some i ∈ {1, . . . , n}.
_e polynomial Hλ(q) of Haglund’s theorem is closely related to rook polynomi-

als as deûned and studied in [GR]. Such polynomials are symmetric (self-reciprocal).
Observe, however, that this is not the case for the polynomials appearing in _eo-
rem 2.1.

We illustrateHaglund’s theoremwith an example. _e four possible invertible per-
mutation matrices (corresponding to the permutations 123, 132, 213, 231) with non-
zero entries in the partition λ = (2, 3, 3) (given at the le� of the following ûgure) are
depicted in Figure 2. _e function p(σ) has respectively the values 3, 4, 4, and 5, as

⎛
⎜
⎝

× × 0
× × ×

× × ×

⎞
⎟
⎠

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠

⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

Figure 2

shown by the boldfaced 0 s,which represent the union of the hooks. _e correspond-
ing polynomial Hλ(q) is given by (q − 1)3q3(1 + q)2.

4.1 Proof of Theorem 4.1

We present a short proof of_eorem 4.1 for the sake of self-containedness.
Given a partition λ with n parts λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λn = n satisfying λ i ≥ i, we claim

that we have

(4.1) Hλ(q) = q(
n
2)

n

∏
i=1

(qλ i+1−i
− 1).

For example, the partition λ = (2, 3, 3) considered above yields

q(
3
2)(q2+1−1

− 1)(q3+1−2
− 1)(q3+1−3

− 1) = q3
(q − 1)3

(q + 1)2 ,

as expected.
Formula (4.1) is clearly true if λ is reduced to a unique part λ1 = 1 where an in-

vertible matrix associated with λ is simply a non-zero element of Fq . Now consider
an invertible matrix A compatible with λ (and having its coeõcients in Fq). _ere
are qλ1 − 1 possibilities for its ûrst row. Let j1 be the column-index of the last non-
zero coeõcient of the ûrst row. Using the non-zero coeõcient of row 1 and column j1
for Gaussian elimination, we can eliminate all non-zero coeõcients in the remaining
rows of the j1-th column by subtracting a suitable multiple of the ûrst row. All qn−1

possibilities for such an elimination can arise in a suitable invertiblematrix A. Erasing
the ûrst row and the j1-th column in the resulting matrix, we get an invertiblematrix
A′ associated with the partition λ′ with n− 1 parts λ2 − 1, . . . , λn − 1. _us, we have by
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induction

Hλ(q) = (qλ1 − 1)qn−1Hλ′(q) = (qλ1 − 1)qn−1q(
n−1
2 )

n

∏
i=2

(qλ i+1−i
− 1),

which simpliûes to (4.1).
Nowwe associatewith the abovematrixA thepermutationmatrixwith a 1 in the j1-

th columnof the ûrst row. _e remaining non-zero coeõcients are deûned recursively
as the permutation matrix of A′ a�er removal of the ûrst row and the j1-th column.
_e hook of the coeõcient 1 in the ûrst column yields a contribution of j1 − 1 + n − 1
to the number p(σ) of the permutation σ corresponding to the permutation matrix
above. _e identity p(σ) = j1 − 1 + n − 1 + p(σ ′), another induction on n, and a
sum over all possibilities for j1 now imply equality between formula (4.1) and the
expression (q − 1)n

∑σ qp(σ) given by Haglund’s _eorem.

Remark 4.2 Formula (4.1) is in fact much more suited for computing Hλ(q) than
the expression given in _eorem 4.1.

5 Prefix-free and Prefix-closed Sets

We denote by A∗ the free monoid over a ûnite set A. Elements of A∗ are words with
letters in the alphabet A. _e product of two words u = u1 ⋅ ⋅ ⋅un and v = v1 ⋅ ⋅ ⋅ vm in
A∗ is given by the concatenation uv = u1 ⋅ ⋅ ⋅unv1 ⋅ ⋅ ⋅ vm . _e identity element of A∗ is
the empty word, denoted by 1 in the sequel. We use a∗ = {an , n ≥ 0} for the set of all
powers of a letter a in the alphabet A.
A word u is a preûx of a word w if w = uv for some word v. A subset C of A∗ is

preûx-free if no element of C is a proper preûx of another element of C. A preûx-free
set C is maximal if it is not contained in a strictly larger preûx-free set. A preûx-free
set C is maximal if and only if the right ideal CA∗ intersects every (non-empty) right
ideal I of themonoid A∗. 1 Indeed, a preûx-free set C giving rise to a right ideal CA∗

not intersecting a right ideal I of A∗ can be augmented by adjoining an element of I.
Conversely, a preûx-free set C strictly contained in a preûx-free set C ∪ {g} deûnes a
right ideal CA∗ that is disjoint from the right ideal gA∗. Another characterization of
maximal preûx-free sets is given by the fact that a preûx-free set C is maximal if and
only if every element of A∗ ∖ C has either an element of C as a proper preûx or is a
proper preûx of an element of C.
A subset P of A∗ is preûx-closed if P contains all preûxes of its elements. Equiva-

lently, P ⊂ A∗ is preûx-closed if u ∈ P whenever there exists v ∈ A∗ such that uv ∈ P.
In particular, every non-empty preûx-closed set contains the empty word.

_ere is a canonical bijection between ûnite maximal preûx-free sets and ûnite
preûx-closed sets. _e preûx-closed set corresponding to a ûnitemaximal preûx-free
set C is the set P = A∗∖CA∗ of proper preûxes of allwords in C. _e inverse bijection
associateswith a ûnite preûx-closed set P the ûnitemaximal preûx-free setC = PA∖P
if P is nonempty, and C = {1} if P is empty. _is bijection has the following graphical
interpretation. Preûx-closed sets have a natural rooted tree-structure: the root is the

1A right ideal of a monoidM is of course deûned in the obvious way as a subset I ofM such that
IM = I.
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Figure 3:_e preûx-free set C = {a2 , ab, ba2 , bab, b2a, b3} corresponding to the set of preûxes
P = {1, a, b, ba, b2}. Le� edges are encoded by a, right edges by b.

empty word, preûxes of a vertex-word are its ancestors. _e set C ∪ P (with C and
P as above) is of course preûx-closed and the associated tree has leaves indexed by
elements ofC and interior vertices indexed by elements of P. Every interior vertex has
the same number of children indexed by the alphabet A. _e perhaps empty subtree
of all interior vertices indexed by P determines (and is uniquely determined by) the
set of all leaves corresponding to C.

Now consider a ûnite maximal preûx-free set C ⊂ {a, b}∗ with associated ûnite
preûx-closed set P. For x ∈ {a, b}, denote by Cx ∩ {a, b}∗x the set of words in C
terminating with x, and denote by Px = P ∩ ({1} ∪ {a, b}∗x) the subset of P given
by the union of 1 (provided P is non-empty) with the subset of all non-empty words
in P ending with x. If C /= {1}, we have a bijection µa between Ca and Pb given by
Ca ∋ w ↦ p ∈ Pb , where p is the unique element of Pb such that w ∈ pa∗. _e inverse
bijection associates with p ∈ Pb the unique word w = pa∗ ∩ Ca of Ca .

Similarly, we have a bijection µb between Cb and Pa if C /= {1}.
Observe that C is given by the disjoint union Ca ∪ Cb , except in the trivial case

C = {1} where we have Ca = Cb = P = ∅. Assuming, here and in the sequel, that C is
nontrivial,we can deûne µ∶C → P by using µa on Ca and µb on Cb . Otherwise stated,
µ(c) is the preûx of c obtained by removing from c its suõx ofmaximal length equal
to a power of its last letter. Equivalently, µ(x) (for x /= 1) is deûned as the shortest
proper preûx of x such that x ∈ µ(x)a∗ ∪ µ(x)b∗.

Notice that µ(aα) = µ(bβ) = 1 where aα and bβ are the two unique elements of C
involving only one letter. Notice also that µ induces a bijection between C ∖ {aα , bβ}
and P ∖ {1} and that µ restricted to C ∖ {bβ} is a bijection onto P.

Example 5.1 Consider the preûx-free set C = {a2 , ab, ba2 , bab, b2a, b3}, repre-
sented by the leaves of a complete binary tree; see Figure 3. Its set of preûxes P =

{1, a, b, ba, b2} is the set of internal nodes. One has Pa = {1, a, ba}, Pb = {1, b, b2},
Ca = {a2 , ba2 , b2a} and Cb = {ab, bab, b3}. _e bijection µa sends a2 , ba2 , b2a
respectively onto 1, b, b2 and µb sends ab, bab, b3 respectively onto a, ba, 1.

For all these results, see [BR] or [BPR],where preûx-free sets are called preûx sets.2

2A preûx-free set, not equal to {1}, is a code.
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6 Order Properties of Prefix-free and Prefix-closed Sets

Let A be a totally ordered alphabet. _e alphabetical (or lexicographical) order on the
freemonoid A∗ is the order of the dictionary. Formally, one has u < v if and only if u
is a proper preûx of v or if u = xay, v = xbz for some words x , y, z and two distinct
letters a, b ordered by a < b of the alphabet A.
For any words u, v , x , y, we have the following properties:

● u < v if and only if xu < xv;
● if u is not a preûx of v, then u < v implies ux < vy.

Lemma 6.1 If p, q ∈ {a, b}∗ are two elements with p ≤ q lexicographically, then
every element of pa∗ = ⋃∞n=0 pan is lexicographically strictly smaller than every element
of qbb∗ = ⋃∞n=1 qb

n .

Proof If p is not a preûx of q, we are done by the previous observation. If q = pw,
then pa i < pwb j if and only if a i < wb j . _is holds for j ≥ 1, since a i is strictly smaller
than any word involving b.

A ûnitemaximal preûx-free set C of {a, b}∗ deûnes a complete ûnite binary tree T
with leaves indexed by C and interior vertices indexed by the associated preûx-closed
set P. An element v ∈ Ca deûnes a le� branch µa(v)a∗ ∩ (C ∪ P) of T . _e natural
integer length(v) − length(µa(v)) is the length of the le�-branch deûned by v ∈ Ca
(see also the last paragraph of Section 7.1).

We shall need the following arithmetic characterization of complete binary trees
and associated preûx sets.

Lemma 6.2 A complete ûnite binary tree T with leaves indexing a ûnite maximal
preûx-free set C (and interior vertices deûning the associated preûx-closed set P) is
uniquely determined by the ranks i1 , . . . , ik of all k elements in Ca among the alphabet-
ically ordered elements of C and by the corresponding lengths l1 , . . . , lk of the associated
le� branches.

_e integers i1 , . . . , ik and l1 , . . . , lk of Lemma 6.2 can also be described as follows:
if C = {c1 , . . . , cn+1} with c1 < c2 < ⋅ ⋅ ⋅ < cn < cn+1, then Ca = {c i1 , . . . , c ik} and
l j = length(c i j) − length(µa(c i j)). We leave the proof of Lemma 6.2 to the reader.

Example 6.3 In the running example of Figure 3we have k = 3, l1 = 2, l2 = 2, l3 = 1,
i1 = 1, i2 = 3, i3 = 5.

We establish for later use the following identity involving some numbers associated
with preûx sets.

Lemma 6.4 We consider a ûnitemaximal preûx-free set C ⊂ {a, b}∗ with associated
preûx-closed set P having n = ∣P∣ = ∣C∣ − 1 ≥ 0 elements. We write

C̃a = C ∖ Cb =
⎧⎪⎪
⎨
⎪⎪⎩

Ca if C /= 1,
{1} if C = {1},
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for the set of all words in C that do not end with b. We denote by i1 , . . . , ik the ranks
in C = {c1 , . . . , cn+1} (listed in alphabetical order) of all k = ∣C̃a ∣ elements in C̃a =

{c i1 , . . . , c ik} ⊂ C. We introduce the set M = {(p, c) ∈ (Pb ∖ {1}) × Cb , p < c}
containing M = ∣M∣ elements. _en

M +
k

∑
h=1

ih = (n + 1)(k − 1) + k −
k(k − 1)

2
.

Example 6.5 Our running example of Figure 3 yields

M = {(b, bab), (b, b3
), (b2 , b3

)}

and M = 3, n = 5, k = 3, i1 = 1, i2 = 3, i3 = 5. Hence, we get 3 + 1 + 3 + 5 = 12 for the
le� side and 6 ⋅ 2 + 3 − 3⋅2

2 = 12 for the right side.

Proof We give a bijective proof of the identity

(6.1) (n + 1)k =
k

∑
h=1

ih +M + (n + 1 − k) +
k(k − 1)

2

equivalent to Lemma 6.4. _e le� side of (6.1) is the cardinality of the set C × C̃a . _e
right side is the cardinality of the disjoint union E = E1 ∪ E2 ∪ E3 ∪ E4, where

E1 = {(c1 , c2) ∈ C × C̃a , c1 ≤ c2}, E2 =M = {(p, c) ∈ (Pb ∖ 1) × Cb , p < c},

E3 = (C ∖ C̃a) = Cb , E4 = {(c1 , c2) ∈ C̃a × C̃a , c1 < c2}.

_e set F = C × C̃a can be partitioned into F = F≤ ∪ F> with

F≤ = E1 = {(c1 , c2) ∈ C × C̃a , c1 ≤ c2},

F> = {(c1 , c2) ∈ C × C̃a , c1 > c2}.

We leave it to the reader to check that ϕ∶ F> → E2 ∪ E3 ∪ E4 given by

ϕ(c, γ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(µa(γ), c) ∈ E1 c ∈ Cb , γ /∈ aa∗ ,
c ∈ E3 c ∈ Cb , γ ∈ aa∗ ,
(γ, c) ∈ E4 c ∈ Ca .

deûnes a bijectivemap.

7 Twisted Alphabetical Order

7.1 Twisting a Total Order

Suppose that we have a set E with a partition E = ⋃i∈I E i , where I and each E i are
totally ordered. _is gives a natural total order on E by setting x < y if either x and y
with x < y belong to a common subset E i or if x ∈ E i and y ∈ E j /= E i with i < j.
Call a subset E′ of an ordered set E an interval if b ∈ E′ for every b ∈ E such that

there exists a, c ∈ E′ with a < b < c. A set I indexing disjoint non-empty intervals
E i partitioning a totally ordered set E = ⋃i∈I E i is naturally ordered as follows. Given
two distinct elements i , j of I, we set i < j if x < y for some x ∈ E i , y ∈ E j . Since the
sets E i are intervals, this is awell-deûned total order relation on I, independent of the
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chosen representatives x and y. We use this partition and the previous construction
to deûne the twisted total order ≺ (with respect to the partition⋃i∈I E i). _e restriction
of ≺ to each E i is the opposite order of < on E i , and the set I is ordered by <.

Remark 7.1 (i) It is also possible to twist the order on E = ⋃i∈I according to the
set of indices: x≺̃y if either x < y for x , y ∈ E i or x ∈ E i , y ∈ E j with i > j. Twisting
an order relation on the set of indices of a suitable partition amounts, however, to the
ordinary order twist of the opposite order relation with respect to the same partition.

(ii) Twisted orders can be generalized to arbitrary (not necessarily) totally or-
dered) posets using admissible partitions indexed by posets where a partition E =

⋃i∈I E i of a poset E is admissible if all elements in any common part E i have the same
sets of upper and lower bounds in E ∖ E i .

Now consider {a, b}∗ with the alphabetical order. We partition {a, b}∗ into equiv-
alence classes given by u ∼ v if ua∗ ∩ va∗ /= ∅. Elements in a common equivalence
class thus diòer at most by a ûnal string of a’s. Each equivalence class can be written
as wa∗ for a unique word w in {a, b}∗ ∖ {a, b}∗a = {1} ∪ {a, b}∗b. More precisely,
the equivalence class of an elementw is the setwa∗ ifw ∈ {1}∪{a, b}∗b does not end
with a and such an element w is the lexicographically smallest element in its equiv-
alence class. If a word w ∈ {a, b}∗a ends with a last letter a, its equivalence class is
given by µa(w)a∗.
For later use, we mention the trivial fact that u ∼ v implies either that u is a (not

necessarily proper) preûx of v or that v is a preûx of u.

Lemma 7.2 Each equivalence class for ∼ is an interval of the lexicographically ordered
poset {a, b}∗.

Proof It is enough to show that u < v < ua i implies v = uah with h ∈ {1, . . . , i − 1}.
_e easy veriûcation is le� to the reader.

Lemma 7.2 shows thatwe can apply the previous construction. _us,we obtain the
twisted alphabetical order, which we denote by ≺ . In summary, u ≺ v if and only if
either u, v are both in a common equivalence class wa∗ and v < u, or if they belong
to two diòerent equivalence classes and u < v. Equivalently, u ≺ v if either µa(u) /=

µa(v) and u < v or if µa(u) = µa(v) and u ∈ vaa∗, where µa is extended to all
elements of {a, b}∗ by setting µa(w) = w if w /∈ {a, b}∗a (i.e., µa always erases
a ûnal maximal (perhaps empty) string of consecutive letters a in a word). Observe
that every equivalence class has a unique largest element but no smallest elementwith
respect to the twisted order.

_e following result summarizes a few properties of the twisted order.

Lemma 7.3 (i) _e two order relations < and ≺ induce opposite orders on an equiv-
alence class of ∼.

(ii) If u, v are not in the same equivalence class of ∼, then u < v if and only if u ≺ v
and this depends only on the equivalence classes of u and v.

(iii) _e restriction of the map µ deûned in Section 5 to the set {a, b}∗a is order-
preserving in the following sense. For two elements u, v in {a, b}∗a with u < v
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we have either µ(u) = µ(v) (and they are in a common class µ(u)a∗) or we can
apply (ii) above.

We leave the easy proof to the reader.
For a subset L of {a, b}∗, a non-empty intersection of L with an equivalence class

of ∼ is called a le� branch of L.

7.2 Prefix-free Sets and the Twisted Alphabetical Order

Lemma 7.4 LetC be a ûnitemaximal preûx-free set in {a, b}∗ with associated preûx-
closed set P. Given an element c in C we denote by c′ ∈ Ca the largest lower bound of c
in Ca (i.e., c′ is maximal in Ca such that c′ ≤ c). _en µ(d) ⪯ µ(c′) (with µ deûned in
Section 5) for every d in C such that d ≤ c.

Example 7.5 An instance of this lemma in our running example is: For c = bab we
have c′ = ba2. Taking d = c we get µ(d) = ba ≺ b = µ(c′).

Proof If d is in Ca , this follows from preûx-freeness of Ca and from Lemma 7.3(iii).
Suppose now that d ∈ Cb . Deûne c′′ ∈ Ca as the unique element of C in the set

µ(d)a∗ = µb(d)a∗. If c′′ = c′, then µa(c′) = µa(µ(d)) ≻ µ(d) by deûnition of ≺ on
equivalence classes. If c′′ /= c′, then c′′ < c′ by maximality of c′. _e elements c′′ and
c′ thus deûne two diòerent equivalence classes µa(c′′)a∗ and µa(c′)a∗, and we can
apply of Lemma 7.3(ii).

8 Right Congruences of a Free Monoid

A right congruence of a monoid is an equivalence relation ≡ that is compatible with
right-multiplication: u ≡ v implies uw ≡ vw. Observe that each element in the
monoid induces, by right-multiplication, a function from the set of ≡-classes into it-
self. Equivalently, we get a right action of the monoid on the quotient.3 Recall the
well-known bijection between right congruences of ûnite index in a freemonoid A∗

and triplets (C , P, f )whereC is a ûnitemaximal preûx-free setwith associated preûx-
closed set P and where f ∶C → P is a function such that f (c) ∈ P is alphabetically
smaller than c for every c in C. _e corresponding congruence is generated by the
relations c ≡ f (c) for c in C. _e preûx-closed set P is a set of representatives for the
quotient set A∗/ ≡. _e right action of A∗ on the quotient is completely deûned as
follows. A letter x of the alphabet A acts on p in P by p.x = px if px is in P and by
p.x = f (px) otherwise (see, for example, [BR, Proposition 7]).

Example 8.1 We illustrate this with the right congruence deûned by a2 ≡ 1, ba2 ≡

b, b2a ≡ b2 , ab ≡ 1, bab ≡ ba, b3 ≡ awithC and P as in Figure 3. Right-multiplication
w ↦ w .a or w ↦ w .b by a or b on the set P = {1, a, b, ba, b2} is given by

3A right congruence of a free monoid is essentially the same thing as a deterministic automaton.
More precisely, a right congruence of a free monoid corresponds to an automaton with an initial state
but without prescribed set of ûnal states, which is accessible in the sense that each state can be reached
from the initial state.
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w 1 a b ba b2

w .a a 1 ba b b2

w .b b 1 b2 ba a
.

9 Left-to-right Maxima and Indecomposable Permutations

A le�-to-right maximum of a permutation σ ∈ Sn is a value σ(i) = j ∈ {1, . . . , n}
such that σ(h) < j for h < i. We call i the position and j the value of the le�-to-right
maximum σ(i). _e following result is well known.

Lemma 9.1 A permutation σ ∈ Sn with successive positions i1 < ⋅ ⋅ ⋅ < ik of le�-to-
right maxima is indecomposable (in the sense of Section 2) if and only if σ(i j) ≥ i j+1 for
j = 1, . . . , k − 1.

Observe that one always has i1 = 1 and σ(ik) = n with these notations.
For later use, we state and prove the following result, which holds for any permu-

tation expressed as awordw = a1 ⋅ ⋅ ⋅ an involving n distinct letters of a totally ordered
alphabet. We denote by st(w) = i1 ⋅ ⋅ ⋅ in ∈ Sn the associated standard permutation
of w obtained by replacing each letter a j in w by its rank i j in the totally ordered
set {a1 , . . . , an}. For example, the standard permutation of w = 3649 is given by
st(w) = 1324.

Lemma 9.2 Let θ ∈ Sn have successive le�-to-right maxima in positions i1 , . . . , ik ,
with values j1 , . . . , jk . Let σ = st(w), where

w = σ(2) ⋅ ⋅ ⋅ σ(i2 − 1)σ(i2 + 1) ⋅ ⋅ ⋅ σ(ik − 1)σ(ik + 1) ⋅ ⋅ ⋅ σ(n)

is obtained from the word θ = σ(1) ⋅ ⋅ ⋅ σ(n) by removal of the le�-to-right maxima
j1 , . . . , jk . _en

p(θ) = p(σ) + kn −
k(k + 1)

2
+ ∑

1≤s≤k
( js − is),

where p(σ) is the cardinality of the union of all hooks (see Section 3).

Example 9.3 Consider θ = 325461, with underlined le�-to-right maxima. We have
i1 = 1, i2 = 3, i3 = 5, j1 = 3, j2 = 5, j3 = 6, w = 241, σ = st(w) = 231. _ematrices of θ
and σ (with hooks represented by boldfaced 0 s) are

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and
⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
.
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We see that p(θ) = 22, p(σ) = 5, k = 3, n = 6. _e equality

22 = 5 + 3 ⋅ 6 −
3 ⋅ 4
2

+ (3 − 1) + (5 − 3) + (6 − 5)

illustrates Lemma 9.2.

Proof _ematrix of θ looks like the following,

0 ⋅ ⋅ ⋅ 0 1
∗ ⋅ ⋅ ⋅ ∗ 0
⋮ ⋮ ⋮ ⋮

∗ ⋅ ⋅ ⋅ ∗ 0
0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 1
∗ ⋅ ⋅ ⋅ ∗ 0 ∗ ⋅ ⋅ ⋅ ∗ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

∗ ⋅ ⋅ ⋅ ∗ 0 ∗ ⋅ ⋅ ⋅ ∗ 0
0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 1
∗ ⋅ ⋅ ⋅ ∗ 0 ∗ ⋅ ⋅ ⋅ ∗ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∗ ⋅ ⋅ ⋅ ∗ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋮ ⋮ ⋮ ⋮

∗ ⋅ ⋅ ⋅ ∗ 0 ∗ ⋅ ⋅ ⋅ ∗ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∗ ⋅ ⋅ ⋅ ∗ 0

where the 1 s represent the le�-to-right maxima, the ∗ s represent the possible po-
sitions of the other 1 s, and the north-eastern region (which is empty on the ûgure)
has only 0 s. Observe that the matrix of σ is the submatrix obtained by removing
the rows and the columns containing all 1 s displayed in the ûgure and correspond-
ing to all le�-to-right maxima. _e deûnition of p(σ) (given in Section 3) shows
that the diòerence p(θ) − p(σ) is equal to the number of 0 s in the ûgure. Since
the row (resp. column) coordinates of the le�-to-right maxima are i1 , . . . , ik (resp.
j1 , . . . , jk), this number of 0 s is obtained by summing up the rows of 0 s, columns of
0 s, and by subtracting the 0 s at intersections (which have been counted twice). _us,
j1 − 1 + j2 − 1 + ⋅ ⋅ ⋅ + jk − 1 + (n − i1) + (n − i2) + ⋅ ⋅ ⋅ + (n − ik) − (1 + 2 + ⋅ ⋅ ⋅ + k − 1)
gives the formula of Lemma 9.2.

10 Indecomposable Permutations and Regular Right Congruences of
the Free Monoid {a, b}∗

10.1 Indecomposable Permutations, Regular Right Congruences, and Subgroups
of the Free Group

A right congruence of amonoidM is regular if rightmultiplicationM ∋ x ↦ xa by an
arbitrary element a ∈M induces a bijection on the quotient. (It is, of course, enough
to consider right-multiplications by elements in a set of generators.) Regular right
congruences are right-simpliûable congruences, meaning that uw ≡ vw implies u ≡

v. _e two properties are equivalent when the index is ûnite. (Right-multiplication
on classes of right-simpliûable congruences of inûnite index induce injections that
are in general not bijective as shown by the exampleM = {a, b} endowed with the
right-simpliûable congruence deûned by u ≡ v if a∗u ∩ a∗v /= ∅. Indeed, right-
multiplication by b fails to yield the class a∗ represented by the empty word.)
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Proposition 10.1 Regular right congruences of index n in a freemonoid are in bijection
with subgroups of index n of the free group on the same alphabet.

Proof A subgroup H of a free group over A gives rise to the right congruence u ≡ v
if and only if Hu = Hv. _is yields the desired mapping from the set of subgroups
of index n onto the set of regular right congruences of the same index. Conversely,
a regular right congruence of index n deûnes a right action by bijections of the free
monoid A∗ on the quotient set. _is action extends uniquely to a transitive action of
the free group, and the stabilizer of the class of the neutral element is a subgroup of
index n. _is gives the bijection.

_e bijection of Proposition 10.1 has the following classical topological interpreta-
tion. Subgroups of the free group ⟨a, b⟩ generated by a and b (the case of arbitrary
free groups is analogous) correspond to isomorphism classes of connected coverings
(Γ̃, v∗) with amarked base-vertex v∗ of the connected graph Γ consisting of two ori-
ented loops labelled a and b attached to a unique common vertex. _e fundamen-
tal group of Γ is of course the free group ⟨a, b⟩ consisting of all reduced words in
{a±1 , b±1}∗. _e fundamental group of a connected covering (Γ̃, v∗) is the subgroup
of all elements in ⟨a, b⟩ which li� to closed paths of Γ̃ starting and ending at v∗. If
Γ̃ is ûnite (or more generally if the right actions of the cyclic groups ⟨a⟩ and ⟨b⟩ on
the right cosets of π1(Γ̃, v∗) have only ûnite orbits), one can join an arbitrary initial
vertex α of Γ̃ to an arbitrary ûnal vertex ω by a path corresponding to a word in the
freemonoid {a, b}∗, i.e., by a path using only positively oriented edges. In particular,
such a graph Γ̃ has a canonically deûned spanning tree P = ⋃v∈V(Γ̃) pv , where pv is
the lexicographically smallest path labelled by aword in {a, b}∗ that joins themarked
vertex v∗ of Γ̃ to a given vertex v of Γ̃. _e set P is preûx-closed and the remaining set
of labelled oriented edges in Γ̃ deûnes a regular right congruence. _e corresponding
preûx-free set C = P{a, b} ∖ P indexes a free generating set of π1(Γ̃, v0) by associat-
ing the generator cp−1

c to every element c where pc is the unique representant pc ∈ P
deûning the same vertex as c in Γ̃.

Subgroups of ûnite index of a free group were ûrst counted by M. Hall Jr. [H].
_e values for the number cn of subgroups of index n in the free group F2 = ⟨a, b⟩
on two generators, or equivalently for the number of regular right congruences of in-
dex n in the free monoid {a, b}∗, are 1, 3, 13, 71, 461, 3447 for n = 1, 2, 3, 4, 5, 6; see
[OEIS, sequence A3319]. Remarkably, cn is equal to the number of indecomposable
permutations in Sn+1. _e symmetric group S3 for example contains 3 indecompos-
able permutations given by 312, 213, 321, and the 3 subgroups of index 2 in ⟨a, b⟩ are
⟨aa, ab, ba⟩, ⟨a, bab, bb⟩, ⟨aa, aba, b⟩. A ûrst bijection between the set of subgroups
of index n of the free group ⟨a, b⟩ on two generators and indecomposable permuta-
tions in Sn+1 was given by Dress and Franz [DF1]. Other bijections were discovered
later by Sillke [Si], Ossona deMendez and Rosenstiehl [OR], and Cori [Cr].

10.2 Another Bijection

Now, we describe a new map between the set of regular right congruences of {a, b}∗

into n classes and the set of indecomposable permutations of Sn+1. _is map turns
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out to be bijective by _eorem 10.3 below. It will play a crucial role in our proof of
_eorem 2.1. Since a regular right congruence ≡ of {a, b}∗ is a particular case of a
right congruence, it can be described by a triplet (C , P, f ) as in Section 8. Regularity,
equivalent to bijectivity of the right action on the quotient represented by P, implies
thatwe have f (Ca) ⊂ Pb and f (Cb) ⊂ Pa ,where, as previously, C l = C∩{a, b}∗ l and
Pl = P ∩ ({a, b}∗ l ∪ {1}) for l in {a, b}. Indeed, f (ua) = va for ua ∈ Ca and va ∈ P
implies u ≡ v by right simpliûcation in contradiction with the fact that elements of P
represent non-equivalent classes. _e case of f (ub) = vb is ruled out similarly.

Moreover, the inequality f (c) < c for any c ∈ C implies recursively that f (c) =

µa(c) for any c ∈ Ca . _is show,s in particular, that f induces a bijection from Ca
onto Pb .

Example 10.2 Looking at the running example (see Figure 3, noticing that the al-
phabetical order is read there by turning counterclockwise around the tree, starting
from the root), we must have f (a2) < a2 and f (a2) ∈ Pb , hence f (a2) = 1; then
f (ba2) < ba2 and f (ba2) ∈ Pb , hence f (ba2) = b; similarly, f (b2a) = b2.

_e restriction of f to Cb determines thus the regular right congruence ≡ com-
pletely. _is restriction is a bijection from Cb onto Pa . Indeed, the two sets have the
same cardinality. Moreover the restriction of f to Cb is injective, since if ub, vb ∈ Cb
and f (ub) = f (vb); then ub ≡ vb so that by regularity u ≡ v, then u = v since P is a
set of representatives of the quotient, and ûnally ub = vb.

Since the intersection Pa ∩Pb is reduced to the empty word 1, themap f from C to
P is almost a bijection. It is surjective and each element of P has a unique preimage,
except the empty word which has exactly two preimages: a unique preimage ak =

a∗ ∩ Ca in Ca and a unique preimage f −1(1) ∩ Cb in Cb .
We now introduce the set P̃ = P ∪ {a−1} and we consider the bijection ϕ from C

onto P̃ that coincides with f except that ϕ(ak) = a−1 where ak = a∗ ∩C. _e twisted
alphabetical order is extended to {a, b}∗ ∪ {a−1} by the rule: a i ≺ a−1 ≺ w for any
i ≥ 0 and for any word w ∈ a∗b{a, b}∗ involving b.

Writing C = {c1 < c2 < ⋅ ⋅ ⋅ < cn+1} and P̃ = {p1 ≺ p2 ≺ ⋅ ⋅ ⋅ ≺ pn+1} we get a unique
permutation θ ∈ Sn+1 such that θ(i) = j if ϕ(c i) = p j .

Note that the twisted alphabetical order ≺ and the alphabetical order < coincide on
the preûx-free set C.

_eorem 10.3 _emap ≡↦ θ is a bijection from the set of regular right congruences
on {a, b}∗ into n classes onto the set of indecomposable permutations in Sn+1.

Example 10.4 We illustrate_eorem 10.3 by considering the sets C , P of our run-
ning example represented in Figure 3 togetherwith the right congruence into 5 classes
deûned by

a2
≡ 1, ba2

≡ b, b2a ≡ b2 , ab ≡ 1, bab ≡ ba, b3
≡ a.

We have

C = {a2
< ab < ba2

< bab < b2a < b3
},
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f (a2
) = 1, f (ba2

) = b, f (b2a) = b2 ,

f (ab) = 1, f (bab) = ba, f (b3
) = a.

_erefore, with P̃ = {a ≺ 1 ≺ a−1 ≺ ba ≺ b ≺ b2}, we have ϕ = f except that
ϕ(a2) = a−1. _erefore, ϕ is the bijection C → P̃ represented by the following array
of two rows:

ϕ = (
a2 ab ba2 bab b2a b3

a−1 1 b ba b2 a ) .

Replacing words of ϕ by their respective position for the lexicographical order a2 <

ab < ba2 < bab < b2a < b3 on the preûx-free setC, respectively for the twisted lexico-
graphical order a < 1 < a−1 < ba < b < b2 on P̃, we get the following indecomposable
permutation in S6:

θ = (
1 2 3 4 5 6
3 2 5 4 6 1) .

Proof We ûrst prove that the permutation θ (associatedwith a regular right congru-
encewith n classes in {a, b}∗) is an indecomposable element of Sn+1. _e equivalence
class µa( f (c))a∗ of an element c in Cb intersects Ca in a unique element c′, which is
lexicographically smaller than c. Since

ϕ(c′) =
⎧⎪⎪
⎨
⎪⎪⎩

µa(c′) if c′ /∈ a∗,
a−1 if c′ = Ca ∩ a∗ ,

is themaximal element (with respect to the twisted order, extended to P̃) in the equiv-
alence class of f (c), le�-to-rightmaxima of θ correspond to a subset ofCa . _e equal-
ity f (c) = µa(c) implies that all elements of Ca deûne le�-to-right maxima. We now
apply Lemma 9.1 for proving indecomposability of θ as follows. Given an element
c ∈ Ca , the element ϕ(c) is always the largest element with respect to the twisted
order of the set

P̃(< c) = {p ∈ P̃, p < c lexicographically} ⊂ P ∪ {a−1
},

where a−1 is by convention the lexicographically smallest element of P̃. Indecompos-
ability of ϕ thus amounts to the inequality by Lemma 9.1

(10.1) ∣C(≤ c)∣ < ∣P̃(< c)∣

for all c ∈ Ca , where

P̃(< c) = {p ∈ P̃, p < c lexicographically},

C(≤ c) = {c′ ∈ Ca , c′ ≤ c lexicographically}.

_e identity
∣P̃(< c)∣ = ∣P(< c)∣ + 1,

where
P(< c) = {p ∈ P, p < c lexicographically} = P̃(< c) ∖ {a−1

}

shows that the strict inequality (10.1) amounts to

∣C(≤ c)∣ ≤ ∣P(< c)∣
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for all c ∈ Ca . _is inequality holds, since µ restricts to an injection from C(≤ c) into
P(< c) for all c in C ∖ (C ∩ b∗), as observed in Section 5.

_us, we have a map associating an indecomposable permutation θ with every
regular right congruence ≡. It is now enough to establish injectivity of this map. Sur-
jectivity then follows from the known equicardinality of the two involved sets. _e
cardinality of Ca equals the number of le�-to-right maxima of θ. Let θ have suc-
cessive le�-to-right maxima in positions i1 , . . . , ik , with values j1 , . . . , jk . _e ih are
the ranks in the totally ordered set C of the elements of Ca . _e lengths l i of the le�
branches of P are determined by the diòerences between the values of two successive
such maxima: l1 = j1 − 1 and l i = j i − j i−1 if i ≥ 2. By Lemma 6.2, the tree deûned by
themaximal preûx-free setC and its associated preûx-closed set P are thus completely
determined by the numbers i1 , . . . , ik and j1 , . . . , jk . From C and P we immediately
recover the function f on Ca . _e bijection f ∶Cb → Pa is encoded by the standard
permutation st(θ) (as deûned in Lemma 9.2) of θ. _e equivalence relation ≡ is thus
completely determined by θ.

Remark 10.5 It is not diõcult to invert themap ≡↦ θ of_eorem 10.3. Indeed, po-
sitions and values of le�-to-rightmaxima of an indecomposable permutation θ ∈ Sn+1
determine a unique maximal preûx-free set C having n + 1 elements. _e associated
standard permutation st(θ) encodes a regular right congruence given by a suitable
map from C into the set P of all proper preûxes of C. _is avoids equicardinality
results and gives a bijective proof of_eorem 10.3.

10.3 Fixing C and P

We ûx a ûnite maximal preûx-free set C of n + 1 elements in {a, b}∗ with Ca =

C ∩{a, b}∗a containing k elements. Consider the set of all regular right congruences
into n equivalence classes with lexicographically smallest representants given by the
preûx-closed set P associated to C. _eorem 10.3 gives by restriction a bijection be-
tween the set of these congruences and the set of bijections α∶Cb → Pa satisfying
α(c) < c. Indeed, we have α(c) = ϕ(c) = f (c) < c for any c ∈ Cb . Since Cb = C ∖ Ca
has n + 1 − k elements and is totally ordered by < and since Pa is totally ordered by
≺, the bijection α is naturally associated with a permutation σ of Sn+1−k . _is per-
mutation is simply the standard permutation of the indecomposable permutation θ
(encoding a regular right representationwith n classes). It is obtained from θ, viewed
as aword, by removing the values of all le�-to-rightmaxima; see Section 9. As already
observed, positions and values of le�-to-right maxima of the permutation θ encode
the underlying ûnitemaximal preûx-free set C.

We use Lemma 7.3(ii) for ordering (alphabetically) le� branches of P. We denote
by l1 , . . . , lk the corresponding lengths and we set s i = l1 + ⋅ ⋅ ⋅ + l i .

We observe the following facts for later use. If i1 , . . . , ik , j1 , . . . , jk are as in
Lemma 9.2 applied to a permutation in Sn+1, then the previous proof implies

Ca = {c i1 < ⋅ ⋅ ⋅ < c ik} and {p i1 ≺ ⋅ ⋅ ⋅ ≺ p ik} = {ϕ(c i1) ≺ ⋅ ⋅ ⋅ ≺ ϕ(c ik)}.

Hence jh is the rank of ϕ(c ih) in the set P̃ ordered by ≺. Observe that ϕ(c1) = a−1

and ϕ(c ih) = f (c ih) = µa(c ih) if h ≥ 2. _us, j1 = l1 + 1 = s1 + 1 and,more generally,
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jh = sh + 1 for any h = 1, . . . , k. Lemma 9.2, with n replaced by n + 1, shows

p(θ) = p(σ) + (n + 1)k −
k(k + 1)

2
−∑

h
ih +∑

h
sh + k,

which simpliûes to

(10.2) p(θ) = p(σ) + (n + 1)k −
k(k − 1)

2
−∑

h
ih +∑

h
sh .

11 Right Ideals in Fq⟨a, b⟩
It follows from [R] (see also [BR, Proposition 7.1]) that the set of right ideals of codi-
mension n of the free non-commutative associative algebra Fq⟨a, b⟩ over Fq gener-
ated by a and b is in bijectionwith the set of triplets (C , P, (αc ,p)), where C is a ûnite
maximal preûx-free setwith associated preûx-closed set P,with P of cardinality n and
C of cardinality n+ 1, and where (αc ,p) is a family of elements in Fq with c ∈ C, p ∈ P
and p < c for the alphabetical order.

In this case, the right ideal I is generated by the polynomials c−∑p<c αc ,pp. _ese
polynomials are in fact free generators of the right Fq⟨a, b⟩-module I. Moreover, the
elements of P are representatives of an Fq-basis of the quotient I/Fq⟨a, b⟩ and the
right action of Fq⟨a, b⟩ on the quotient is completely deûned by

p.x =
⎧⎪⎪
⎨
⎪⎪⎩

px if px ∈ P,
∑q<c αc ,qq if c = px ∈ C,

where p is in P and x ∈ {a, b} is a letter of the alphabet.
_ematrices µ(a), µ(b) of the right action of a and b with respect to the basis P of

I/Fq⟨a, b⟩ are therefore ∣P∣× ∣P∣matriceswith coeõcients µ(x)p,q (indexed by P×P)
deûned by

(11.1) µ(x)p,q =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if px = q,
0 if px ∈ P, px ≠ q,
αc ,q if px = c ∈ C , q < c,
0 if px = c ∈ C , q > c.

Remark 11.1 (i) Since there are q∑c∈C ∑p∈P ,p<c 1 possibilities for the choice of µ(a)
and µ(b) associated with a ûxed preûx-closed set P of n elements, the polynomial
enumerating all right ideals of codimension n in Fq⟨a, b⟩ evaluates to the Catalan
number (2n

n )
1

n+1 at q = 1; see [BR].
(ii) _e rank of a matrix µ(x) (for x ∈ {a, b}) equals at least ∣P ∩ {a, b}∗x∣ with

equality achieved for example by nilpotent ideals deûned by αc ,p = 0.

12 Right Ideals in Fq⟨a, b, a−1, b−1⟩.
A right ideal I of codimension n in Fq⟨a, b, a−1 , b−1⟩ determines a right ideal J =

I ∩ Fq⟨a, b⟩ of codimension n in Fq⟨a, b⟩ such that the actions of a and b on the
quotient J/Fq⟨a, b⟩ are both linear isomorphisms. We obtain in this way a bijection
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between the set of right ideals of codimension n in Fq⟨a, b, a−1 , b−1⟩ and the set of
right ideals of codimension n in Fq⟨a, b⟩ such that a and b act both bijectively on the
quotient.

13 q-Count with Fixed Prefix-free Set C
We consider a ûxedmaximal preûx-free set C of cardinality n + 1 in {a, b}∗ with as-
sociated preûx-closed set P of cardinality n. We count all right ideals of codimension
n in Fq⟨a, b⟩ such that right-multiplication by a and right-multiplication by b induce
bijections of the quotient. Such right ideals correspond to triplets (C , P, (αc ,p)) with
αc ,p encoding two invertiblematrices µ(a) and µ(b) by formula (11.1).

13.1 Counting the Matrices µ(a)

_e deûnition of µ(a) shows that this matrix has a lower triangular block decom-
position, with blocks ordered as in Subsection 10.3 and with block-sizes equal to the
lengths l i of the le� branches of P. Moreover, each diagonal block is a companion
matrix of size l i × l i , i = 1, . . . , k. Strictly lower triangular blocks are ûlledwith 0 s ex-
cept for their last row, which is arbitrary. In otherwords, only rows of index s1 , s2 , . . .
have some freedom. _e ûrst s i entries of row s i are arbitrary, except that one of them
(in column s i−1 + 1) must be nonzero. _us, there are (q − 1)q l i−1 possible choices for
the i-th diagonal block. _is amounts to (q− 1)kqN possibilities for thematrix µ(a),
where

(13.1) N = ∑
i=1, . . . ,k

(s i − 1) = ∑
i=1, . . . ,k

s i − k

and where s i = l1 + ⋅ ⋅ ⋅ + l i is the rank in P of the unique element ps i in P such that
ps i a is the i-th smallest element of Ca .

Example 13.1 In our running example given by Figure 3, thematrix µ(a) is of the
form

1 a b ba b2

1 0 1 0 0 0
a ∗ × 0 0 0
b 0 0 0 1 0
ba × × ∗ × 0
b2 × × × × ∗ ,

where ∗ represents a nonzero element of the ûeld, whereas × is any element. _is
matrix is block-triangular, with 3 diagonal blocks, of size l1 = 2, l2 = 2, l3 = 1. _ere
are (q− 1)3q8 suchmatrices, as predicted by the formula for k = 3 and s1 = l1 = 2, s2 =
l1 + l2 = 4, s3 = l1 + l2 + l3 = 5 leading to N = (s1 − 1)+ (s2 − 1)+ (s3 − 1) = 1+3+4 = 8.
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13.2 Counting the Matrices µ(b)

Deûne the auxiliary order <b by p <b q if pb < qb. We order the rows of µ(b) with
<b and its columns by ≺.

We consider the partition λ with parts

(13.2) λc = ∣{q ∈ Pa , q < c}∣

indexed by elements c inCb . A part λc indexed by c ∈ Cb is thus deûned as thenumber
of lower bounds of c in Pa . _en for any p, p′ ∈ P such that c = pb, c′ = p′b ∈ C, and
p <b p′, one has λc ≤ λc′ , since c < c′. Observe that λ has ∣Cb ∣ parts and a largest part
(indexed by the unique element bh of C ∩ b∗) of length ∣Cb ∣, since Cb is in bijection
with Pa and since each element in Pa is < bh .

Example 13.2 In our running example underlying Figure 3,we have λ = 2, 3, 3,with
λab = 2 (corresponding to 1, a < ab) and λbab = λb3 = 3 (since 1, a, ba < bab, b3).

A row of µ(b) indexed by p ∈ P such that pb ∈ P has all coeõcients zero except for
a unique coeõcient 1 with column-index pb. Possibly nonzero entries in column pb,
other than the 1 in row p, are in the rows q with qb ∈ C and pb < qb, by the deûnition
of µ(b) in Section 11; they are located below row p. _eir number is therefore equal
to the number of c ∈ Cb such that pb < c.

Removing from the matrix µ(b) all rows indexed by p ∈ P such that pb ∈ P and
all columns indexed by pb ∈ Pb ∖{1}, we get amatrix with rows indexed by Cb (since
pb ∉ P implies pb ∈ Cb) and columns indexed by Pa . _is matrix is a squarematrix of
size ∣Cb ∣ × ∣Cb ∣ with nonzero entries contained in the set Eλ deûned at the beginning
of Section 4 for the partition λ with parts λc deûned by (13.2). In other words, Eλ is
the set of entries (p, p′), with pb ∈ Cb and p′ ∈ Pa , such that p′ < pb.

Observe now that thematrix µ(b) is invertible if and only if the submatrix above is
invertible, since all removed rowshave exactlyonenon-zero entry indistinct columns.

_us, we obtain a total number qMHλ(q) of possiblematrices µ(b), where

M = ∣ {(p, c) ∈ (Pb ∖ {1}) × Cb , p < c} ∣

and Hλ is as in Section 4.1.

Example 13.3 _ematrix µ(b) of our running example looks like

a 1 ba b b2

a × × 0 0 0
1 0 0 0 1 0
ba × × × × 0
b 0 0 0 0 1
b2 × × × × × .

_e associated submatrix obtained by removing both rows and columns containing
1 s is the le�most matrix in Figure 2.
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14 Proof of Theorem 2.1

_e two preceding sections show that the number of right ideals of index n in
Fq⟨a, a−1 , b, b−1⟩ is given by

An =∑
C
(q − 1)k(C)qN(C)qM(C)Hλ(C)(q),

where the sum is over all maximal preûx-free sets with n + 1 elements in {a, b}∗ and
where Hλ(q) counts the number of invertiblematrices with support prescribed by a
partition λ. _e numbers k(C),N(C),M(C) and the partition λ(C) associatedwith
amaximal preûx-free set C are deûned as in Section 13.
Applying Haglund’s _eorem (_eorem 4.1), we get

An = (q − 1)n+1
∑
C

qN(C)+M(C)
∑

σ∈S(λ(C))
qp(σ) ,

where S(λ(C)) denotes the set of all permutations with permutation-matrices sup-
ported by the partition λ(C).
Fixing C we observe that the bijection α of subsection 10.3, viewed as a matrix

indexed by Cb × Pa , has nonzero entries only in Eλ (a�er identiûcation of Cb with
the set of p ∈ P such that pb ∈ C). Moreover, we have seen that α (as deûned in
Subsection 10.3) may be identiûed with σ . Using the deûnition N = −k +∑k

j=1 s j (cf.
formula (13.1)) and the equality

M = −
k

∑
j=1

i j + (n + 1)(k − 1) + k −
k(k − 1)

2

given by Lemma 6.4, we have

An = (q − 1)n+1
∑
C
∑
σ

q∑
k
j=1(s j−i j)+(n+1)(k−1)−k(k−1)/2+p(σ)

= (q − 1)n+1
∑
C
∑
θ

qp(θ)−(n+1) ,

where the last identity is given by formula (10.2) andwhere the second sum is over all
possible permutations θ as in Subsection 10.3. Since θ is necessarily indecomposable
and since an indecomposable permutation θ of Sn+1 determines C uniquely, the ûrst
sum can be dropped. _is shows the equality

An = (q − 1)n+1
∑

θ∈Indecn+1

qp(θ)−(n+1) .

A comparison with formula (2.2) ends the proof.
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15 Conclusion

Our main result can also be interpreted as a cellular decomposition of the set of right
ideals of codimension n inF⟨a, a, a−1 , b−1⟩ over an arbitrary ûeldF. Cells are indexed
by indecomposable permutations of Sn+1 and the cell corresponding to an indecom-
posable permutation θ in Sn+1 is isomorphic to

(F∗)n+1
× F

(n+1)(n−2)
2 +inv(θ) .

_ere is perhaps an extension of our main result to the ring of Laurent polyno-
mials in g ≥ 3 variables. Indeed, one ingredient of our proof is a bijection between
subgroups of index n of the free group in 2 generators and indecomposable permu-
tations in Sn+1 and Dress and Franz have generalized their bijection in [DF1] to a
bijection between subgroups of index n of the free group in g generators and systems
of g − 1 indecomposable permutations in Sn+1; see [DF2].

Acknowledgments A discussion with Alejandro Morales helped the second author
to understand Haglund’s theorem and rook polynomials, together with the variant
given by him and his co-authors in [LLMPSZ].
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