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Stacks of cyclic covers of projective spaces

Alessandro Arsie and Angelo Vistoli

Abstract

We define stacks of uniform cyclic covers of Brauer–Severi schemes, proving that they can
be realized as quotient stacks of open subsets of representations, and compute the Picard
group for the open substacks parametrizing smooth uniform cyclic covers. Moreover, we
give an analogous description for stacks parametrizing triple cyclic covers of Brauer–Severi
schemes of rank 1 that are not necessarily uniform, and give a presentation of the Picard
group of the substacks corresponding to smooth triple cyclic covers.

1. Introduction

In [Vis98], the second author described the stack of M2 of smooth curves of genus 2 as the quotient
stack of an open subscheme of a representation of GL2, and used this description to compute its
integral Chow ring. In particular, he reproved the known result that its Picard group is cyclic of
order 10. The key point for the existence of such a presentation for M2 is the fact that any smooth
curve of genus 2 is hyperelliptic.

In this work we define a much wider class of stacks, parametrizing families of uniform cyclic cover
of projective spaces that can be realized as quotient stacks of an open subset of a representation.
Special cases are the stack M2, the stacks Hg parametrizing hyperelliptic curves of genus g and
also the stack parametrizing K3 surfaces expressed as double covers of P2 ramified along a smooth
sextic (up to an automorphism of P2). Again, the key idea is that for the objects involved in families
of uniform cyclic covers, one has a concrete description in terms of polynomials and equations, so
that the corresponding stack is obtained as a quotient stack of an affine space parametrizing the
corresponding polynomials, modulo the action of the relevant group.

The paper is organized as follows. In § 2 we give the main definitions and constructions for
uniform cyclic covers of a scheme (these are essentially what were known as simple cyclic covers, see
[Cat84]). A detailed analysis of these and other types of covers can be found in [Par91]. Moreover,
we set up the general categorical framework for uniform cyclic covers over a fixed scheme.

In § 3 we restrict our analysis to uniform cyclic covers of families of projective spaces, i.e. Brauer–
Severi schemes. We introduce our main object of interest, the fibered categories H(n, r, d) that
parametrize families of uniform cyclic covers over Brauer–Severi schemes.

In § 4 we describe H(n, r, d) and Hsm(n, r, d) (the open substack corresponding to smooth uniform
cyclic covers) as quotient stacks. We also suggest a natural compactification of Hsm(n, r, d) via
Kirwan’s procedure in § 4.

§ 5 is dedicated to the computation of the integral Picard group of the stack Hsm(n, r, d); we
show that is it cyclic of order r(rd− 1)ngcd(d, n + 1). As a corollary, we immediately get that the
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Picard group of the stack Hg of hyperelliptic curves of genus g is cyclic of order 2(2g + 1) if g is
even, and 4(2g + 1) if g is odd.

Finally, in § 6 we define and study the stacks H(1, 3; d1, d2) of cyclic triple (not necessarily
uniform) covers of the projective line and its open substack Hsm(1, 3; d1, d2) corresponding to
smooth covers. We prove that this stack can also be represented as a quotient stack, and we give a
presentation of its Picard group.

2. Uniform cyclic covers of a scheme

Fix a positive integer r; we will denote by µr = µr,Z the group scheme of the rth roots of 1 over
SpecZ.

Definition 2.1. Let Y be a scheme. A uniform cyclic cover of degree r of Y consists of a morphism
of schemes f : X → Y together with an action of the group scheme µr on X, such that for each
point q of Y , there is an affine neighborhood V = SpecR of q in Y , together with an element h ∈ R
that is not a zero divisor, and an isomorphism of V -schemes f−1(V ) � SpecR[x]/(xr − h) which is
µr-equivariant, when the right-hand side is given the obvious actions.

These coverings should be properly called dual cyclic, rather than cyclic, as µr is Cartier dual to
the constant group scheme Z/rZ; however, we avoid this so as not to make the terminology unduly
heavy. In literature, they are also known as simple cyclic covers.

If X → Y is a uniform cyclic cover of degree r, then Y = X/µr; so, in fact, Y is determined by
the action of µr on X.

Uniform cyclic covers of a scheme Y form a category, that we denote by H(Y, r). The arrows are
µr-equivariant isomorphisms of schemes over Y ; all the arrows are invertible, so this category is a
groupoid.

There is a very well-known description of uniform cyclic covers, as follows. If f : X → Y is a
uniform cyclic cover, the sheaf of OY -algebras f∗OX admits an action of µr, hence there is a direct
sum decomposition

f∗OX = L0 ⊕ L1 ⊕ · · · ⊕ Lr−1,

where Li is the subsheaf of f∗OX of sections s where the action of µr is described by the rule
(t, s) �→ tis. The multiplication is µr equivariant; therefore, for each i = 0, . . . , r − 1 there is an
induced homomorphism L⊗i

1 → Li, and also L⊗r
1 → L0. The local description of the morphism

X → Y shows that the following facts are true.

a) Each Li is an invertible sheaf on Y .

b) L0 = OY .

c) For each i = 0, . . . , r − 1, the homomorphism L⊗i
1 → Li is an isomorphism.

d) The homomorphism L⊗r
1 → OY is injective.

The image of L⊗r
1 in OY is the sheaf of ideals of a Cartier divisor on Y , which we denote by ∆f

or ∆X/Y and call the branch divisor of the uniform cyclic cover. If V = SpecR is an open affine
subset of Y , such that f−1(V ) � SpecR[x]/(xr − h) as in the definition, then the restriction of ∆f

to V is the divisor of h.
Conversely, assume that we are given a scheme Y with an invertible sheaf L, together with an

injective homomorphism φ : L⊗r → OY . We can give the sheaf of OY -modules

OY ⊕L⊕ L⊗2 ⊕ · · · ⊕ L⊗(r−1)
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a structure of (Z/rZ)-graded algebra, by defining the product of an element s ∈ L⊗i and t ∈ L⊗j as

s⊗ t ∈ L⊗(i+j)

if i+ j < r, and as
φ⊗ id(s ⊗ t) ∈ L⊗(i+j−r)

if i+ j � r, where
φ⊗ id : L⊗(i+j) → OY ⊗ L⊗(i+j−r) = L⊗(i+j−r)

is the obvious homomorphism. Consider the relative spectrum X of this sheaf of algebras: the Z/rZ
grading yields an action of µr over X, and it is immediate to verify that, in fact, X → Y is a
uniform cyclic cover.

This analysis leads to the following conclusion. Define a category H′(Y, r), whose objects (L, φ)
are invertible sheaves L on Y , together with an injective homomorphism of O(Y )-modules φ : L⊗r →
OY . The arrows α : (L, φ) → (M, ψ) are isomorphisms of invertible sheaves α : L � M, making the
diagram

L⊗r α⊗r
��

φ ����
��

� M⊗r

ψ����
���

OY

commutative.

Proposition 2.2. There is an equivalence of categories between the category H(Y, r) and the
category H′(Y, r).

Given a uniform cyclic cover f : X → Y , the pullback of ∆f to X is a Cartier divisor, which is of
the form rDf , where Df is a Cartier divisor on X, whose sheaf of ideals is the pullback f∗L, where
L is the invertible sheaf associated with f : X → Y . The restriction Df → ∆f is an isomorphism.

There is a problem with defining pullbacks of uniform cyclic covers: if f : X → Y is a uniform
cyclic cover and Y ′ → Y a morphism of schemes, the pullback X ′ def= Y ′ ×Y X acquires natural
actions of µr, but the projection f ′ : X ′ → Y ′ is a uniform cyclic cover if and only if the pullback
of the branch divisor ∆f to Y ′ is still a Cartier divisor. This problem does not arise in a relative
context, which is what we are interested in.

Definition 2.3. Let Y → S be a morphism of schemes. A relative uniform cyclic cover f : X → Y
is a uniform cyclic cover, such that the branch divisor ∆f is flat over S.

By the local criterion of flatness, f : X → Y is a relative uniform cyclic cover if and only if ∆f

remains a Cartier divisor when restricted to any of the fiber of Y → S.
The relative uniform cyclic covers over Y → S form a full subcategory of H(Y, r), denoted by

H(Y/S, r)
If f : X → Y is a relative uniform cyclic cover over Y → S and S′ → S is an arbitrary

morphism of schemes, then the pullback of ∆f to S′×S Y is still a Cartier divisor, so the projection
S′ ×S X → S′ ×S Y is a relative uniform cyclic cover.

Definition 2.4. A relative uniform cyclic cover f : X → Y over a morphism Y → S is smooth over
S if both Y and the branch divisor ∆f are smooth over S.

The proof of the following is straightforward.

Proposition 2.5. Let Y → S be a smooth morphism and f : X → Y be a relative uniform cyclic
cover of degree r. Then f is a smooth uniform cyclic cover over S if and only if X is smooth over S.
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3. Uniform cyclic covers of projective spaces

We are interested in relative uniform cyclic covers f : X → P of degree r, where P → S is a Brauer–
Severi scheme. Given such a thing, consider the invertible sheaf L of sections of f∗OX on which µr
acts via multiplication. The degree of such a invertible sheaf on the geometric fibers of P → S is
a local invariant. We say that such a uniform cyclic cover has branch degree d if the degree of L
is d on every fiber; the degree of the branch divisor is then equal to rd (so perhaps this is not great
terminology).

Fix three positive integers n, r and d. We are interested in the category H(n, r, d), defined as
follows.

An object (X
f→ P → S) of H(n, r, d) is a relative uniform cyclic cover f : X → P of degree r

and branch degree d, where P → S is a Brauer–Severi scheme of relative dimension n.

An arrow from (X ′ f ′→ P ′ → S′) to (X
f→ P → S) is a commutative diagram

X ′ f ′ ��

��

P ′ ��

��

S′

��
X

f �� P �� S

where both squares are Cartesian and the left-hand column is µr-equivariant.
We can reformulate the definition as follows.

Proposition 3.1. The category H(n, r, d) is equivalent to the category H′′(n, r, d) defined as follows.
The objects are flat and proper morphisms X → S of schemes, together with an action of µr on X
leaving X → S invariant, satisfying the following condition: for any geometric point s : SpecΩ → X,
the action on µr on the geometric fiber Xs is faithful, the quotient Xs/µr is isomorphic to PnSpecΩ,
and the projection Xs → Xs/µr makes Xs into a uniform cyclic cover of Xs/µr, with degree r and
branch index d.

The arrows from X ′ → S′ to X → S are commutative squares

X ′

��

�� X

��
S′ �� S

such that the top row is µr-equivariant.

Proof. Given an object (X → P → S) of H(n, r, d), we have that the composition X → S gives
an object of H′′(n, r, d); this, together with the analogous construction for arrows, defines a functor
H(n, r, d) → H′′(n, r, d). To go in the other direction we need a lemma.

Lemma 3.2. If X → S is a morphism of schemes and there is given an action of µr on X leaving
X → S invariant, then the formation of the quotient X/µr commutes with base change on S.
Furthermore, if X is flat over S, so is X/µr.

Proof. Both parts of the statement are standard consequences of the fact that µr is a diagonalizable
group scheme over Spec Z.

Suppose that X → S is an object of H′′(n, r, d) and factor it as X → P → S, where P = X/µr.
Obviously P is proper over S. The lemma implies that it is also flat over S and that the geometric
fibers are projective spaces; hence, by a well-known theorem of Grothendieck, P is a Brauer–Severi
scheme over S.
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Also, the restrictions of the projection morphism f : X → P over the points of S is flat, so, by
the local criterion of flatness, f itself is flat. It is also finite, so X can be thought of as the relative
spectrum on P of the locally free sheaf of algebras f∗OX , which we can decompose as

f∗OX = L0 ⊕ L1 ⊕ · · · ⊕ Lr−1,

using the action of µr. For each i = 0, . . . , r − 1, the natural homomorphism L⊗i
1 → Li is an

isomorphism on each geometric fiber, hence it is an isomorphism; furthermore, L⊗r
1 → OP is injective

on the geometric fibers. This means that f : X → P is a uniform cyclic cover, hence X → P → S
is an object of H(n, r, d).

It is very easily checked that this extends naturally to a functor H′′(n, r, d) → H(n, r, d) and
this gives a quasi-inverse to the functor above. This concludes the proof of Proposition 3.1.

Remark 3.3. It is also convenient to define a fibered category H′(n, r, d), in which an object over a
scheme S consists of the following set of data: a Brauer–Severi scheme P → S; an invertible sheaf
L on P , which restricts to a invertible sheaf of degree −d on any geometric fiber; and an injection
i : L⊗r → OP , which remains injective when restricted to any geometric fiber. The morphisms
are defined in the obvious way. Clearly there is a morphism of fibered categories p : H(n, r, d) →
H′(n, r, d) sending the object (X → P → S) to the triple (P → S, L, i : L⊗r → OP ) and acting in
the obvious way on morphisms. This correspondence is also an equivalence of the fibered category,
as it is immediate to see, since X can be recovered as SpecOP

(OP ⊕ L⊕ · · · ⊕ L⊗r−1).

We denote by Hsm(n, r, d) the full subcategory of H(n, r, d) consisting of relative uniform cyclic
covers X → P → S which are smooth over the base.

There is a natural forgetful functor from H(n, r, d) to the category of schemes, sending (X
f→

P → S) to S; this makes H(n, r, d) into a fiber category over the category of schemes and Hsm(n, r, d)
is a fibered subcategory.

From now on, if R is a commutative ring, we write H(n, r, d)R for the fiber product of H(n, r, d)
with the category of schemes over R; the objects of H(n, r, d)R are pairs ((X → P → S), S →
SpecR) consisting of an object of H(n, r, d) and of a morphism of schemes. The arrows are defined in
the obvious way. There will be obvious variant of this notation, such as Hsm(n, r, d)R and H′(n, r, d)R
(the category H′(n, r, d) is defined above).

The category Hsm(n, r, d)Z[1/r] is fibered on the category of schemes over SpecZ[1/r]. It has a
simple description, using the equivalent description of H′(n, r, d) given in Proposition 3.1.

Proposition 3.4. The fibered category Hsm(n, r, d)Z[1/r] is equivalent to the full subcategory of
H′(n, r, d) consisting of objects X → S which are smooth as morphisms of schemes and where S is
a scheme over SpecZ[1/r].

The proof follows from Proposition 3.1 and Proposition 2.5.
Next are some examples of our construction.

Example 3.5.
a) For each g � 2, the fibered category Hsm(1, 2, g + 1)Z[1/2] is a closed substack of the stack Mg

of smooth curves of genus g, whose geometric points are the hyperelliptic curves. In particular,
Hsm(1, 2, 3)Z[1/2] coincides with M2.

b) We do not know if the category Hsm(1, 2, 2) has appeared in the literature before. Its objects
are smooth families X → S of curves of genus 1 over a scheme on Spec Z[1/2], together with an
effective divisor Σ ⊆ X, such that the restriction Σ → S is étale of degree 4 and Σ is invariant
under the action of the 2-torsion part 2Pic0(X/S) → S of the associated elliptic curve.
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c) Consider the category Hsm(2, 2, 3) of double covers of a projective plane, ramified over a smooth
sextic curve. In characteristic different from 2, the resulting surfaces are K3 surfaces of a special
and well-studied type.

Remark 3.6. More generally, we might be interested in flat morphisms f : X → P , where P → S
is a Brauer–Severi scheme, together with an action of µr on X leaving f invariant, such that there
exists an open subscheme U of P , dense in every fiber of P → S, such that, over U , the restriction
of f is a µr-torsor. Among these, uniform cyclic covers are special in two ways.

First of all, they are totally ramified (that is, the action of µr is free outside of the fixed locus);
of course, this is only a restriction when r is not a prime.

Also, the action of µr around a fixed point is of very restricted type; for example, if we are looking
at a smooth uniform cyclic cover f : X → Pn defined over C, then the restriction X ′ → Pn \ ∆f is
a Galois covering with group µr, whose restriction to a small loop L � S1 around a smooth point
of ∆f corresponds to the canonical generator of H1(L,µr) = Z/rZ.

If n > 1, we might consider this not to be a serious restriction; for example, if r is a prime power,
f : X → Pn is a flat morphism defined over a field of characteristic prime to r and there is an action
of µr on X leaving f invariant, such that generically X is a torsor over Pn and X is smooth over
the base field, then it is not hard to show that we can make f : X → Pn into a uniform cyclic cover
by changing the action by an automorphism of µr; thus the resulting stack is a disjoint union of
copies of Hsm(n, r, d).

When r is not a prime power, then this is not true anymore; however, we can still describe this
stack as an open substack of products of stacks of type Hsm(n, ri, di).

Things are altogether different when n = 1 and r > 2; here the branch divisor will almost never
be irreducible, and cyclic coverings of P1 that are not uniform are very common. We describe the
situation for µ3-covers in § 6.

Remark 3.7. The stack H(n, r, d) itself is not particularly useful; the objects involved are highly
unstable. We will be mostly interested in Hsm(n, r, d); there is a natural compactification of it, via
Kirwan’s procedure, as explained in Remark 4.3.

4. H(n, r, d) as a quotient stack

For each triple n, r and d, consider the space A(n, rd) of homogenous forms of degree rd in n + 1
indeterminates; we can think about A(n, rd) as the spectrum of the polynomial ring Z[aI ], where
aI is an indeterminate and I varies over the set of functions I : {0, . . . , n} → N with

∑
k I(k) = rd,

so A(n, rd) is an affine space of dimension
(rd+n

n

)
over Z.

We also write P(n, rd) for the projective space of lines in A(n, rd) (in this context, this convention
seems more natural than Grothendieck’s).

We denote by A0(n, rd) the complement of the zero section Spec Z ↪→ A(n, rd) and by Asm(n, rd)
⊆ A0(n, rd) the open subscheme corresponding to smooth forms.

There is a natural action of GLn+1 = GLn+1,Z on A(n, rd), defined, in functorial notation, by
A · f(x) = f(A−1x). The subgroup scheme µd ⊆ GLn+1, embedded by sending a dth root of one α
into the diagonal matrix αIn+1, acts trivially on A(n, rd), so this induces an action of the quotient
GLn+1 /µd on A(n, rd), leaving the open subschemes A0(n, rd) and Asm(n, rd) invariant.

Theorem 4.1. The fibered category H(n, r, d) is isomorphic to the quotient stack

[A0(n, rd)/(GLn+1 /µd)]

by the action described above.
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Furthermore, if R is a commutative ring and F ∈ A0(n, rd)(R) is a form of degree rd whose
coefficients generate the trivial ideal R, the branch divisor ∆f ⊆ PnR of the associated uniform cyclic
cover f : X → PnR is the hypersurface of PnR defined by F .

Proof. To prove the theorem, we identify H(n, r, d) with H′(n, r, d), the fibered category of
Remark 3.3.

Consider the auxiliary fibered category H̃(n, r, d), whose objects over a base scheme S are given
as pairs consisting of an object (P → S,L, i : L⊗r → OP ) in H(n, r, d)(S), plus an isomorphism
φ : (P,L) � (PnS,O(−d)) over S (by this we mean the pair consisting of an isomorphism of S-schemes
φ0 : P � PnS, plus an isomorphism φ1 : L � φ∗0O(−d)). The arrows in H̃(n, r, d) are arrows in
H(n, r, d) preserving the isomorphisms φ.

The obvious projection from H̃(n, r, d) to the category of schemes makes it into a category fibered
in groupoids. In fact, no object of H̃(n, r, d) has a non-trivial automorphism mapping to identity
in the category of schemes, so H̃(n, r, d) is equivalent to a functor. We have a morphism of fibered
categories from H̃(n, r, d) to H′(n, r, d) by forgetting the isomorphism φ.

Let us define a base-preserving functor from H̃(n, r, d) to A0(n, rd). For any object of H̃(n, r, d)(S)
take the composition

φ ◦ i ◦ (φ−1)⊗r : OPn
S
(−rd) → OPn

S
,

corresponding to a section of OPn
S
(rd) that does not vanish on any fiber of PnS → S; that is, to an

element of A0(n, rd)(S). There is also a base-preserving functor in the other direction, by sending
a section f ∈ OPn

S
(rd), thought of as a homomorphism f : OPn

S
(−rd) → OPn

S
, into the object

(PnS → S,O(−d), f : O(−d)⊗r → O, id : (PnS ,O(−d)) → (PnS ,O(−d)))
of H̃(n, r, d)(S). It is straightforward to check that this gives a quasi-inverse to the previous functor;
so we get an equivalence of H̃(n, r, d) with A0(n, rd).

Now, for each integer e consider the functor Aut(Pn
Z
,O(e)) from schemes to groups sending each

scheme S into the group of automorphisms of the pair (PnS ,O(e)) over the identity on S. This is a
sheaf in the fppf topology. Clearly, Aut(Pn

Z
,O(1)) can be identified with GLn+1,Z; an isomorphism

of the pair (PnS,O(1)), gives via π : PnS → S an automorphism of π∗O(1) = On+1
S as an OS-module

and also works conversely. There is a natural homomorphism of sheaves of groups

Aut(PnZ,O(1)) → Aut(PnZ,O(e))

sending each automorphism (φ0, φ1) : (PnS ,O(1)) � (PnS,O(1)) into

(φ0, φ
⊗e
1 ) : (PnS ,O(e)) � (PnS ,O(1)).

It is easy to check that this is a surjective homomorphism of fppf sheaves. If we identify Aut(Pn
Z
,O(1))

with GLn+1,Z, then the kernel of this homomorphism is the subgroup µ|e|,Z embedded diagonally.
So we get an isomorphism

Aut(PnZ,O(−d)) � GLn+1,Z /µd,Z.

There is a left action of Aut(Pn
Z
,O(−d)) on H̃(n, r, d); if

(P → S,L, i : L⊗r → OP , φ : (P,L) � (PnS ,O(−d)))
is an object of H̃(n, r, d)(S) and

α : (PnS ,O(−d)) � (PnS ,O(−d))
is an element of Aut(Pn

Z
,O(−d)), we associate with these the object

(P → S,L, i : L⊗r → OP , α ◦ φ : (P,L) � (PnS ,O(−d))).
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Furthermore, given an invertible sheaf L on P → S whose degree is −d on every geometric
fiber, there is an fppf covering S′ → S, such that the pullback of the pair (P,L) to S′ is isomorphic
to (PnS′ ,O(−d)); this fact, plus descent theory, implies that the forgetful morphism H̃(n, r, d) →
H(n, r, d) makes H̃(n, r, d) into a principal bundle with group Aut(Pn

Z
,O(−d)) = GLn+1,Z /µr,Z.

If we identify H̃(n, r, d) with A0(n, rd), we obtain that H(n, r, d) is isomorphic to the quotient
stack [A0(n, rd)/(GLn+1,Z /µr,Z)]. Now we only have to identify the action explicitly. However, from
the description above it is easy to check that GLn+1 = Aut(Pn

Z
,O(1)) acts by the usual action

(f ·A)(x) = f(A−1x), so the action of its quotient is that described above.
The last statement follows easily by construction.

The following corollary is a direct application of Theorem 4.1.

Corollary 4.2. The fibered category Hsm(n, r, d) is equivalent to the quotient stack

[Asm(n, rd)/(GLn+1 /µd)]

by the action described above.

In particular, H(n, r, d) is an irreducible smooth algebraic stack of finite type over SpecZ, of
relative dimension (

rd+ n

n

)
− (n+ 1)2

and Hsm(n, r, d) is an open substack, hence it also smooth of the same dimension. So, for example,
the dimension of the stack of hyperelliptic curves Hsm(1, 2, g + 1) is 2g− 1, as it should be, and the
dimension of the stack of K3 surfaces Hsm(2, 2, 3) is 19.

The fact that hypersurfaces of degree at least three are stable for the action of SLn+1 implies
that when d > 1, the diagonal of Hsm(n, r, d) is finite and its moduli space is quasiprojective over
SpecZ. Also, again for d > 1, the restriction of Hsm(n, r, d)Spec Z[1/rd] is a Deligne–Mumford stack
over Spec Z[1/rd].

Remark 4.3. Assume that d is at least three. Then, if we look at the natural action of SLn+1

on the projectivization P(n, rd) of A(n, rd), the points corresponding to smooth hypersurfaces
are stable. This implies that we can apply Kirwan’s procedure (see [Kir85]) to get a canonical
GLn+1 /µd-equivariant morphism K(n, rd) → A0(n, rd) which is an isomorphism over Asm(n, rd),
such that the action of GLn+1 /µd is proper and the geometric quotient K(n, rd)/(GLn+1 /µd) is a
projective scheme over SpecZ. The quotient stack

H(n, r, d) = [K(n, rd)/(GLn+1 /µd)]

is an Artin stack with finite diagonal and projective moduli space, yielding a canonical compactifi-
cation of Hsm(n, r, d); this seems like a much more natural object than H(n, r, d).

We could try to investigate the stacks H(n, r, d) and, in particular, describe their objects directly.
This seems very complicated in dimensions higher than two, but at least for n = 1 the problem
should be approachable. If we exclude characteristic 2 then H(1, 2, 3) is the stack M2 of smooth
curves of genus 2 and we can check that H(1, 2, 3) is not isomorphic to the stack M2 of stable curves
of genus 2, although it would seem that it gives the same moduli space. However, in the next case,
H(1, 2, 4) is the stack of smooth hyperelliptic curves of genus 3 and we can easily see that H(1, 2, 4)
does not coincide with the closure of H(1, 2, 4) inside M3, not even at the level of moduli spaces; so
the stack of hyperelliptic curves of fixed genus g has two natural compactifications and, in general,
they do not coincide.
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It would be interesting to investigate these two compactifications and try to determine if they
have any relations.

The group GLn+1 /µd appearing in the statement of the theorem can sometimes be written in
a more familiar form. The following is straightforward.

Proposition 4.4.

a) If d ≡ 0 (mod n+ 1), write d = q(n+ 1). The homomorphism of group schemes over Z

GLn+1 /µd −→ Gm × PGLn+1,

defined by

[A] �→ (det(A)q, [A]),
is an isomorphism.

b) If d ≡ 1 (mod n+ 1), write d = q(n+ 1) + 1. The homomorphism of group schemes over Z

GLn+1 /µd → GLn+1,

defined by

[A] �→ det(A)qA,
is an isomorphism.

c) If d ≡ −1 (mod n+ 1), write d = q(n+ 1) − 1. The homomorphism of group schemes over Z

GLn+1 /µd → GLn+1,

defined by

[A] �→ det(A)−qA,
is an isomorphism.

Remark 4.5. We can show that the group scheme GLn+1 /µd is isomorphic to GLn+1 if and
only if d ≡ ±1 (mod n + 1); on the other hand GLn+1 /µd is special (in the sense that every
GLn+1 /µd-torsor is locally trivial in the Zariski topology) if and only if d is prime to n+ 1 (Zinovy
Reichstein pointed this out to us). Experience teaches us that special groups are infinitely easier to
handle than non-special ones; so, computing basic invariants of the spaces H(n, r, d) and Hsm(n, r, d)
(such as Chow rings and cohomology) should be much easier when d is prime to n + 1. For this
purpose, it would be useful to gather information about the cohomology and the Chow ring of the
classifying spaces of these groups.

If we rewrite the action of Theorem 4.1 via the isomorphisms of Proposition 4.4 we obtain the
following.

Corollary 4.6.

a) If d ≡ 0 (mod n+ 1), write d = q(n+ 1). Then H(n, r, d) is equivalent to the quotient stack

[A(n, rd)/(Gm × PGLn+1)]

by the action defined by the formula

(α, [A]) · f(x) = α−r det(A)rqf(A−1x).

b) If d ≡ 1 (mod n+1), write d = q(n+1)+1. Then H(n, r, d) is equivalent to the quotient stack

[A(n, rd)/(GLn+1)]

by the action defined by the formula

A · f(x) = det(A)rqf(A−1x).
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c) If d ≡ −1 (mod n + 1), write d = q(n + 1) − 1. Then H(n, r, d) is equivalent to the quotient
stack

[A(n, rd)/(GLn+1)]

by the action defined by the formula

A · f(x) = det(A)−rqf(A−1x).

In particular, we get the following description of the stack of hyperelliptic curves.

Corollary 4.7. The stack Hsm(1, 2, g+ 1) of smooth hyperelliptic curves of genus g is isomorphic
to:

a) the quotient of Asm(1, 2g + 2) by the action of GL2 defined by A · f(x) = det(A)gf(A−1x) if g
is even; and

b) the quotient of Asm(1, 2g + 2) by the action of Gm × PGL2 defined by (α, [A]) · f(x) =
α−2 det(A)g+1f(A−1x) if g is odd.

When g = 2, we recover the description of the stack M2 of smooth curves of genus 2 given
in [Vis98]; the derivation here is much simpler, but the method of [Vis98] has some independent
interest.

5. Picard groups of stacks of smooth cyclic coverings

We use the description of Hsm(n, r, d) given in Corollary 4.2 to compute its Picard group, away
from some bad characteristics.

Recall that if X is an algebraic stack over a scheme S, its Picard group is the group of iso-
morphism classes of invertible sheaves on X , with the operation given as usual by tensor product.
An invertible sheaf is a quasicoherent sheaf over X , defined as in [LM00], which is locally free of
rank 1 when restricted to an atlas.

The Picard group of the stack M1,1 of elliptic curves was first computed by Mumford in the
legendary paper [Mum65], written before the notion of algebraic stack was introduced.

Theorem 5.1. Let R be a unique factorization domain such that the characteristic of its quotient
field does not divide 2rd. Then the Picard group of the stack Hsm(n, r, d)R is cyclic, of order

r(rd− 1)n gcd(d, n + 1).

Proof. First of all, it follows from the following lemma that we can assume that R is a field.

Lemma 5.2. Let X be a flat regular algebraic stack of finite type over a unique factorization domain
R with quotient field K. Assume that the fibers of X over the closed points of SpecR are integral.
Then the restriction homomorphism

PicX −→ Pic(SpecK ×SpecR X )

is an isomorphism.

Proof. The group of divisors DivX is the free abelian group generated by integral closed substacks
of codimension one in X . Effective divisors are defined in the usual fashion.

The group DivX can also be defined as follows: closed substacks of X that are local complete
intersection of codimension one form a monoid with the cancellation property, the operation being
defined by taking products of sheaves of ideals. It is the free abelian monoid on the set of integral
closed substacks of codimension one in X . The group DivX is the group of quotients of this monoid.
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If f : X ′ → X is a dominant morphism of noetherian regular algebraic stacks, any closed local
complete intersection substack of X of codimension one pulls back to a closed local complete intersec-
tion substack of X ′ of codimension one; this induces a group homomorphism f∗ : DivX → DivX ′.

If D is a divisor on X , we can associate with it a divisor DU for each smooth morphism U → X ,
where U is a scheme, so that, given two smooth morphisms U → X and V → X , the pullbacks of
DU and DV to U×X V coincide with DU×XV . This is done as follows: write D as D+−D−, where D+

and D− are effective and do not intersect in codimension one; they correspond to closed substacks of
X ; they pull back to effective divisors D+

U and D−
U on U . We define DU to be the difference D+

U −D−
U .

Conversely, if we are given a collection of divisors DU on U for each smooth morphism U → X ,
where U is a scheme, such that given two smooth morphisms U → X and V → X the pullbacks of
DU and DV to U ×X V coincide with DU×XV , there is a unique divisor D such that DU = DU for
each smooth morphism U → X . If we write DU = D+

U −D−
U , where D+

U and D−
U are effective and

do not intersect in codimension one, for each pair of smooth morphisms U → X and V → X we
have D+

U×XV = D+
U and D−

U×XV = D−
U ; so D+

U and D−
U descend to closed substacks of codimension

one, D+ and D− of X , whose ideals are locally generated by one element. We set D = D+ −D−.
If D is a divisor on X , we can associate with it an invertible sheaf O(D) on X , together with

a non-vanishing section defined over the complement of the support of D. Consider the invertible
sheaf O(DU ) defined over U for each smooth morphism U → X . If U → X and V → X are smooth
morphisms, there is a natural isomorphism of O(DU×XV ) with the pullback of O(DU ); these isomor-
phisms define the descent data for an invertible sheaf on X that we call O(D). On the complement
of the support of D, this invertible sheaf is canonically trivial.

This defines a group homomorphism DivX → PicX . If f : X ′ → X is a dominant morphism of
noetherian regular algebraic stacks and D is a divisor on X , then O(f∗D) is canonically isomorphic
to f∗O(D).

Conversely, if L is an invertible sheaf on X and s is a nowhere vanishing section of L on an open
dense substack U , we can associate with it a divisor Z(s) on X . If φ : U → X is a smooth morphism,
we define Z(s)U to be the divisor of the rational section φ∗s of the invertible sheaf φ∗L on U .

We check immediately that s extends to a nowhere vanishing function of the invertible sheaf
L ⊗ O(−Z(s)); therefore, L ⊗ O(−Z(s)) is a trivial invertible sheaf and there is an isomorphism
L � O(Z(s)).

Remark 5.3. In general, on a regular stack not all invertible sheaves come from divisors; those
that do are precisely those possessing a rational section that does vanish on open dense substacks.
For example, if G is a finite group, the group of divisors on the associated classifying stack BCG
is trivial, while the Picard group is the group of characters G → C∗ of G. In this case a rational
section is an invariant and only the trivial character has non-zero invariants.

Now let us proceed with the proof of the lemma: set XK = SpecK ×SpecR X .
Let us show that the restriction homomorphism PicX → PicXK is injective. Let L be an

invertible sheaf on X whose restriction to XK is trivial. Choose a nowhere vanishing section of
the restriction of L to XK ; this will extend to a nowhere vanishing section s of L over some open
substack U of X containing the fiber at infinity. Let D be the divisor on X defined by s; then, as
we have seen, L is isomorphic to O(D). The support of D will be contained in a union of closed
fibers of the morphism X → SpecR; since these fibers are integral we see that D is the pullback of a
divisor on SpecR, so L is the pullback of an invertible sheaf on SpecR. However, such an invertible
sheaf is always trivial, because R is a unique factorization domain.

To prove surjectivity, take an invertible sheaf M over XK and consider the quasicoherent sheaf
j∗M on X , where j : XK → X is the natural morphism. We claim that the natural homomorphism
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j∗j∗M → M is an isomorphism. In fact, this is a local question in the smooth topology of X , so
we may assume that X is the spectrum of an R-algebra A and then this follows from the fact that
XK is the spectrum of a localization of A.

It follows from [LM00, Proposition 15.4] that there exists a coherent subsheaf F of j∗M whose
restriction to XK coincides with M. Then the double dual F∨∨ is a reflexive sheaf of rank one on
a regular stack, so it is invertible and its restriction to XK is isomorphic to M. This completes the
proof of the lemma.

So, assume that R equals a field k. From the description of Hsm(n, r, d) in Corollary 4.2 and
from [EG98, Proposition 18] it follows that Pic(Hsm(n, r, d)) is equal to A1

GLn+1 /µd
(Asm(n, rd)), the

codimension one component of the integral GLn+1 /µd-equivariant Chow ring of Asm(n, rd).
Suppose that G is an algebraic group over a field k, V an l-dimensional representation of G and

X an open invariant subscheme of V . If follows from [EG98] that the pullback A1
G

def= A1
G(Spec k) →

A1
G(V ) is an isomorphism. Indeed, A1

G(Speck) � AG
−1(Spec k) and A1

G(V ) � AG
l−1(V ×Spec k Speck)

by [EG98, Proposition 4]; by [EG98, Theorem 1] we get AG
−1(Spec k) � PicG(Spec k) and analogously

for AG
l−1(V ×Spec k Speck). Finally, by [EG98, Lemma 2], if π : V ×Spec k Spec k → Spec k is the

second projection, then π∗ : PicG(Spec k) → PicG(V ×Spec k Spec k) is an isomorphism and this
yields the claim.

Again, A1
G(Spec k) is the equivariant Picard group for the trivial action of G over Spec k; that

is, is the group of characters Ĝ. Call n the dimension of V . From the usual exact sequence

AG
n−1(V \X) −→ A1

G(V ) −→ A1
G(X) −→ 0

we see that A1
G(X) is the quotient of Ĝ by the subgroup generated by the classes of the components

of V \X in codimension one. In our case, the group of characters ̂GLn+1 /µd is infinite cyclic, while
the locus ∆ of singular forms is well known to be irreducible, so A1

G(Asm(n, rd)) is a cyclic group, of
order equal to the index of the subgroup generated by the class of ∆ in A1(A(n, rd)) = ̂GLn+1 /µd.
To compute this index, first of all note that ̂GLn+1 /µd injects inside ĜLn+1, which is generated by
the determinant det: GLn+1 → Gm; since the intersection of µd with the kernel of the determinant
has order gcd(d, n + 1), it follows that the index of ̂GLn+1 /µd inside ĜLn+1 is d/ gcd(d, n + 1).
In turn, if Gm ↪→ GLn+1 is the usual embedding, ĜLn+1 has index n + 1 in Ĝm; the composite
homomorphism Gm → GLn+1 /µd induces an embedding ̂GLn+1 /µd ↪→ Ĝm of infinite cyclic groups
with index (n+ 1)d/ gcd(d, n+1). The resulting action of Gm on A(n, rd) is defined by the formula
α · f(x) = f(α−1x) = α−rdf(x); thus the index of the subgroup generated by the class of ∆ in

̂GLn+1 /µd equals the index of the subgroup of the class of ∆ in Ĝm for the action described above,
multiplied by the rational number gcd(d, n + 1)/(n + 1)d.

Now, the action of Gm described above is induced by the standard action of Gm defined by the
usual formula α · f(x) = αf(x) via the morphism Gm → Gm defined by α �→ α−rd; hence, the index
of the subgroup generated by the class of ∆ in Ĝm for the action above is rd times the class of ∆
in Ĝm for the standard action. However, the class of ∆ in Ĝm for the standard action is the degree
of ∆. Putting all this together, we obtain the following.

Lemma 5.4. If k is a field, the Picard group of the stack Hsm(n, r, d)k is cyclic of order equal to the
degree of the hypersurface ∆ in A(n, rd)k consisting of singular forms, multiplied by r gcd(d, n +
1)/(n + 1).

The hypersurface ∆ in A(n, rd) is well known to be defined by a polynomial of degree (n +
1)(rd− 1)n (see for instance [GZK94]); the result would follow if we showed that this polynomial is
irreducible when the characteristic of k does not divide 2rd.
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Since ∆ is a cone, we can compute its degree as the degree of its projectivization ∆ ⊆ P(n, rd)
(recall that P(n, rd) is the projective space of lines in A(n, rd)). Call N the dimension of P(n, rd).
Let us represent a point of Pn × P(n, rd) as a pair (x, F ) and let us denote by D the subscheme of
Pn × P(n, rd) defined by the homogeneous equations ∂F/∂xi = 0 with i = 0, . . . , i = n; these are
n+1 equations of bidegree (rd−1, 1). The projection D → Pn makes D into a PN−n−1 bundle onto
Pn, hence D is smooth of codimension n+1 and a complete intersection. Call ξ and η the classes in
A1(Pn × P(n, rd)) obtained by pulling back a hyperplane from Pn and from P(n, rd), respectively,
then the class of D in the Chow ring of Pn × P(n, rd) is ((rd − 1)ξ + η)n+1; a straightforward
calculation, applying projection formula, reveals that its pushforward to A1(P(n, rd)) has degree
(n+ 1)(rd− 1)n.

Due to Euler’s formula and because the degree rd of a form in A(n, rd) is not divisible by the
characteristic of k, if (x, F ) is a point of D, then x is a singular point of the hypersurface defined
by F ; hence, the image of D in P(n, rd) is the projectivization ∆ of ∆; hence, to conclude the proof
it is enough to show that D is birational onto ∆. Call D0 the inverse image of D in A0(n, rd); it
is enough to show that D0 is birational onto its image in A0(n, rd). We may also assume that the
base field k is infinite. It is enough to show that there exists a polynomial F in A0(n, rd)(k), whose
inverse image in D0 is a single rational point with the reduced scheme structure. Because of the
definition of F , this is equivalent to saying that F has a single singular point p ∈ Pn(k) and the ideal
generated by the partial derivates ∂F/∂xi is the homogeneous ideal of p.

Take a polynomial f ∈ k[x] in one variable of degree rd that has a double root in zero and no
other multiple root. We set f =

∑n
i=1 aif(xi), where a1, . . . , an are generic elements of k and we call

F the homogeneous polynomial of degree rd whose dehomogenization is f . We claim that F has the
desired property. We immediately check that F has no singularity along the hyperplane at infinity.
Furthermore, if ξ = (ξ1, . . . , ξn) is a singular point of f , then 0 = ∂f/∂xi(ξ) = aif

′(ξi), so ξi is a
zero of the derivative f ′ of f . There are only finitely many such zeros; hence, since the ai are generic
f will not vanish on any n-tuple (ξ1, . . . , ξn) where each ξi is a zero of f ′ and at least one of them
is different from zero. So the only singularity of f is at the origin. However, ∂f/∂xi has the form
cixi + higher order terms with all ci different from zero, so the partial derivatives ∂f/∂xi generate
the ideal (x1, . . . , xn) ⊆ k[x1, . . . , xn]. Again by Euler’s formula this implies that the ideal generated
by the partial derivatives ∂F/∂xi for i = 0, . . . , n is the homogeneous ideal (x1 − x0, . . . , xn − x0)
and this completes the proof of Theorem 5.1.

Remark 5.5. In particular, this states that the Picard group of the stack of hyperelliptic curves
Hsm(1, 2, g + 1)k over a field k of characteristic not dividing two or g+ 1 is cyclic of order 2(2g+ 1)
if g is even and 4(2g + 1) if g is odd.

When g = 1, we get that the Picard group of Hsm(1, 2, 1)k is cyclic of order 12; this immediately
reminds us of the famous result of Mumford in [Mum65] that the Picard group of the stack M1,1 is
cyclic of order 12. However, as we observed in Example 3.5, part b, Hsm(1, 2, 1)k is not isomorphic
to M1,1. There is a canonical morphism M1,1 → Hsm(1, 2, 1), sending a family π : E → S to
the uniform covering E → P(π∗OE(2Σ)), where Σ is the image of the given section S → E; a
generator of µ2 acts like the involution e �→ −e on E. This morphism induced a factorization
M1,1 → Hsm(1, 2, 1)k → M1 of the morphism M1,1 → M1 forgetting the section.

We claim that this morphism, although it is not an isomorphism, induces an isomorphism of
Picard groups. This can be seen as follows. The Picard group of M1,1 is generated by the first
Chern class of the Hodge bundle on M1,1. The Hodge bundle is already defined on the stack
M1 of unpointed curves of genus 1 and the morphism M1,1 → M1 forgetting the section factors
through Hsm(1, 2, 1)k . Hence, there is an element of the Picard group of Hsm(1, 2, 1)k mapping into
a generator of the Picard group of M1,1. Since both groups are cyclic of the same order, it follows
that the pullback homomorphism is, in fact, an isomorphism.
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6. Cyclic triple coverings of P1

In this section we study the stack of cyclic triple covers of the projective line, with particular regard
to the smooth ones. General triple covers have been extensively studied in [Mir85].

Definition 6.1. A cyclic triple cover over a scheme S consists of a morphism of S-schemes f : X →
P , together with an action of µ3 over X leaving f invariant, such that the following conditions are
satisfied.

a) P → S is a conic bundle.
b) The morphism f is flat and finite, and induces an isomorphism X/µ3 � P .
c) There exists an open subscheme V ⊆ P , which intersects every fiber of f : X → P , such that

the restriction f−1(V ) → V is a µ3-torsor.

Cyclic triple covers can be described by using an eigensheaf decomposition, as for uniform cyclic
covers. Consider the action of µ3 on the locally free sheaf f∗OX on OP ; this will split as a sum of
locally free sheaves of OP -modules L0 ⊕ L1 ⊕ L2, where Li is the subsheaf of f∗OX of sections s
such that the action of µ3 can be described as (t, s) �→ tis. Definition 6.1, condition b, ensures that
L0 = OP , while flatness and condition c imply that L1 and L2 are invertible sheaves. The algebra
structure on f∗OX induces homomorphisms of sheaves of OP -algebras

φ1 : L⊗2
1 −→ L2, φ2 : L⊗2

2 −→ L1 and φ12 : L1 ⊗ L2 → OP

that are injective on every fiber of P → S. These homomorphisms determine the algebra structure
completely; the covering is uniform if and only if φ1 is an isomorphism. The algebra structure also
gives homomorphisms L⊗3

1 → OP and L2 → OP which are injective on every fiber of P → S: this
states that the degrees of Li on each fiber of P → S cannot be positive. We assume that these
degrees are constant on S and we call their opposites d1 and d2 the branch degrees of the triple
covering. These branch degrees are subject to the obvious constraints 0 � d1 � 2d2, 0 � d2 � 2d1.

The stack of cyclic triple covers with branch degrees d1 and d2 will be denoted by H(1, 3; d1, d2);
we have H(1, 3, d) = H(1, 3; d, 2d). We denote by Hsm(1, 3; d1, d2) the full subcategory of H(1, 3;
d1, d2) whose objects are triple cyclic covers X → P → S such that X is smooth over S.

Of course all the definitions above generalize to higher dimensions, and we could consider cate-
gories of cyclic triple covers of Pn for any n; the main reason why we do not do this is that such a
cover will never be smooth, unless n = 1, or the cover becomes uniform after twisting the action by
an automorphism of µ3 (see Remark 6.4).

There is an alternate description of H(1, 3; d1, d2). We call H′(1, 3; d1, d2) the category whose
objects are quintuples (P → S,L1,L2, φ1, φ2), where P → S is a Brauer–Severi scheme of rank one,
L1 and L2 are invertible sheaves on P , whose degrees on each fiber of P → S are −d1 and −d2,
respectively, while φ1 : L⊗2

1 → L2 and φ2 : L⊗2
2 → L1 are homomorphism of sheaves of OP -modules

that are injective on all the fibers of P → S. The arrows are defined in the obvious way.
The construction above yields a functor H(1, 3; d1, d2) → H′(1, 3; d1, d2); we claim that this is

an equivalence of fibered categories over the category of schemes. This is an easy consequence of
the following.

Lemma 6.2. Let Y be a scheme and L1, L2 be invertible sheaves on Y , with homomorphisms
φ1 : L⊗2

1 → L2 and φ2 : L⊗2
2 → L1. Then φ1 and φ2 extend to a unique structure of associative and

commutative OY -algebra on the OY -sheaf OY ⊕ L1 ⊕ L2.

Proof. This is a local statement in the Zariski topology, so we may assume that L1 and L2 have
global generators t1 and t2. The homomorphisms φ1 and φ2 correspond to two sections f1 and f2

of OY with φ1(t1 ⊗ t1) = f1t2 and φ2(t2 ⊗ t2) = f2t1. Set A def= OY ⊕ L1 ⊕ L2; to extend φ1 and
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φ2 to a bilinear symmetric product A ⊗OY
A → A with identity one, we need to add the data of

a homomorphism L1 ⊗ L2 → OY , corresponding to a third section h of O (the image of t1 ⊗ t2).
Then a lengthy but straightforward calculation reveals that this product is associative if and only
if h = f1f2, and this clearly implies the result.

A cyclic triple cover X → P has two associated branch divisors in P , given by the two homo-
morphisms φ1 : L⊗2

1 → L2 and φ2 : L⊗2
2 → L1, whose degrees are, respectively, 2d1−d2 and 2d2−d1.

We say that the triple cover is smooth if X is smooth over S; we denote by Hsm(1, 3; d1, d2) the
open substack of H(1, 3; d1, d2) whose objects are smooth triple covers.

Since X is smooth over S, to check smoothness it is enough to check that the geometric fibers
are smooth.

Proposition 6.3. A cyclic triple cover X → P over a field is smooth if and only its two branch
divisors have no multiple points, and are disjoint.

Proof. This follows from Proposition 3.1 of [Par91].
We can also proceed as follows. Choose an open subset U of P with non-vanishing sections t1

and t2 of L1 and L2, respectively. The OP algebra OX is defined over U by the equations t21 = f1t2,
t22 = f2t1, t1t2 = f1f2 (see the proof of Lemma 6.2). A straightforward calculation using the
Jacobian criterion proves that X is smooth over S if and only if f1 and f2 have no multiple zero
and no common zero.

Remark 6.4. We could build a similar theory for projective spaces of dimension higher than one;
then a similar argument would show that a triple cover X → P is smooth if and only if its two
branch divisors are smooth and do not intersect. However, in rank greater than one, this would
mean that one of the two divisors must be empty, so that either d2 = 2d1 and the triple cover is in
fact uniform, or d1 = 2d2 and the triple cover becomes uniform after twisting the action of µ3 by
the non-trivial automorphism of µ3 (see Remark 3.6).

Using this description of H(1, 3; d1, d2) we can prove the following. Consider the embedding
µd1 × µd2 ⊆ Gm × GL2 as a normal subgroup scheme given by

(α1, α2) �→ (α2/α1, α1I2);

call Γ(d1, d2) the quotient.

Theorem 6.5. H(1, 3; d1, d2) is isomorphic to the quotient stack

[A0(1, 2d1 − d2) × A0(1, 2d2 − d1)/Γ(d1, d2)]

by the action given by the formula

[α,A] · (f1(x), f2(x)) = (αd2f1(A−1x), α−2d2f2(A−1x)).

Furthermore, U is the open subscheme of A0(1, 3, 2d1 − d2) × A0(1, 3, 2d2 − d1) consisting of pairs
of forms without multiple roots and no common root, then Hsm(1, 3; d1, d2) is isomorphic to the
quotient [U/Γ(d1, d2)].

Proof. We closely follow the strategy of the proof of Theorem 4.1 and use the alternative description
of H(1, 3; d1, d2) given by H′(1, 3; d1, d2).

Consider the auxiliary fibered category H̃(1, 3; d1, d2): if S is a scheme, an object of H̃(1, 3;
d1, d2)(S) is a quintuple (P → S,L1,L2, φ1, φ2) giving an object of H′(1, 3; d1, d2)(S), plus the
choice of two isomorphisms over S

λ1 : (P1
S ,O(−d1)) � (P,L1) and λ2 : (P1

S,O(−d2)) � (P,L2)
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such that the restriction of λ−1
2 ◦ λ1 to P1

S induces the identity on P1
S. The arrows are arrows in

H(1, 3; d1, d2) preserving the two isomorphisms λ1 and λ2. Objects in the fiber H̃(1, 3; d1, d2)(S)
have no non-trivial automorphism, so H̃(1, 3; d1, d2) is equivalent to a functor.

Let (P → S,L1,L2, φ1, φ2, λ1, λ2) be an object of H̃(1, 3; d1, d2)(S); consider the composition

(P1
S ,O(−2d1))

λ⊗2
1−−→ (P,L⊗2

1 )
φ1−→ (P,L2)

λ−1
2−−→ (P1

S,O(−d2))

(if λ1 is given by a pair (µ1, ρ1), where µ1 : P � P1
S is an isomorphism of S-schemes and ρ1 : O(−1) �

µ∗1O(−d1) is an isomorphism of sheaves of OP1S -modules, we write λ⊗2
1 for the pair (µ1, ρ

⊗2
1 )).

This gives a homomorphism of sheaves O(−2d1) → O(−d2) lying over the identity of P1
S, that does

not vanish identically on any fiber and, therefore, an element of A0(1, 2d1 − d2)(S). Analogously we
construct an element of A0(1, 2d2 − d1)(S); this defines a base-preserving functor

H̃(1, 3; d1, d2) −→ A0(1, 2d1 − d2) × A0(1, 2d2 − d1).

To define an inverse, we send an object (f1, f2) of A0(1, 2d1 − d2)(S) × A0(1, 2d2 − d1)(S) into
the object

(P1
S → S,O(−d1),O(−d2), φ1, φ2, id, id)

where φ1 : O(−2d1) → O(−d2) and φ2 : O(−2d2) → O(−d1) are given by multiplication by f1 and
f2, respectively. It is straightforward to check that this gives a quasi-inverse to the functor above,
so H̃(1, 3; d1, d2) is equivalent to A0(1, 2d1 − d2) × A0(1, 2d2 − d1).

Consider the functor Aut(P1
Z
,O(−d1),O(−d2)) from schemes to groups, sending a scheme S into

the group of automorphisms of the triple (P1
S ,O(−d1),O(−d2)) over the identity on S. This is a

sheaf in the fppf topology. It can also be thought of as the fiber product

Aut(P1
Z,O(−d1)) ×AutP1

Z

Aut(P1
Z,O(−d2)).

Since Aut P1
Z

is PGL2,Z, and, according to the discussion in the proof of Theorem 4.1, Aut(P1
Z
,O(−d))

is isomorphic to the quotient GL2,Z /µd,Z, we see that we have an isomorphism of functors

Aut(P1
Z,O(−d1),O(−d2)) � GL2 ×PGL2 GL2 /µd1 × µd2

where µd1 is embedded diagonally in the first copy of GL2, µd2 in the second. We also have an
isomorphism Gm × GL2 � GL2 ×PGL2 GL2, where a section (α,A) of Gm × GL2 over some scheme
is sent into the pair (A,αA). The embedding µd1 × µd2 ⊆ GL2 ×PGL2 GL2 gives an embedding
µd1 × µd2 ⊆ Gm × GL2 given by the formula

(α1, α2) �→ (α2/α1, α1I);

in this way we obtain an isomorphism of Aut(P1
Z
,O(−d1),O(−d2)) with Γ(d1, d2).

There is a left action of Aut(P1
Z
,O(−d1),O(−d2)) on H̃(1, 3; d1, d2); if (P → S,L1,L2, φ1, φ2,

λ1, λ2) is an object of H̃(1, 3; d1, d2)(S) and (α1, α2) is an object of Aut(P1
Z
,O(−d1),O(−d2))(S),

we set

(α1, α2) · (P → S,L1,L2, φ1, φ2, λ1, λ2) = (P → S,L1,L2, φ1, φ2, λ1 ◦ α−1
1 , λ2 ◦ α−1

2 ).

Furthermore, given two invertible sheaves L1 and L2 on P → S with degrees −d1 and −d2 on every
geometric fiber, there is an fppf covering S′ → S, such that the pullback of the triple (P,L1,L2) to
S′ is isomorphic to (P1

S′ ,O(−d1),O(−d2)); this fact, plus descent theory, implies that the forgetful
morphism H̃(1, 3; d1, d2) → H(1, 3; d1, d2) makes H̃(1, 3; d1, d2) into a principal bundle with structure
group Aut(P1

Z
,O(−d1),O(−d2)) = Γ(d1, d2).

The action of Γ(d1, d2) on H̃(1, 3; d1, d2) gives an action of the structure group Aut(P1
Z
,O(−d1),

O(−d2)) on A0(1, 2d1 − d2) × A0(1, 2d2 − d1), via the equivalence above. Hence, H(1, 3; d1, d2) is
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equivalent to the quotient stack

[A0(1, 2d1 − d2) × A0(1, 2d2 − d1)/Γ(d1, d2)];

now we only have to write this action explicitly.
First of all, restrict attention to the first component A0(1, 2d1 − d2) and consider the action

of GL2 ×PGL2 GL2 on H0(O(2d1 − d2)). Fix a section h1 in H0(P1
Z
,O(d2)) that does not vanish

on any fiber of P1
Z

→ SpecZ: any element f1 ∈ H0(O(2d1 − d2)) can be written uniquely as
f1(x) = g1(x)/h1(x), where g1 ∈ H0(O(2d1)).

Since the multiplication map H0(O(2d1 − d2)) × H0(O(d2)) → H0(O(2d1)) is GL2 ×PGL2 GL2-
equivariant, it follows immediately that the action of the group GL2 ×PGL2 GL2 on H0(O(2d1−d2))
is described by the formula

(A1, A2)f1(x) = g1(A−1
1 x)/h1(A−1

2 x).

Under the isomorphism Gm × GL2 → GL2 ×PGL2 GL2, given by (α,A) �→ (A,αA), the action of
Gm × GL2 on H0(O(2d1 − d2)) can be written as

(α,A)f1(x) = g1(A−1x)/h1(α−1A−1x) = αd2f1(A−1(x)).

It is easy to check that this action descends to the quotient group Γ(d1, d2). Analogously, we show
that the action of Γ(d1, d2) on the second component A0(1, 2d2 − d1) is given by the formula

(α,A)f2(x) = α−2d2f2(A−1(x)).

This completes the proof of the first statement.
The last statement is an easy consequence of the definition of the stack of smooth triple covers

Hsm(1, 3; d1, d2) and of Proposition 6.3.

In particular, the stack H(1, 3; d1, d2) is a smooth irreducible Artin stack over SpecZ of dimension
(2d1 − d2 + 1)(2d2 − d1 + 1) − 5.

Now we give a presentation of the Picard group of the stack Hsm(1, 3; d1, d2).

Theorem 6.6. Assume that d1 and d2 are positive. Let R be a unique factorization domain, such
that the characteristic of its quotient field does not divide 2(2d1 − d2)(2d2 − d1). Then the Picard
group Pic(Hsm(1, 3; d1, d2)R) is a group with two generators v1 and v2 and three relations.

a) If d1 is odd, the three relations are

(2d1 − d2 − 1)(2v1 − (d2 + 2)v2),
(2d2 − d1 − 1)(4v1 − (2d2 + 1)v2),

(−5d1 + 4d2)v1 +
4d1 − 5d2(d1 + 1) − 4d2

2

2
v2.

b) If d1 and d2 are both even, the three relations are

2(2d1 − d2 − 1)(v1 − 2v2),
2(2d2 − d1 − 1)(2v1 − v2),

(4d2 − 5d1)v1 + (4d2 − 5d2)v2.

Remark 6.7. As is immediately seen, twisting the action by the non-trivial automorphism µ3 � µ3

gives a canonical isomorphism of stacks H(1, 3; d1, d2) � H(1, 3; d2, d1); hence the theorem above
describes the Picard group of H(1, 3; d1, d2) even when d1 is even and d2 is odd.

Proof. The proof is very similar to the proof of Theorem 5.1, with some added complications. Again,
Lemma 5.2 allows us to reduce to the case that R is a field.
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The Picard group Pic(Hsm(1, 3; d1, d2)) is isomorphic to the codimension one component
A1

Γ(d1,d2)(U) of the equivariant Chow ring of the open subscheme U of A0(1, 2d1−d2)×A0(1, 2d2−d1)
consisting of the complement of three hypersurfaces ∆1, ∆2 and Z: the first two are the inverse
images of the discriminant hypersurfaces of A(1, 2d1 −d2) and A(1, 2d2 −d1), respectively, while the
geometric points of the third consist of pairs of forms with a common zero (again, this description
of U comes from Proposition 6.3). As in the proof of Theorem 5.1, this means that A1

Γ(d1,d2)(U) is
the quotient of

A1
Γ(d1,d2)

(A0(1, 2d1 − d2) × A0(1, 2d2 − d1)) = A1
Γ(d1,d2)

(Spec k)

= ̂Γ(d1, d2)

by the subgroups generated by the classes of the three hypersurfaces. The character group ̂Γ(d1, d2)
is the kernel of the restriction homomorphism

̂Gm × GL2 −→ ̂µd1 × µd2 ;

The character group of Gm × GL2 is generated by the projection e1 : Gm × GL2 → Gm and by
the homomorphism e2 : Gm × GL2 → Gm defined by (α,A) �→ detA. If we denote by ε1 and
ε2 the generators of ̂Γ(d1, d2) corresponding to the projection onto µd1 and µd2 followed by the
embedding into Gm, the restriction homomorphism sends e1 into ε2 − ε1 and e2 into 2ε1; from this
we see that the kernel of the restriction homomorphism is the subgroup of elements of ̂Gm × GL2 of
the form x1e1 + x2e2, where x1 and x2 are integers with x1 ≡ 2x2 (mod d1) and x1 ≡ 0 (mod d2).
If d1 is odd, then a basis for the kernel is given by

v1 = d2e1 +
(d1 + 1)d2

2
e2 and v2 = d1e2,

while if d1 and d2 are both even a basis is

v1 = d2e1 +
d2

2
e2 and v2 =

d1

2
e2.

So the Picard group of H(1, 3; d1, d2) is generated by two elements v1 and v2, with three relations,
obtained by expressing the classes of the three hypersurfaces as linear combinations of v1 and v2.

To do this we use the following lemma. A cone in A(2d1 − d2)k × A(2d1 − d2)k is a closed
subscheme that is invariant under the actions of Gm ×Gm defined by (t1, t2) · (f1, f2) = (t1f1, t2f2).
The integral cones correspond to the integral subschemes of P(2d1 − d2)k × P(2d1 − d2)k and, as
such, they have a bidegree.

Lemma 6.8. Let S be an integral cone of codimension one in A(2d1−d2)k×A(2d1−d2)k of bidegree
(a1, a2) that is invariant under the action of Γ(d1, d2).

a) If d1 is odd, the integer 4a2d2 −a2d1 −a1d1d2 is divisible by 2d1 and the class of S in ̂Γ(d1, d2)
is

(a1 − 2a2)v1 + (−a1 + a2d2 + a2a1d2/2)v2.

b) If d1 and d2 are both even, the integer 4a2d2 is divisible by d1 and the class of S in ̂Γ(d1, d2) is

(a1 − 2a2)v1 + (−2a1 + a2)v2.

Proof. Let Φ be a generator of the ideal of S. Saying that S has bidegree (a1, a2) is the same as
saying that Φ(t1f1, t2f2) = ta11 t

a2
2 Φ(f1, f2) for any (t1, t2) in Gm × Gm and any (f1, f2) in A(2d1 −

d2)k × A(2d1 − d2)k. On the other hand, since S is also invariant for the action of Gm × GL2, we
must have a formula of the type

Φ(αd2f1(A−1x), α−2d2f2(A−1x)) = αn1(detA)n2Φ(f1, f2);
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furthermore, in this case, the class of S is n1e1 +n2e2, where e1 and e2 are generators of ̂Gm × GL2.
To compute the integers n1 and n2 we set A = βI2, where β is scalar, so that detA = β2. We get

Φ(αd2f1(β−1x), α−2d2f2(β−1x)) = Φ(αd2β−2d1+d2f1(x), α−2d2β−2d1+d2f2(x))

= α(a1−2a2)d2β−a1(2d1−d2)−a2(2d2−d1)Φ(f1, f2)

hence

Φ(αd2f1(A−1x), α−2d2f2(A−1x)) = α(a1−2a2)d2(detA)−(a1(2d1−d2)+a2(2d2−d1))/2Φ(f1, f2)

and from this we obtain that the class of S in ̂Gm × GL2 � Z2 is

(a1 − 2a2)d2e1 − a1(2d1 − d2) + a2(2d2 − d1)
2

e2.

The result follows by expressing this class as a linear combination of v1 and v2.

This reduces the problem to computing the bidegrees of the three hypersurfaces. The hyper-
surface ∆1 is the pullback of the discriminant hypersurface from the first factor A(2d1 − d2) and we
have seen in the proof of Theorem 5.1 that this is integral with degree 2(2d1 − d2 − 1). Hence the
bidegree of ∆1 is (2(2d1 − d2 − 1), 0) and, if we plug this in the formulas of Lemma 6.8, we obtain
that the class of ∆1 is

2(2d1 − d2 − 1)v1 − (d2 + 2)(2d1 + d2 − 1)v2
when d1 is odd, and

2(2d1 − d2 − 1)v1 − 4(2d1 − d2 − 1)v2
when d1 and d2 are both even. This gives us our first relation.

The second is obtained similarly, by setting a1 = 0 and a2 = 2(2d2 − d1 − 1) in the formulas;
the result is

2(2d1 − d2 − 1)v1 − 4(2d1 − d2 − 1)v2
when d1 is odd, and

−4(2d2 − d1 − 1)v1 + (2d2 + 1)(2d2 − d1 − 1)v2
when d1 and d2 are both even.

To calculate the bidegree of Z, consider the subscheme Z̃ of P1 × P(2d1 − d2) × P(2d2 − d1)
consisting of triples (p, f1, f2), where p is a point in P1 and f1, f2 are forms vanishing at p. Then Z̃
is a smooth subscheme of codimension two, and the projection

P1 × P(2d1 − d2) × P(2d2 − d1) −→ P(2d1 − d2) × P(2d2 − d1)

maps Z̃ birationally onto Z. If we denote by η, ξ1 and ξ2 the pullbacks to P1×P(2d1−d2)×P(2d2−d1)
of the first Chern classes of O(1) on P1, P(2d1 − d2) and P(2d2 − d1), respectively, then the class of
Z̃ in the Chow ring of P1 × P(2d1 − d2) × P(2d2 − d1) is

((2d1 − d2)η + ξ1)((2d2 − d1)η + ξ2).

By pushing this class forward to P(2d1 − d2) × P(2d2 − d1), using projection formula, we see that
the bidegree of Z is (2d2 − d1, 2d1 − d2). Again we use the formulas of Lemma 6.8 to obtain the
third relation

(−5d1 + 4d2)v1 +
4d1 − 5d2(d1 + 1) − 4d2

2

2
v2

when d1 is odd, and

(−5d1 + 4d2)v2 + (4d1 − 5d2)v2
when d1 and d2 are both even.
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Remark 6.9. There are two possible generalizations of this theory. Given that general flat covers of
P1 seem completely out of reach, we could study the stack of cyclic covers of a conic of degree r for
fixed r, or the stack of general triple covers.

For general triple covers of conics, we can use the description of [Mir85]. This is a work in
progress of Marco Barone, a student of the second author. There is one difficulty: although every
locally free sheaf of rank two on P1

k is isomorphic to O(m) ⊕ O(n), if k is a field, this is not true
over an arbitrary base. This means that we can mimics the construction of Theorem 6.5 and use the
results of [Mir85] to study the stack of triple coverings f : X → P where P → S is a conic bundle
and the kernel of the trace map f∗OX → OP is assumed to be locally isomorphic to O(m) ⊕O(n)
for fixed m and n. However, removing this unpleasant restriction requires a new idea.

For general cyclic covers (or, more generally, covers that are generically torsors under a finite
diagonalizable group) there is the theory created by Pardini (see [Par91]). Using her ‘reduced build-
ing data’ we can describe the stack of all cyclic smooth covers of Brauer–Severi varieties as a quotient
of an open subset of a representation of a quotient of a product of general linear groups; but for
non-smooth covers, her description does not work in general and only yields a stack that is birational
to the stack of cyclic covers.
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