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Abstract. For a finite group G, let F2(G) be the number of factorizations G = AB
of the group G, where A and B are subgroups of G. We compute F2(G) for certain
classes of groups, including cyclic groups �n, elementary abelian p-groups �n

p, dihedral
groups D2n, generalised quaternion groups Q4n, quasi-dihedral 2-groups QD2n (n ≥ 4),
modular p-groups Mpn , projective general linear groups PGL(2, pn) and projective
special linear groups PSL(2, pn).

2000 Mathematics Subject Classification. Primary 20D40, secondary 20P05.

1. Introduction and Preliminaries. Let G be a group and A and B be subgroups of
G. If G = AB, then G is said to be factorized by A and B and the expression G = AB is
said to be a factorization of G. The factorization of groups have been studied by various
authors investigating those properties of groups that inherit from the subgroups in the
factorization. In particular, there have been special attentions to those groups who
have well-known structures and their factorizations is determined completely, say

(1) projective special linear groups PSL(2, q) [5],
(2) projective special linear groups PSL(3, q) and projective special unitary groups

PSU(3, q) [1],
(3) the simple groups G2(q) [6],
(4) sporadic simple groups [2],
(5) simple groups of Lie type of Lie rank 1 and 2 [3].

Now, let G be a finite group and F2(G), the factorization number of G, be the
number of factorizations of G.

Tărnăuceanu [7] defined the subgroup commutativity degree scd(G) of G as the
proportion of the number of ordered pairs (A, B) of subgroups of G such that AB = BA
by |L(G)|2, where L(G) is the lattice of all subgroups of G, and he computed scd(G)
for some classes of groups, including dihedral groups D2n, generalised quaternion
2-group Q2n , quasi-dihedral 2-groups QD2n (n ≥ 4) and modular p-groups Mpn . The
factorization numbers could be applied to compute the subgroup commutativity degree
of a given group G for

scd(G) = 1
|L(G)|2

∑
H≤G

F2(H).
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Hence, to compute the subgroup commutativity degree of a finite group it is enough
to know the factorization number of its subgroups.

We intend to obtain the factorizations of some other classes of groups, and hence
compute their factorization numbers. To compute the number of solutions (A, B) to
the equation G = AB we need to know the subgroups of G, the simplest of which are
abelian groups. Also, the subgroups of dihedral groups D2n, generalised quaternion
groups Q4n, quasi-dihedral groups QD2n (n ≥ 4) and modular p-groups Mpn are known,
and from a well-known theorem of Dickson (Hauptsatz II.8.27 in [4]) we know the
isomorphism classes of subgroups of PSL(2, pn) and also PGL(2, pn). Our results give
alternative formulas to Tărnăuceanu’s results. Also, in a sequel to this paper, we will
apply our results to compute the subgroup commutativity degree of projective special
linear groups PSL(2, q).

We begin with the following definition.

DEFINITION. If f is a (strong) multiplicative arithmetic function, then

�f (n) =
∑
a, b|n

gcd(a, b) = 1

f (ab).

It is straightforward to see that if n = pa1
1 . . . pam

m , then

�f (n) =
m∏

i=1

(
1 + 2

(
f (pi) + · · · + f

(
pai

i

)))
.

In particular, if f is strong multiplicative, then

�f (n) =
m∏

i=1

(
2

f (pi)ai+1 − 1
f (pi) − 1

− 1
)

if f (pi) �= 1, for i = 1, . . . , k and

�1(n) =
m∏

i=1

(2ai + 1).

Albeit the subgroups of finite abelian groups can be determined completely but
the computation of the number of solutions (A, B) to the equation G = AB seems to
be too complicated in general. Thus, we may take G to be a finite abelian group of
some special type.

Let G = 〈
x
〉

be a cyclic group of order n and A = 〈
xa

〉
, B = 〈

xb
〉

be subgroups of
G, where a, b are divisors of n. Then we can see that G = AB if and only if ai + bj ≡ 1
(mod n) for some integers i, j, which is equivalent to gcd(a, b, n) = gcd(a, b) = 1. Thus,

F2(G) =
∑
a, b|n

gcd(a, b) = 1

1 = �1(n).

Utilising the above notations we have the following.

THEOREM 1.1. If G = �n is a cyclic groups, then F2(G) = �1(n).
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Another classes of finite abelian groups which can be handled simply are the
elementary abelian p-groups as we consider below.

THEOREM 1.2. If G = �n
p is an elementary abelian p-group, then

F2(G) = |L(G)|2 −
n−1∑
i=0

(
n
i

)
p
F2

(
�i

p

)
,

where |L(G)| = ∑n
i=0

(n
i

)
p is the number of subgroups of G and

(
n
i

)
p

= (pn − 1) · · · (p − 1)
(pi − 1) · · · (p − 1)(pn−i − 1) · · · (p − 1)

is the number of subgroups of G of order pi.

Proof. Utilizing the notations in the theorem

|L(G)|2 =
∑

A,B≤G

1 =
n∑

i=0

∑
A, B ≤ G
|AB| = pi

1

=
n∑

i=0

(
n
i

)
p
F2

(
�i

p

) =
n−1∑
i=0

(
n
i

)
p
F2

(
�i

p

) + F2(G),

which gives the desired result. �

2. Dihedral, generalised quaternion, quasi-dihedral and modular p-groups. To
compute F2(G) for the classes of dihedral, generalised quaternion and quasi-dihedral
groups we first need to set the following notation:

δn =
∑

1�=k|n

n
k

∏
pi�

n
k

(αi + 1) =
m∏

i=1

(
αi + pαi+1

i − 1
pi − 1

)
− n

for n = pα1
1 . . . pαm

m . Since D2n can be expressed as a factor group of Q4n and QD2m (if
n = 2m−2), it is enough to compute F2(D2n) in details and use it to compute F2(Q4n)
and QD(2m). We begin with the case of dihedral groups.

THEOREM 2.1. Let G = D2n (n ≥ 3) be a dihedral group. Then,

F2(G) =
{
�x(n) + 2δn + 2n, odd n,

�x(n) + 2�x
( n

2

) + 2δn + 2n, even n.

where �x(1) = 1 and

�x(n) =
m∏

i=1

(
2

pαi+1
i − 1
pi − 1

− 1
)

for n = pα1
1 . . . pαm

m .

Proof. Let G = D2n = 〈
x, y : xn = y2 = 1, xy = x−1

〉
and A, B ≤ G such that G =

AB and let n = pα1
1 . . . pαm

m . We divide the proof into three parts:
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(1) A and B are cyclic.
If A, B ≤ 〈

x
〉
, then AB ≤ 〈

x
〉
, which is impossible. Without loss of generality assume

that B �≤ 〈
x
〉
. Then |B| = 2, A ∩ B = 1 and |G| = |A||B|, which implies that |A| = n.

Then A = 〈
x
〉

and so the number of solutions is n.
(2) One of the A and B is a dihedral group and the other is cyclic.
Without loss of generality we may assume that A = 〈

x
n
k , xiy

〉
, where 0 ≤ i < n

k is
a dihedral group of order 2k and B = 〈

xj
〉

or
〈
xjy

〉
is a cyclic group, where 0 ≤ j < n.

First, suppose that B = 〈
xjy

〉
. If A = G, then we have n different choices for B. Thus,

we may assume that A �= G. Clearly |G| = |A||B| and we should have n = 2k is even.
Since an arbitrary element of AB has the form x2u, x2u+iy, x2u+jy or x2u+i−jy, one can
easily see that G = AB if and only if i − j is odd. Thus, the number of solutions (A, B)
is n + 2

( n
2

) = 2n. Now suppose that B = 〈
xj

〉
, where j divides n. Since an arbitrary

element of AB has the form x
n
k u+jv or x

n
k u−jv+iy, one can easily see that G = AB if and

only if gcd
( n

k , j
) = 1 and consequently there is δn = ∑

1�=k|n
n
k

∏
pt�

n
k
(αt + 1) solutions

(A, B), in which
∏

pt�
n
k
(αt + 1) is the number of js satisfying gcd

( n
k , j

) = 1.
(3) A and B are dihedral groups.
Let A = 〈

x
n
k , xiy

〉
and B = 〈

x
n
d , xjy

〉
be dihedral groups of order 2k and 2d,

respectively, where 0 ≤ i < n
k and 0 ≤ j < n

d . Let l := gcd
( n

k , n
d

)
. Then

{ n
k u + n

d v :
u, v ∈ �

} = l�. Since an arbitrary element of AB has the form

x
n
k u+ n

d v, x
n
k u+ n

d v+jy, x
n
k u− n

d v+iy or x
n
k u− n

d v+i−j,

either l = 1 and G = AB, or l > 1 and � = l� ∪ (l� + i − j), which is possible if and
only if l = 2 and i − j is odd. Thus, the number of solutions (A, B) is∑

1 �= k, d|n
gcd( n

k , n
d ) = 1

n
k

· n
d

=
∑

n �= a, b|n
gcd(a, b) = 1

ab = �x(n) − 2n

if l = 1 and ∑
1 �= k, d|n

gcd( n
k , n

d ) = 2

1
2

· n
k

· n
d

= 2
∑

n
2 �= a, b| n

2
gcd(a, b) = 1

ab = 2�x

(n
2

)
− 2n

if l = 2 and i − j is odd and the proof is complete. �
We are now able to compute F2(Q4n) and F2(QD2n ).

THEOREM 2.2. Let G = Q4n be a generalised quaternion group. Then

F2(G) =
{

F2(D2n) + 2δn + 4n, odd n,

F2(D2n), even n.

Proof. Let G = Q4n = 〈
x, y : x2n = 1, xn = y2, xy = x−1

〉
, A, B ≤ G such that G =

AB and Ḡ = G/Z(G). Since 1 �= (xiy)2 = y2 ∈ Z(G) = 〈
xn

〉
, we have H ≤ 〈

x
〉
, which is

of odd order for each subgroup H of G such that H ∩ Z(G) = 1.
If Z(G) ⊆ A, B, then D2n ∼= Ḡ = ĀB̄ and the number of solutions (A, B) in this

case is F2(D2n) and if A ∩ Z(G) = B ∩ Z(G) = 1, then A, B ≤ 〈
x
〉
, which is impossible.

In what follows we may assume without loss of generality that Z(G) ⊆ A and
B ∩ Z(G) = 1. Let B̄ = BZ(G)/Z(G). Then D2n ∼= Ḡ = ĀB̄. If Ā is non-cyclic, then as
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in the proof of Theorem 2.1, the number of solutions (A, B) is δn and if Ā is cyclic, then
Ā �≤ 〈

x̄
〉
, which implies that Ā = 〈

x̄iȳ
〉
. Thus, A = 〈

xiy
〉

and A ∩ B = 1 for |B| is odd,
which implies that |G| = |A||B|. Hence, |B| = n and the number of solutions (A, B)
is 2n. �

THEOREM 2.3. Let G = QD2n (n ≥ 4) be a quasi-dihedral group. Then,

F2(G) = F2(D2n−1 ) + 2n + 2n−1 + 2.

Proof. Let G = QD2n = 〈
x, y : x2n−1 = y2 = 1, xy = x2n−2−1

〉
, A, B ≤ G such that

G = AB and let Ḡ = G/Z(G). Clearly, Z(G) = 〈
x2n−2 〉

.
If Z(G) ⊆ A, B, then D2n−1 ∼= Ḡ = ĀB̄ and the number of solutions (A, B) in this

case is F2(D2n−1 ), and if A ∩ Z(G) = B ∩ Z(G) = 1, then A, B = 1 or some
〈
x2iy

〉
. Hence,

|A|, |B| ≤ 2, which implies that |G| ≤ 4, a contradiction.
In the sequel we may assume without loss of generality that Z(G) ⊆ A and

B ∩ Z(G) = 1. If B = 1, then A = G and we are done. Thus, we may assume
that B �= 1, which implies that B = 〈

x2iy
〉

for some i. Then D2n−1 ∼= Ḡ = ĀB̄, where
B̄ = BZ(G)/Z(G). If Ā is non-cyclic, then as in the proof of Theorem 2.1, the number
of solutions (A, B) is 2n−2 + 2n−2 = 2n−1, for B̄ = 〈

x̄2iȳ
〉
and 2i is even. Finally, suppose

Ā is cyclic. If Ā ≤ 〈
x̄jȳ

〉
, then |Ḡ| ≤ |Ā||B̄| ≤ 4, which is impossible. Thus, Ā ≤ 〈

x̄
〉

and consequently A ≤ 〈
x
〉
. Now we have 2n = |G| = |A||B| = 2|A|, which implies that

|A| = 2n−1 and consequently A = 〈
x
〉
. Hence, the number of solutions (A, B) in this

case is 2n−2. �
We conclude this section by computing F2(G) for modular p-groups Mpn .

THEOREM 2.4. Let G = Mpn (n ≥ 3) be a modular p-group. Then

F2(G) =
{

2(n − 2)(p(p + 1) + 1) + p2 + 3p + 5, pn �= 8,

41, pn = 8.

Proof. Let G = Mpn = 〈
x, y : xpn−1 = yp = 1, xy = xpn−2+1

〉
and A, B ≤ G such that

G = AB. Also, let Z = 〈
xpn−2 〉 = �1(Z(G)). If pn = 8, then G ∼= D8 and F2(G) = 41.

Thus, we may assume that pn �= 8.
If Z ⊆ A, B, then G/Z = A/Z · B/Z and G/Z ∼= �pn−2 × �p. Hence, the number

of such (A, B) is F2(�pn−2 × �p).
If Z � A, B, then |A| = |B| = p and |G| ≤ p2, which is impossible. Thus, we may

assume without loss of generality that Z ⊆ A and Z � B. Then |B| = p and G/Z =
A/Z · BZ/Z. If B = 1, then A = G. Now if B �= 1, then B = 〈

xipn−2
y
〉
for i = 0, . . . , p −

1. Hence, the number of such B is p. Moreover, exp(A) = pn−2 and if A �= G, then A/Z
is a cyclic subgroup of G/Z of order pn−2, which is not contained in BZ/Z. The number
of such A in both cases, i.e. n > 3 and n = 3, is p. Hence, the number of such (A, B) is
p(p + 1) + 1. Therefore, F2(G) = F2(�pn−2 × �p) + 2(p(p + 1) + 1). On the other hand,
by a similar discussion it can be easily shown that F2(�pm × �p) = F2(�pm−1 × �p) +
2(p(p + 1) + 1) for each m > 1 and F2(�p × �p) = p2 + 3p + 5. Therefore, F2(G) =
2(n − 2)(p(p + 1) + 1) + p2 + 3p + 5. �

COROLLARY 2.5. If G = �pn × �p, then

F2(G) = 2(n − 1)(p(p + 1) + 1) + p2 + 3p + 5.
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3. Projective general and special linear groups. We begin with recalling some
well-known properties of PSL(2, pn) about the structure of PSL(2, pn) and its
subgroups.

THEOREM 3.1. (Dickson’s Theorem, Hauptsatz II.8.27 in [4]). Any subgroup of
PSL(2, pn) is isomorphic to one of the following families of groups:

(1) Elementary abelian p-groups.
(2) Cyclic groups of order m, where m is a divisor of (pn ± 1)/d and d = gcd(p − 1,

2).
(3) Dihedral groups of order 2m, where m is as defined in (2).
(4) Alternating group A4 if p > 2 or p = 2 and n ≡ 0 (mod 2).
(5) Symmetric group S4 if p2n ≡ 1 (mod 16).
(6) Alternating group A5 if p = 5 or p2n ≡ 1 (mod 5).
(7) A semi-direct product of an elementary abelian p-group of order pm and a cyclic

group of order k, where k is a divisor of pm − 1 and pn − 1.
(8) The group PSL(2, pm) if m is a divisor of n, or the group PGL(2, pm) if 2m is a

divisor of n.

THEOREM 3.2. (Satz II.8.5 in[4]). If G = PSL(2, pn), then there exists subgroups H,
K and L of G such that

G =
⋃
g∈G

Hg ∪
⋃
g∈G

Kg ∪
⋃
g∈G

Lg,

H is a Sylow p-subgroup of G, which is elementary abelian of order pn, K is cyclic of
order (pn − 1)/d and L is cyclic of order (pn + 1)/d, where d = gcd(p − 1, 2). Moreover,
[G : NG(H)] = pn + 1, [G : NG(K)] = pn(pn + 1)/2 and [G : NG(L)] = pn(pn − 1)/2.

Note that in the above theorem, for H, K and L we have NG(NG(H)) = NG(H),
NG(NG(K)) = NG(K) and NG(NG(L)) = NG(L).

Ito [5] uses Dickson’s theorem to obtain all the possible factorizations of projective
special linear groups. According to Ito’s results, PSL(2, pn) = AB (pn > 59) is a
factorization of PSL(2, pn) if and only if the order of A or B, say A, is divisible
by pn and

(i) p = 2, A is conjugate to NG(H) and B is conjugate to L,
(ii) p = 2, A is conjugate to NG(H) and B is conjugate to NG(L) or

(iii) p > 2, (pn − 1)/2 is odd, A is conjugate to NG(H) and B is conjugate to NG(L).
Utilising the Ito’s results we have the following.

THEOREM 3.3. Let G = PSL(2, pn) be a projective special linear group. Then

F2(G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2|L(G)| + 2pn(p2n − 1) − 1, p = 2, n > 1
2|L(G)| + pn(p2n − 1) − 1, p > 2 and (pn − 1)/2 is odd

pn �= 3, 7, 11, 19, 23, 59
2|L(G)| − 1, p > 2 and (pn − 1)/2 is even

pn �= 5, 9, 29

,

and

F2(G) = 17, 27, 237, 1 141, 2 033, 4 935, 17 223, 48 261, 68 799, 780 695
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if

pn = 2, 3, 5, 7, 9, 11, 19, 23, 29, 59,

respectively.

Proof. If pn > 59, then the result follows directly from (i), (ii) and (iii) and the notes
after Theorem 3.2. For the case pn ≤ 59 we may apply GAP software [8] to compute
the number of factorizations of G. �

We now consider the projective general linear groups. The methods here are
essentially the same as Ito’s method but with some more difficulty. As PGL(2, 2n) ∼=
PSL(2, 2n) we just consider the groups PGL(2, pn) for p odd. We first give
correspondences to Theorems 3.1 and 3.2 for projective general linear groups. Since
by Dickson’s theorem PGL(2, pn) is a subgroup of PSL(2, p2n), we have the following.

THEOREM 3.4. Any subgroup of PGL(2, pn) is isomorphic to one of the following
families of groups:
(1) Elementary abelian p-groups.
(2) Cyclic groups of order m, where m is a divisor of pn ± 1.
(3) Dihedral groups of order 2m, where m is a divisor of pn ± 1.
(4) Alternating group A4.
(5) Symmetric group S4 if p2n ≡ 1 (mod 16).
(6) Alternating group A5 if p = 5 or p2n ≡ 1 (mod 5).
(7) A semi-direct product of an elementary abelian p-group of order pm and a cyclic

group of order k, where k is a divisor of pm − 1 and pn ± 1.
(8) The group PSL(2, pm) if m is a divisor of 2n, or the group PGL(2, pm) if m is a

divisor of n.

THEOREM 3.5. (Satz II.8.5 in [4]). If G = PGL(2, pn) (p > 2), then there exists
subgroups H, K and L of G such that

G =
⋃
g∈G

Hg ∪
⋃
g∈G

Kg ∪
⋃
g∈G

Lg,

H is a Sylow p-subgroup of G, which is elementary abelian of order pn, K is cyclic of order
pn − 1 and L is cyclic of order pn + 1. Moreover, [G : NG(H)] = pn + 1, [G : NG(K)] =
pn(pn + 1)/2 and [G : NG(L)] = pn(pn − 1)/2.

The same as before for H, K and L in the above theorem, we have NG(NG(H)) =
NG(H), NG(NG(K)) = NG(K) and NG(NG(L)) = NG(L). The notations of the above
theorem will be used frequently in the remaining paper.

Let G = PGL(2, pn) (p > 2 and pn > 29) and A, B ≤ G such that G = AB. Note
that by Theorem 3.5, a maximal cyclic subgroup of G has order p, pn − 1 or pn + 1.
Clearly the number of pairs (A, B) such that A = G or B = G is 2|L(G)| − 1. Hence, we
may assume that A and B are non-trivial proper subgroups of G. Also if A or B equals
to the unique subgroup M of PGL(2, pn) isomorphic to PSL(2, pn), then the number
of pairs (A, B) equals 2(|L(G)| − |L(M)|). Hence, we further assume that A, B �=
M.

First assume that p divides both |A| and |B|. Then A and B are isomorphic
to
(1) an elementary abelian p-group;
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(2) A4 if p = 3;
(3) S4 if p = 3;
(4) A5 if p = 3 or 5;
(5) a semi-direct product of an elementary abelian p-group of order pm and a cyclic

group of order k such that k divides pm − 1 and pn ± 1; or
(6) PSL(2, pm) if m|2n (m �= 2n) or PGL(2, pm) if m|n.
Since the number of pairs (A, B), where A, B are of a fix type equals to the number of
pairs (B, A), in what follows without loss of generality we assume that the type of B is
greater than or equal to the type of A.

LEMMA 3.6. The number p does not divide both |A| and |B|.
Proof. If A is an elementary abelian p-subgroup, then p2n − 1 divides |B|, which is

possible only if B = G, a contradiction.
If A ∼= A4, then p = 3, n > 2 and pn−1(p2n − 1)/4 divides |B|. Hence, B is not

isomorphic to any of the groups of types (2) to (5). If B ∼= PGL(2, pm), then m = n,
which is a contradiction. Also if B ∼= PSL(2, pm), then either m = 2 and n = 3, which
implies that

32 · 36 − 1
4

||B| = 32 · 34 − 1
2

,

or m = n and B = M, which are both impossible. If A ∼= S4 or A5, then similarly we
reach to a contradiction.

Suppose that A ∼= �m
p � �k, where k divides pm − 1 and pn ± 1. If B ∼= �m′

p � �k′ ,
where k′ divides pm′ − 1 and pn ± 1, then p2n − 1|kk′, which implies that k = pn + 1
and k′ = pn − 1, or k = pn − 1 and k′ = pn + 1. But, then pn + 1 must divides pm − 1
or pm′ − 1, which is impossible. Now suppose that B ∼= PSL(2, pm′

) (m′ �= n, 2n) or
PGL(2, pm′

) (m′ �= n). As k|pn ± 1 we have pn ∓ 1||B|. Thus, (pn ∓ 1)/2|pm′ ∓ 1, which
is impossible.

Finally, suppose that A ∼= PSL(2, pm) or PGL(2, pm). Then B ∼= PSL(2, pm′
) or

PGL(2, pm′
) and we should have m + m′ ≥ n. Without loss of generality we asusme that

m′ ≥ m and so m′ ≥ n/2. If m′ > n/2, then m′ = 2n/3 and B ∼= PSL(2, p2n/3). Thus,
p2n − 1 divides (p2m − 1)(p4n/3 − 1)/2 and either m|n or m|2n (m �= n). If m|n, then m =
n/3 and p2n − 1 divides (pn/3 − 1)2, which is a contradiction for gcd(pn − 1, p2n/3 − 1) =
p2n/3 − 1 and gcd(pn − 1, p4n/3 − 1) = p2n/3 − 1. Also if m|2n but m � n, then m = 2n/3
or 2n/5 and similarly we reach to a contradiction. Therefore, m = m′ = n/2 so that
p2n − 1 divides (pn − 1)2, which implies that pn = 3, a contradiction. �

According to Lemma 3.6, p does not divide both |A| and |B|. Without loss of
generality we may assume that p � |B|. Then pn||A| and A is isomorphisc to
(1′) a Sylow p-subgroup of G, or
(2′) a semi-direct product of an elementary abelian p-group of order pn and a cyclic

group of order k such that k|pn − 1.

LEMMA 3.7. A is a group of type (2′) and
(i) A is conjugate to NG(H) and B is conjugate to L,

(ii) A is conjugate to NG(H) and B is conjugate to one of the two dihedral subgroups of
NG(L) of index 2,

(iii) A is conjugate to NG(H) and B is conjugate to NG(L),
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(iv) A is conjugate to the unique subgroup of NG(H) of index 2, B is conjugate to NG(L),

n is odd and p
4≡ 3.

In either case, the number of pairs (A, B) is pn(p2n − 1)/2.

Proof. If A is a Sylow p-subgroup of G, then p2n − 1 divides |B| and so B = G, a
contradiction.

Now assume that A ∼= �n
p � �k, where k divides pn − 1. Then pn + 1 divides |B| and

B is isomorphic to A4, S4, A5, a cyclic group or a dihedral group. Clearly, B �∼= A4 or S4.
Also, B �∼= A5 for otherwise pn = 59 and a simple computation with GAP software [8]
shows that PGL(2, 59) has no subgroups isomorphic to A5. If B is cyclic, then we should
have |B| = pn + 1 and hence B is conjugate to L. In this case |A| = pn(pn − 1) and A
is a conjugate of NG(H). Finally, suppose B is a dihedral group. Then |B| = pn + 1
or 2(pn + 1). If |B| = pn + 1, then |A| = pn(pn − 1) and so A is a conjugate of NG(H).
Also, B is conjugate to a dihedral subgroup of NG(L). Note that NG(L) is a dihedral
group of order 2(pn + 1) and has just two dihedral subgroups of index 2, say

〈
a2

〉
�

〈
x
〉

and
〈
a2

〉
�

〈
ax

〉
, where a is a generator of L. But then |A〈

a2
〉| = pn(p2n − 1)/2 and

G = A
〈
a2〉 ∪ A

〈
a2〉x

and

G = A
〈
a2〉 ∪ A

〈
a2〉ax,

from which it follows that A
〈
a2

〉
x = A

〈
a2

〉
ax. Hence, Aa2kx = Aax for some k so that

a2k−1 ∈ A. On the other hand, by Theorem 3.5,
〈
a
〉 ∩ A = 1 so that a2k−1 = 1, which is

a contradiction as |a| = pn + 1 is even. Now suppose that |B| = 2(pn + 1). Then B is
conjugate to NG(L) and |A| = pn(pn − 1) or pn(pn − 1)/2. If |A| = pn(pn − 1), then A is
conjugate to NG(H) and we are done. Thus, we may assume that |A| = pn(pn − 1)/2.
Then A is a maximal subgroup of A′ of index 2, where A′ is a conjugate of NG(H).
As G = A′B one gets |A′ ∩ B| = 2, from which we conclude that |A| is odd, which is

possible only if n is odd and p
4≡ 3. The remaining of proof is straightforward. �

Utilising the above results we have the following.

THEOREM 3.8. Let G = PGL(2, pn) (p > 2) be a projective general linear group and
M be a unique subgroup of G isomorphic to PSL(2, pn). Then,

F2(G) =
{

3pn(p2n − 1) + 4|L(G)| − 2|L(M)| − 3, n even or p
4≡ 1

4pn(p2n − 1) + 4|L(G)| − 2|L(M)| − 3, n odd and p
4≡ 3

if pn > 29 and F2(G) equals

177, 1103, 3 083, 4 919, 15 549, 14 529, 31 093, 58 429, 111 567, 99 527, 144 297, 192 349

if pn equals

3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29,

respectively.

Proof. If pn > 29, then the result follows from Lemmas 3.6 and 3.7. Also if pn ≤ 29,
then we may apply GAP software [8] to verify exceptional cases. �
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