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Abstract Under a natural assumption the Hausdorff dimension of a measure fi
canomcally associated with a given self-affine set is computed A simplified proof
of Bowen's formula for the box dimension of self-affine sets proved earlier is given
A condition for the box dimension and Hausdorff dimension to be equal is proven,
and a collection of examples in which this condition can be checked is discussed

1 Introduction
In this paper we consider the box dimension (or 'capacity') and Hausdorff dimension
of certain self-affine sets which include those studied in [Be2] and in § 6 of [PU]
Bedford [Be2] calculated the box dimension of some self-affine connected curves
and obtained a formula involving the topological pressure of a certain function
This formula is analogous to that of Bowen [Bo2] for the Hausdorff dimension of
self-similar sets (see also Manning and McCluskey's formula [MM] in a slightly
different context, and also [Bel] for the connection with box dimension) Here we
give a simplified proof of the formula for the box dimension of self-affine sets Our
approach is based only on the theory of Gibbs states presented in [Bol] and does
not involve the more advanced thermodynamic formalism of [R] and the 'singularity
spectrum' results of [BR]

The main part of this paper is stimulated by a conjecture made in the preprint
version of [Be2] The box dimension formula obtained in [Be2] states that the box
dimension of a self-affine curve E c U2 is given by the unique real / +1 such that
the topological pressure P( tfw +fH) = 0 where fw and fH are functions measuring
the scaling structure of £ If /J. is the equilibrium state for tfw +fH and TT%H an
associated measure on E then we can state the conjecture from [Be2] as follows
the Hausdorff dimension of E is equal to the box dimension of £ if and only if
HD(pHir%n) = l, where pH R2-»IR is orthogonal projection onto the y-axis For
certain self-affine sets which generalize the so-called limit Radamacher functions
considered in [PU] we calculate the Hausdorff dimension of the measure TT^H The
formula obtained permits (for this class of sets) to give a positive answer for one

https://doi.org/10.1017/S0143385700005812 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005812


628 T Bedford and M Urbanski

direction of this conjecture and some positive partial contnbutions to the other
direction In the last section of this paper we describe two classes of self-affine sets
for which we are able to verify the assumptions we make to obtain our results

We now recall some of the general notions and results used in this paper
If A is a subset of a metric space (X, p) then the box dimension of A is defined

as follows Let N(A, s) denote the minimum number of balls of radius e > 0 needed
to cover A We set

PB(A) = hm infoi n f ,
o -log e

log N(A,e)
DB(A) = hm sup

E^o -log e

If DB(A) = DB(A) then the common value is called the box dimension of A and is
denoted by DB(A) For the definition and basic properties of Hausdorff dimension,
which we denote by HD, we refer the reader to the book by Falconer [Fa] The
Hausdorff dimension and box dimension are related by

If (i is a Borel probability measure on X then the Hausdorff dimension of /x is
defined as

HD(fi) = mf{HD(Y) Ya X and fi(Y) = 1}

In order to estimate the Hausdorff dimension of a Borel probability measure on a
Euclidean space we shall rely on the following well known result (see [PU])

FROSTMAN'S LEMMA If for (i-a e x we have

Jog fi(B(x, e))
5,<hminf <S2,

E^O log e

where B(x, e) is the ball of radius e around x, then 5, < HD(/i)< S2

If /, g X -» R are two real-valued functions then we shall say that / and g are
boundedly equivalent and write f—gif there is a constant C > 1 such that

C"1g(x)^/(x)«Cg(x) foreveryxeX (11)

Note that = is an equivalence relation and that af—f for every a >0

2 The construction of self-affine sets
In this section we recall some of the facts and definitions from [Be2] that we need
here They are formulated in a slightly more general setting which enables us to
deal with disconnected self-affine sets as well At the end of this section we present
another proof of the Bowen dimension formula for self-affine sets first proved in
[Be2] Note that our notation does not coincide everywhere with that of [Be2]

We put / = [0,1] and consider orientation preserving, contractive Cl+f

diffeomorphisms <p, I xU-> I xU (for 0 s J < k) satisfying the following properties

<Pi(x,y) = (ilf,(x), r,(x,y)),0< Kk for some differentiable functions </», / ->/
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and T, / x R -» R such that

A = sup {if [(x) x£/,O<Kk}<l

and

q<l,
J

^ , ( , y ) ( , y ) | , O q l , (21)
oy J

the fixed points of <p0 and (pk_, are (0, y0) and (l,yk-\) respectively for some

yo^k-.eU, (2 2)

and

^,(l) = i/»,+1(0) for every 0 < K f c - l (23)

We also define a and b by

a = inf{i/»;(x) x e / , 0 < K / c } > 0

and

= inf \ — T,(X, v) (x, y) e / xR, 0 < K k \
Idy J

v) (x, y) e / xR, 0 < K k \ > 0
J

The constants a, b, A and B will be used as defined here throughout the paper
By a result of Hutchinson [H] there is a unique compact non-empty set E such

that £ = U , = o <Pi(£) Following [Be2] we shall call such sets self-afHne Let £ =
nT{0, , fc-l} F o r x = (x , ,x 2 , ) e 2 we set x(«) = (x,, ,xn), ( n > 1), and
write

and

n(x) = n «ps(-)(£) * ( * ) = n ^ (
n = 1 n = 1

We shall often identify the finite sequence x(n) with the subset {y e 2 >"(«) = x(n)} <

Since <p and if are strict contractions and the families

are decreasing in n, the sets w(x) and 7r(x) are singletons Furthermore n(x) e £
since <px(n)(E)<= £ for all M > 1 We have thus constructed maps

w ! - > £ and if 2->/,

which are continuous since diam (<px(n)(£)) and diam (i/>^(n)(/)) converge to 0

uniformly (in fact exponentially) fast The two maps are surjective because E =

UjTo <P.(£) a n d ' = U!To ^ I ( ' ) The following properties are also easy to see

TT(»,X,,X2, ) = <p,(x,,x2, ) and 7f(i,x,,x2, ) = ^ , (x , ,x2 , )

for any x e 2 (2 4)
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TT and TT are injective except that given x,, , xn with xn ̂  k — 1 the two
sequences (JC, , ,xn,k — l,k-l, ) a n d ( x , , , xn ,0,0, ) have the same
image under TT and may have the same image under 77 (2 5)

An easy consequence of (2 4) is

ir(x(n)) and ^ ( B ) ( / ) = *r(x(n)) (2 6)

Finally, we define pvv / x R -» J and p H / x R -» R to be the standard projection
maps (x, >>) i-» x and (x, y) >-* y respectively For a subset D of IR we denote the
diameter by \D\ and the Lebesgue measure by l(D) For K<^U2 we put \K\n =
\pw(K)\, \K\H=\pH(K)\, lw(K) = l(pw(K)) and lH(K) = l(pH(K)) (W and H
stand for 'width' and 'height' respectively)

As pw(p, = i/»,/>n/, for 0 < 1 < k, we obtain

pw°n = 7r (27)

The following lemma says that E is almost the graph of a function

LEMMA 1 For all xe I outside a countable set Z c /, eac/i /me {x} x R contains exactly
one point of E

Proof Let Xo = {x e 2 xn = 0 for all large n}, X ; _ , = { x e 2 xn = k -1 for all large
«}, and let Z = TT(XOU Xfc_,) Now Z is countable since Xo and Xk_, are countable
By (2 5), card TT~1(^) = 1 for every x e I\Z, and so (2 7) implies that card ( £ n { x } x
R) = 1 This proves the lemma •

Condition (2 1) implies that

From now on we shall assume that

A=supJ (x,y)eIxU,O<i<k (2 8)

which means that the maps <p, have a sharper contraction horizontally than vertically
We define two functions which together measure the contraction rates of the tp, Let
fw,fH S-»R be given by

d
fw(x) = log I/»'V|(T7(O-X)) / H (x ) = log —TV|(7T((TX))

(note that these functions are minus the corresponding functions in [Be2], but that
they have the same sign as the corresponding function in [Bo2] and [MM]) As the
functions a, n, TT, (d/dy)rXl and iK, are continuous, both/iv and / H are continuous
It is not difficult to check (see [Be2]) that they are actually Holder continuous For
f=fw or fH and n > l w e denote the sum Z"=0'/(°' 'x) by Sn/(x)
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We can reformulate Lemma 3, Lemma 5 and Proposition 8 of [Be2] as follows

LEMMA 2 For every n > 1 and x ,yeS with x(n) = y(n) we have

exp SJw(x) = exp SJw{y) and exp SJH{x) = exp SJH(y)

LEMMA 3 For every n > 1 a«d xei,

LEMMA 4 For every n > 1 a/id x e l ,

An extra condition is needed for Lemma 4 to hold as stated This is because there
is a degenerate case in which £ is a differentiable manifold However, this happens
if and only if the strong stable manifolds of the maps cp, all coincide (see [Be 3=2]
for more details) and we shall assume that this highly non-generic possibility does
not occur We remark also that the proof of (our) Lemma 4 given in [Be2] required
the existence of sets C c E with |C | H / |C | W arbitrarily large This is true in the
disconnected case since for some i we have <p,+ i((0, y0)) ^ <p,((0, yk-t)) (using the
notation of (2 2))—for otherwise [Be2] shows that E is connected Hence the set
C = {^+,((0,jo)),«P,((0,>',-1))}has|C|H>0,but|C|w = 0by(2 3) With this remark,
the proofs of the above lemmas work in exactly the same way as those in [Be2]

The main technical tools we use in this paper are the notions of topological
pressure and Gibbs states Topological pressure with respect to a 2 -»X is an
operator on the space of real-valued continuous function on X It satisfies a van-
ational principle relating it to measure theoretic entropy,

where the supremum is taken over cr-invanant Borel probability measures A measure
taking the supremum is called an equilibrium state for g When g is Holder
continuous there is a unique equilibrium state fi for g, which is a Gibbs measure
This means that for all xei and n > 0 w e have

M(x(n))-exp{Sng(x)-»P(g)} (2 9)

(see [Bol], 1 4 pp 9-10) More information about pressure and Gibbs states can
be found in [Bol] The formula for box dimension of E established in [Be2] involves
the zero of the function s >-> P(sfw+fH) Our assumptions that 0<a , b, A, B<1
imply that there is a unique feR with P(tfw+fH) = 0 Furthermore we have the
following bound on the value of t

LEMMA 5 The unique real number t defined by P(tfw +fH) = 0 satisfies 0 < / < 1

Proof We first show that t > 0 Let A be the equilibrium state for the function fw

By (2 9) and Lemma 3 we have

\(x(n))~exp(SJw(x)-nP(fw))~\*(x(n))\exp(-nP(fw))
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for every n > 1 and x e S Therefore

1= I A(x(n))~ I |^(x(«))|exp(-«P(/w))

for every n > 1, which implies that P(fw) = 0 By (2 8) and (2 1) we have/w </H < 0,
which gives 0 = P(fw) < P ( / H ) As the function 5 •-»• P(sfw +fH) is strictly decreasing
we obtain t> 0

To see that f< l , let v be the equilibrium state for the function / W + / H AS
P(fw) = 0, the vanational principle for pressure implies that

\ fwdv+\ fH dv

I= 1 fHdv<0

This together with strict monotonicity of s >-* P(-$/W+/H) shows that t < 1 D

DEFINITION Wie say that E satisfies the Darboux property if the set pH((pxin)(E))
is connected for every n > 1 and x e l

We end this section with another proof of the Bowen formula established in [Be2]

THEOREM 6 If E satisfies the Darboux property then DB(E) = t+ 1

Proof Let /x be the equilibrium state for the function tfw +fH, and fix e > 0 Since
0 < n < A < l we can find a finite number of points x1, , x p e S and integers
«,, , np> 1 such that

U W(«,)) = /,
J = I

int(7f(xJ(nJ)))nint(Tf(x'(M,))) = 0 for \<i*j<p,

and

For each j define q, =[\ir(xJ(nJ))\H • |7r(xJ(«J))p
1] + l Clearly we can find

«,, ,M^eR (depending on j) such that TrCx^n^xtM!, M,J => 7T(XJ(MJ)) and
M1+1 -M, = |I7(X'(M,))| for 1 < I<g 7 By Lemmas 3 and 4 we have

= exp(Sn ;(/H-/w)(x'))

Clearly N(E, E)<Y,J = \ Qj Furthermore as E satisfies the Darboux property and
any ball of radius \ae can intersect at most 4 rectangles of the form T5L(XJ(MJ))X

[M,, W,+1], we must have N(E,\ae)>\Y.%\ aj

https://doi.org/10.1017/S0143385700005812 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005812


The box and Hausdorff dimension 633

Since /Lt is the equilibrium state fortfw + fH where P(tfw+fH) = O, it follows from
(2 9) that for any e > 0

£ £N(E,e)~ £ <?,= £ exp(SBj (/„-/«,)(*'))
J=I J=I

= I exp(Sni(tfw+fH)(xJ))exp(-Snj(l + t)fw(xJ))
7=1

« £ /*(^(«,))|ir(xy(n;))r
(1+l)

7 = 1

«£ v(^(«J)))^(1+i>=^"+"
7 = 1

Therefore DB(E) = t + l and the theorem is proved •

REMARK (I) The Darboux property was not used to obtain the estimate

) * i q,
7 = 1

and so the inequality DB(E)<t + l is true for any self-affine set E
(n) The proof of DB(E) = t +1 given in [Be2] establishes the result via a vanational

principle This principle also contains information about the number of boxes required
to cover certain subsets of E

3 The dimension of E and ir^fi
From now on we make the additional assumption that

— T i(Xv) = 0 forO<Kfc (*)
dx

and will say that E has an invariant weak foliation We are aiming towards conditions
under which the Hausdorff dimension of E is equal to t+l, and shall do this via

a study of the Hausdorff dimension of «•*/* If E has an invariant weak foliation
then each <p, / x R -»/ x R can be expressed in the form

<P,(x,y) = (il>,{x),T,(y)) where r, R^R

Thus horizontal lines are mapped under <p, to horizontal lines and so if K <= <p,(I x R)
is a rectangle with sides parallel to the x and y-axes then ^ ' ( ^ O is also such a
rectangle—in future all rectangles used in the proofs will be of this form It follows
from Lemma 4 that if xe X, n > 1 and K <= / x R has the property that pH(K)cz
pH<psin)(E) then

In particular we obtain the following

LEMMA 7 Let

K+(x, n) = T?(X(M)) x [pHir{x),

K.(x, n) = t(x(n)) x [pHn(x) - | | ir(x(n)
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and K(x,n) = K+(x, n) u K_(x, n) Then for any x e 2 and n>\ we have

\<p;UK+(x, n))\H « \<p;UK-(x, n))\H=*\q>;}n)(K(x, n))\H

=*\Z(x{n))\exp(-SJH(x))

As before we let fi be the equilibrium state for the function tfw +fH, and we now
take v to be the Borel probability measure on 2 given by Ruelle's Perron-Frobenius
theorem (see [Bol] 1 7 p 14) for tfw +fH The two measures ft and v are equivalent
with continuous never vanishing densities It follows from this theorem that for
K c f , ( / x R ) (0<Kfc) we have

- L\ (32)
K

We consider TT*, v here as a measure defined on / x R with the property that
ir*v(IxU)\E) = 0 Therefore, using Lemma 2, we get the following,

LEMMA 8 For any x e S , n > 1 and K c tpxin)(IxU) we have

= I
JK

exp (-5n(t/w+/H)(x))

In particular, for any x e S and n s 1,

ir*i'(^(n,(/)) = 7r!|1»'(v>,(n)(£)) = exp(Sn(r/w+/H)(jp)) (3 3)

We now obtain a volume lemma for the measure TT^I' (compare to Lemma 8 of [PU])

LEMMA 9 For v and fi-almost all xe2 we /iaue

log\ir(x(n))\

Proof Let

, , . . flog(ff»y(K(x, n)))
L(x) = hminf— , . , , ^ .

If y = cr(x) then X(>>, n - 1 ) => ^^'(/^(x, M)) and we get by (3 2) that TT̂  V(K(y, n -
l))>ir*v(K(x,n))~Hence

-l)) ^\og IT^v{K{x, n)) ^ log TT^V(K{X, n))

log \rry{n -1 ) | log \jry(n - 1)| log |7rx(n)l -log a

Letting n-»<x> we get L(crx)^L(x) As a £-»£ is ergodic with respect to /*, this
implies that L(x) is constant /n-almost everywhere and equivalently t'-almost
everywhere We denote this //.-almost sure value by L Since B(ir(x), 2|ir(x(n))|) =>
K{x, n), we obtain

plogirtvB(ir(x),2\ir(x(n))\)
lim inf —— s L(x)

log|7r(x(n))|

The Frostman Lemma (stated in the introduction) now gives HD(n, v)<L
The calculation of the other inequality is more complicated The main technical

problem we face in obtaining the lower bound on HDi-rr^v) is that we do not have
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a good description of the density of -rr^v around points of E with more than one
corresponding symbol sequence We now make some estimates which will enable
us to deal with this problem

First note that, since P{tfw+fH) = 0, by the definition of pressure we have

hm s u p - l o g I exp(S n ( r / w +/ H ) (x) ) = 0

where for each n > l , B , c I is a maximal set such that if x, y e Bn and x^y then
x(n)?iy(n) By (3 3) this is equivalent to the formula

hmsup —log £ 7r.fcf(7f(x(M))) = 0
"^°° n ,(n)

Thus, given e > 0 , for large enough n we have Zx ( n ) K*v{iT(x(n)))< e'i£" In par-
ticular

I I e-™^v(Z(x{n)))«x> (3 4)
n = l v(n)

Now fix /3>0, choose some « > 1 and define m = l + [(l + /3)n] Corresponding to
each interval Tr(x{n)) there are two endpoints x1 and x2 and two sequences such
that TT(X1) = x\ TT{X2) = x2, and x\n) = x2{n) = x{n) Put

v(n)

We can now use (3 3) to estimate Tr%v(A(fi, n)),

s I (exp(Sn(r/H,+/H)(x1))
J(n)

+ exp (S^r /W+ZH)^)) ) exp ((r log A + log B)j8n)

Using the fact that log A, log B < 0, (3 4) implies that

I ^i;(y4(j8,ll))<oo (3 5)

Now observe that by Lemma 3 we have

> exp (Snfw(x1)) exp (/3M log a)

= exp(/3n loga)|7f(x'(n))|

The same estimate is obviously true for |7f(x2(m))| Thus if x is not in n'l(A(l3, n))
then
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where 0< c< 1 is a universal constant Now by (3 5) and the Borel-Cantelh lemma,
^-almost every x e 2 does not belong to TT~\A(B, n)) for all large n Therefore

L< hm inf
log|7r(x(«))|

log c + Bn log a + log |TT(X(H))| log ntvB(ir(x), capn\n(x{n))\)

log|ir(x(/i))| log(cap"|7?(x(n))|)

and as

log c + Bn log a + log|7?(x(n))| log a 1 log c
log|7?(x(n))| ~ log ,4 nlogA

we deduce from Frostman's lemma that

r log A)

Letting ^-»Owe get L-&HD{-n^v) which proves the lemma •

We shall obtain a formula for the dimension of ir^v in terms of (amongst other
things) the dimension of the measure (PHTT)*V The following two lemmas are
volume lemmas for {pHir)*v

LEMMA 10 For fi and v-almost every xei we have

mrlog
 (PHTT)MB(PH^(X), r))

int = HD(ypHir)i,v)
r̂ o log r

Proof Denote the map pHir by trH and the measure (PHT)*V by v For every xei
let

L(») lm»nf
r^O log /

By Frostman's lemma it is sufficient to show that L(x) is ^-almost surely constant
Now for every n > 1 and x e 2 we have

<P~*?(*(x{l)) x J?(TTH(X), r)) 3 I x B{TTH{O-X), B"'r) = / x B(irH(ox), r)

Thus, putting D = max (l,sup {exp ( - r / w - / H ) (x ) xeS}) we obtain

-x), r)) = 77^^(7 xB(7TH(o-x),r))
1 B ( 7 7 - H ( x ) , r ) ) )

x B(irH(x), r)))

^ ( 7 xB(7rH(x),r))

77H(x),r)) (3 6)

Consequently, for every 0 < r < 1 we get

H(t7-x), r))^ log g(B(7rH(x), r)) | log D

log r log r log r

Thus, letting r-»0, we obtain L(o-x)>L{x) Since

L(ax)dft(x)x)=\
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this implies that L(crx) = L(x) for /A-a e x e 2 Therefore, by ergodicity of /JL with
respect to a, L(x) is ;u,-a s constant and hence also v-& s constant (as /A and v are
equivalent) •

The next lemma says that the limit around the point pHiTX in the statement of
Lemma 10 can be replaced by a limit taken along a sequence of points pHira"x

LEMMA 11 If 6n 2-»(0,oo) is a sequence of measurable functions such that

hm-log0n(x) = 0
n-cc n

for n a a x e X and .some 0 < 0,

i immfiog(M),K%Hy),M.))) =
log 0n(x)

/or /x aa x e 2

Proof Define nH and v as in the last lemma For every x e 2 let

r , v . i . l

L(x) = hm inf lOg 0n(x)

First we show that

L{x)>HD{v) for / iaepi (3 7)

LetZ = {xeS limn̂ oo n"1 log 0n(x) = 6} By assumption Z has/i-measure 1 From
the last lemma and Egorov's Theorem it follows that for every p<HD{i>) there
exists r(p)>0 and a Borel set S c J such that fi{S)>0 and

- P (3 8)
logr

for every xe S and 0< r< r(p) By ergodicity of /x, for /*-almost all x e S there is
an increasing sequence {«,} (depending on x) such that <r"'(x)e S for j = 1, 2,
Now take 70s 1 (again depending on x) large enough that 0n(x)</•(/>) for every
M > MJO Then by (3 8) we have

log0n,(x)

for every j >j0 Fix now 0 < e < — 6 and let /_] > 1 be so large that

0 - e < — log0m(x)<0 + e for every w > L , (3 10)
m

Let t(m) = [(0 + e) / (0-e)»)]< m and let 7(m) be the largest integer such that
nJtm)st(m) Since l im,^ n) =oo, there exists /0&/-i so large that MJ(m)>L, and
j(m)>j0 for m > /0 Using (3 10) we therefore have that for every m > /0,
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Hence Bm{x) < 0n;,,11,(x) and using (3 6) we get for m > /0 that

Therefore for m > /0 we have,

log HB(irH(<rmx),Om(x)))
log0m(x)

r (m-fi,(m))logD logfl.Jlm,(x) log

log0m(x) log0m(x) log 0nj(m

" m ) 1 O g D ^ ' O g g ( )

(3 11)

By the definition of t(m) and j(m) we have njim)+1 >i{(0 + e)/{6 — e)}m From the
Birkhoff ergodic theorem we deduce that hmJ^co(M7/nJ+1) = 1 Therefore for m > /0
large enough we have

« ,< m ) s ( l -e )n , ( m ) + 1 >( l -£ ) - m

V — £

Thus taking the limit of m-»oo from (3 11) and (3 9) we get,

6+e
e log D

6-e , , 0 + e 6

Letting e \ 0 we get L(x)>p In particular, as n(Z) = 1 we get L(x)>p for /i-a a
x £ 2 Letting p S HD(i>) we obtain inequality (3 7)

In order to prove the converse inequality, let

R = supess(L) =inf{sup{L(x) x e S

From Egorov's theorem we have that for every Q< R there exists an integer / ,>1
and a Borel set V, <= 2 such that /x( V,)> 0 and

log J>B(TTH(<T"X), dn(x))
— > Q for every xe Yt and n > /, (3 12)

log0n(x)

Also by the same theorem, for every 0< e < -6 there exists an integer /2> 1 and a
Borel set y 2 c l such that fi(Y2)> 1 -3/i( V,) and

(0-e)/ i<log0n(x)<(0 + e)w for every x e Y2 and n > /2 (3 13)

Now, for any xei let mt = wi^(x), k = 1, 2, be the increasing sequence of integers
w > 0 for which cr'm(x)n Y{nY2*0 As/n(y,n y2)>|/x(y,)>0 we deduce from
the Birkhoff ergodic theorem applied to the Rochlin natural extension of the system
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(a; fi) that for /u-a e x e S , say x e V with fi( V) = 1, the sequence mk = mk(x) is
infinite and furthermore that

hm—=1 (3 14)

Consider now any x e V, let mk = mk(x) and let {xk}t=i be a sequence consisting of
elements of Ytn Y2 such that o-mk(xk) = x for every fc = l,2, For every small
enough 0 < r < l let /> = p(r) > 1 be the largest integer such that

Mxp)>r, (3 15)
so that in particular,

On,p+l(xp+l)<r (3 16)

(a largest such p exists because (3 13) holds for each xk) Thus />(r)-»oo as r-*0
and so there exists 0 < r0 < 1 such that

mp,,)>max (/,, U) for every 0 < r < r0 (3 17)

Thus for any re (0, r0] it follows from (3 15) that B(TTH(X), r ) c B(irH(x), 0mp(xp))
From (3 12) we therefore get

log VB(TTH(X), r)^ log VB(TTH{X), 0mD(xp))

log r log r

(xp), flm(xp)) log 9mp(xp)

log Bmp{xp) log r

a l ogM^l ( 3 1 8 )
logr

In view of (3 13) and (3 17) we obtain log 6mp(xp)<(6 + e)mp and log 0m^l{xp+1)>
(0-e)mp+l Consequently

log0m;>+i(xp+1) d-e mp+1

From this, (3 16) and (3 18) we get

log i>B(irH{x), r) 6 + e mp

logr 0-e mp+1

Hence, letting r ^ 0, by Lemma 10, and (3 14) we obtain HD{v) > Q[{6 + e)/(0- e)],
and letting first e^O and then Q/R we get HD(i>)>R This completes the
proof •

We shall now prove the main result of the paper (compare with Theorem 7 of
[PU])

THEOREM 12 The Hausdorff dimension of IT^H satisfies

HD(TT^) = < + — HD((PHIT)^)(I-—
X* \ Xw

where Xw = \fw d/x and \H = \/H d/x
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Proof As ft and v are equivalent, HD{IT^/JL) = HDiir^v) and it is enough to prove
that

t) ((pH)^)
Xw \ Xw/

We keep the notation -rrH=pH ° IT, and v = (pHir)ifv, and we put /I = (pH7r)*ju.
Recall from Lemma 7 that K(x, n) is a square of side length |T?(X(M))| about TJ-(X),

then by Lemma 7 there exists a constant 0 < C s 1 such that

B(pHTr((Tnx),C\Z(x(n))\exp(-SnfH(x)))cpH<p;{n)K(x,n)

<= B(/»Hir(<r"x), C-V(*(n))l exp (-Sn/H(x))) (3 19)

for every xei and n> 1 In view of Lemma 8,

irtv(K(x, n))^cxp(Sn(tfw+fH)(x)U^(<p;MK(x, n)) (3 20)

Take now

el(x) = C|w(x(n))| exp (-SM

and

»(
n
2)(x) = C"1 D i(x(n))\ exp (-Sn/H(x))

for x e 2 and n = 1,2, As ̂ "(^(^(x, n)) is a rectangle which lies across the full
width of the unit interval, by (3 19) and (3 20) we get

log TT*V{K{X, M)) = Sn(*/w+/H)(x) + log wiv^Kix, n)) + X,

*Sn(tfw +fH)(x) + log HB(TTH(<T"X), 6^\x

and

log TT^(X(X, «))sSn(r/w

where X, , X2 > 0 are uniformly bounded, both from above and from zero, with
respect to x e 2 and n > 1 Therefore

\og ir^vjKjx, n))

\ | logX,
llog|7?(x(n))| log|ir(x(fi))| log e?\x) log |T?(X(M))|'

(3 21)

and

) log X2

l | ( (log|7?(x(M))| log|7?(x(M))| log0(
n

2)(x)

(3 22)

Now, by Lemma 3 and the Birkhoff ergodic theorem we know that for ju,-a a x e S,

hm - l o g 0(
n

n(x)= hm - lo g 0 (
n

2 ) (x)= [ / v v - / H d M < 0
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This property means that we can apply Lemma 11 to each of the sequences {0(
n
l)}

and {fl',,2'} Using this Lemma, taking the limit of n->oo in (3 21) and (3 22) gives

, . „ , ., _, txw + XH , „ „ , --.XW~XH
HD(TT*V)< \-HD{v)

Xw Xw
and

+ ~XH\ - *XW+XH I r m , -^^.V)> \-HD{v)
Xw Xw

Rearranging these expressions gives the claimed dimension formula The proof is
thus complete •

As ft is an atom free measure, the set E (mod ir^fi.) can be regarded as the
graph of a Borel function / / -»IR defined TT^H almost everywhere In this context
the measure {pHTr)*p can be interpreted as the probability distribution of the
random variable/ I->U denned on the probability space (/, Tr^fi) The following
theorem gives a positive answer to one direction of the conjecture stated in the
introduction

THEOREM 13 If E has a weak invariant foliation (*) and //D((/7H7T):|C/A) = 1 then

Proof From the remark after Theorem 6 we have D B ( £ ) < / + 1 , and Theorem 12
gives HD(E)>HD(ir:¥fj.)=t+l As HD(E)<DB(E), this finishes the proof •

Remark. In the above theorem we do not use the assumption that E satisfies the
Darboux property

We can also give a partial positive answer in the second direction of the conjecture
stated in the introduction

THEOREM 14 Suppose that E has a weak invariant foliation (*) and that
HD({pHTT)if^)<\ Then H,+,(E) = 0 where H,+ l(E) is the {t+ I) -dimensional Haus-
dorff measure of E

Proof Theorem 12 implies the existence of a Borel set F<= E such that ir^niF) = 1
a n d H D ( F ) < f + l Hence, if Z = E\F then •jr^ix(pw(Z)) = 0 Since the sequence
{{^(^(n))}^}^, of partitions (mod TT /̂A) of / is increasing and generates the Borel
o--algebra on /, for given 0, y>0 we can find a countable subset {xJ}™=1 of 2 and
a sequence {MJ}^=I of positive integers such that

and

diam {TT(XJ(nj)))< 0 for every ; > 1

By Lemmas 3 and 4, every set <pyi(ni){E) can be covered by at most const exp (Snj{fH -
fw)(xJ)) squares with edges of length |7?(xJ(n,))| We can therefore estimate Haus-
dorff measure as follows Let

tf,+ l(Z, 6) = inf I I (diam Uj)'+l \JUj=>Z, diam \J} s 0, U} open |
1.7 = 1 J J
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Then

tf,+1(Z,0)<const I exp(Snj(/H-/w)(xJ))(expfSn/vv(xJ)))'+I

j=i

= const I exp(Sn)(tfw+fH)(xJ))
7=i

Now as PCz/w +/H) = 0 it follows from (2 9) that

H,+1(Z, d)sconst X ^^('^(y'CWj)))5const -y

If we now let y and then 0 go to zero we get H,^,(Z) = 0 As HI+1(F) = O this gives
p •

REMARK All the results of this section rely heavily on the assumption that E has
a weak invariant foliation, and we suspect that without it they are not true We shall
develop this remark in a forthcoming paper

4 Some examples of self-affine sets
In this last section we descnbe some examples of self-affine sets for which we can
check whether or not HD{{pHTr)*v-) = 1 holds We begin with the following

PROPOSITION 15 Let J be the convex hull ofpH{E) IfE has a weak invariant foliation
(*) and / = U, T.(-0 tnen E satisfies the Darboux property
Proof By condition (*), the set pH(E) is self-similar under the maps r, Since J is
compact and non-empty, the uniqueness of self-similar sets (see [H]) implies that
J = pH(E) Now for any xe 2 and n >0,

which is connected Hence E satisfies the Darboux property D

A simple family of self-affine sets can be defined as follows Take 0<p, /? < 1
such that max (p,l-p)<(3 and let E(p, j8) be the self-affine set determined by the
contractions <po,<P\ / x R-» J x R denned by

<Po(x, y) = (px, Py), <p,(x, y) = {p + {\ -p)x, Py+l-p)

It is easy to check that E(p, /3) satisfies (*) and that the assumptions of Proposition
15 are fulfilled in particular E(p, f3) satisfies the Darboux property The functions
fH,fw 2-»R associated to E(p, p) are given by

l log( l -p) ifx, = l

The measure \x is particularly simple in this case Let m be any cr-invanant probability
measure on X and let q = m({xel x, = 0}) Then

hm(o-)+\ {sfw+fH)dm

s -q log q - (1 - q) log (1 - q) + sq log p + s( 1 - q) log (1 -p) + log /3 = F(s, q)
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and we have equality if and only if m is the product measure on 2 determined by
the probability vector (q, 1 — q) In order to find the corresponding number t and
the equilibrium state /A we have to find t, q e [0,1] such that F(t, q) = 0 and F{t,d)<
F(t,q) for every d e [0,1] With elementary calculus one obtains the following

PROPOSITION 16 The number t is uniquely determined by the equation p' + (1 —p)' =
p1 and the equilibrium state /J. is the Bernoulli measure given by the probability vector

(P%(\-P)'P) a
Now observe that the map pHir 2 -»IR is given by

PHV(X) = (1-P) X P""xn

This expresses pHir as a series of independent random vanables on the probability
space (2, /x) Therefore, the Fourier transform of the measure {pHTr)*V- is the infinite
product of the Fourier transforms of measures ((1 —p)P"~1xn)%fi which can easily
be computed by hand Using this one can prove, in the same way as in [E], the
following

THEOREM 17 For all pe(0,1) there exists p (p)e (max (p, 1 —p), 1) and a set Z(p)
of full measure in [P(p), 1) with the property that for any fieZ(p) the measure
(PHIT)*1*-PP ts absolutely continuous with respect to Lebesgue measure on U Further-
more hm,. , HD(([p(p), l]\Z(p)) n (1 - e, 1)) = 0 •

Since the Hausdorff dimension of any measure that is absolutely continuous to
Lebesgue measure on R is equal to 1 we can combine the above with Theorem 13
to get

COROLLARY 18 For every (p, /3)e(Jpe(oi) ip}xZ(P) we have HD(E(P,P)) =
DB{E(p,j3)) In particular, the set of parameter values (p,@) for which
HD(E(p, p)) = DB(E(p, p)) has positive Lebesgue measure in (0,1)2

The above class is a generalization of some examples considered in [PU] Define
a mapping h I -» / by

{ '

and l e t / J-»R be the map /(*) = (1 - p)l"=0P"rn(x), where rn = / [ p l ] ° h" It is
easy to check that E(p,P) coincides up to a countable set with the graph of/
Fixing p = \ puts us in precisely the class of functions considered in § 6 of [PU]
Some examples are given there of sets E(\,P) for which HD{{pHTr)^.^)<\ and
HD(E{\, p)) < DB{E{\,p)) They correspond to j8 being the reciprocal of a Pisot
number

Finally we shall briefly describe a subclass of self-affine sets (that are graphs of
continuous functions) introduced in [K] for which the conjecture stated in the
introduction can be proved completely We say that / / -» / is a self-affine function
if there exists 1 > H > 0 and an integer r > 4 such that for every n g l , 0 < K r " and
0<h<r~" we have

f(ir- + / i ) - / ( ir-")=Tn,r-"Hf(rnh)
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where Tn, equals either 1 or - 1 It is easy to see that a bounded self-affine function
is continuous if and only if the above condition holds for any 0< h < r~" A useful
characterisation of the class K of self-affine functions for which /(0) = 0,/(l) = 1
can be found in [K] Observe that for / e K , the graph of / coincides with the
self-affine set determined by the contractions

It is easy to check that DB(graph (f)) = 2-H, and it has been proved in [U] that
//D(graph(/)) =2-H if and only if (pn-ir)^^ (the probability distribution of
/ /-»R) is absolutely continuous with respect to Lebesgue measure on [0,1]
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