THE QUOTIENT SEMIGROUP OF A SEMIGROUP THAT IS A SEMILATTICE OF GROUPS†

by F. R. MCMORRIS

(Received 13 October, 1969)

1. Introduction. Let Q(S) denote the maximal right quotient semigroup of the semigroup S as defined in [4]. In this paper, we initiate a study of Q(S) when S is a semilattice of groups. A structure theorem for such semigroups is given by Theorem 4.11 of [2].

We prove that if S is a semilattice of groups, then so is Q(S). In the process of showing this, we look at how right S-homomorphisms act on the groups making up S. In particular, a right S-homomorphism takes a group into a group with a lower index, and then maps this group one-to-one and onto itself.

If the set of idempotents of S forms a chain, then Q(S) and S have exactly the same idempotents, and Q(S) is just S union the group of units of Q(S). If S is itself a chain, then S = Q(S).

2. Preliminaries. Terminology throughout this note will be as found in [2] and [4].

DEFINITION 2.1. Let S be a subsemigroup of T. Then T is a right quotient semigroup of S if and only if, for any three elements $t_1, t_2, t \in T$ with $t_1 \neq t_2$, there exists an element $s \in S$ such that $t_1 s \neq t_2 s$ and $ts \in S$.

DEFINITION 2.2. If D is a right ideal of S, then D is said to be *dense* if and only if S is a right quotient semigroup of D. The set of all dense right ideals of S will be denoted by S^{Δ} .

Let us recall that $Q(S) = H_S =$, where $H_S = \bigcup \{ \text{Hom}_S(D, S) : D \in S^{\Delta} \}$ and \equiv is the congruence defined by $f_1 \equiv f_2$ if and only if f_1 agrees with f_2 on some dense right ideal contained in the intersection of their domains. We denote the domain of $f \in H_S$ by D_f , and the equivalence class containing f by [f]. Thus [f] = [g] if and only if f = g on some $D \in S^{\Delta}$ with $D \subseteq D_f \cap D_g$. S is considered as a subsemigroup of Q(S) under the identification $x \to [x_i]$, where x_i is the left multiplication by x.

From now on, we shall let S be a semigroup with 0 and 1 that is a semilattice Y of groups $G_{\alpha}(\alpha \in Y)$, where Y is a semilattice order isomorphic to E(S), the set of idempotents of S. Let e_{α} be the identity of the group G_{α} . The zero and identity of Y will also be denoted by 0 and 1. We recall that $S = \bigcup \{G_{\alpha} : \alpha \in Y\}$ with $G_{\alpha} \cap G_{\beta} = \emptyset$ if $\alpha \neq \beta$, and $G_{\alpha}G_{\beta} \subseteq G_{\alpha\beta}$.

By [2, exercise 2, p. 129], every one-sided ideal of S is two-sided. Thus $D \in S^{\Delta}$ if and only if, for any two elements $x_1, x_2 \in S$ with $x_1 \neq x_2$, there exists an element $d \in D$ such that $x_1 d \neq x_2 d$.

3. In this section we show that Q(S) is also a semilattice of groups. We recall that a semigroup T is regular if and only if, for every element $x \in T$, there exists an element $y \in T$ such that xyx = x.

 \dagger This is a portion of the author's doctoral dissertation written at the University of Wisconsin-Milwaukee under the direction of Professor R. L. Gantos.

PROPOSITION 3.1 ([2], pp. 128–129). A semigroup T is regular with idempotents in the centre of T if and only if T is a semilattice of groups.

We shall show that Q(S) is regular and has central idempotents, but first we need the following lemmas.

LEMMA 3.2. If D is an ideal of S, then D is a semilattice of groups.

Proof. We assert that D is a semilattice X_D of groups G_β ($\beta \in X_D$), where X_D is an ideal of Y. Let $d \in D$; then $d \in G_\beta$ for some $\beta \in Y$, and thus there exists an element $d^{-1} \in G_\beta$ such that $dd^{-1} = d^{-1}d = e_\beta$. Since D is an ideal, we have $e_\beta \in D$, and it follows that $G_\beta \subseteq D$. Set $X_D = \{\beta \in Y : e_\beta \in D\}$ and let $\beta \in X_D$, $\alpha \in Y$. Since $e_\beta \in D$, we have $e_\alpha e_\beta \in D$. Thus $e_\alpha e_\beta = e_{\alpha\beta}$ implies that $\alpha\beta \in X_D$. Hence X_D is an ideal of Y and D is a semilattice X_D of groups G_β ($\beta \in X_D$).

We shall let $E(D) = \{e_{\beta} \in E(S) : e_{\beta} \in D\}$. Thus E(D) is order isomorphic to X_D under the correspondence $\beta \to e_{\beta}$. If $f \in H_S$, let $E_f = \{e_{\alpha} \in E(S) : e_{\alpha} \in D_f\}$.

LEMMA 3.3. Let $f \in H_S$. If J is an ideal of S such that $J \subseteq D_f$, then $f(J) \subseteq J$. In particular, $f(D_f) \subseteq D_f$.

Proof. Let $x \in J$; then $x \in G_a$ for some $a \in X_J$, and $f(x) = f(xe_a) = f(x)e_a \in J$.

REMARK 3.4. If $e_{\alpha} \leq e_{\beta}$ ($\alpha \leq \beta$), then $e_{\beta}x = x$ for all $x \in G_{\alpha}$ (for $e_{\beta}x = e_{\beta}(e_{\alpha}x) = (e_{\beta}e_{\alpha})x = e_{\alpha}x = x$).

LEMMA 3.5. Let $f \in H_S$; then for all $e_\beta \in E_f$, there exists a unique $e_\gamma \in E_f$, with $e_\gamma \leq e_\beta$, such that $f(G_\beta) \subseteq G_\gamma$. Also, f restricted to G_γ is a one-to-one mapping of G_γ onto G_γ .

Proof. Let $e_{\beta} \in E_{f}$, and consider the element $f(e_{\beta})$. From 3.2 and 3.3, we have that $f(e_{\beta}) \in G_{\gamma}$ for some $e_{\gamma} \in E_{f}$. Now $f(e_{\beta}) = f(e_{\beta}e_{\beta}) = f(e_{\beta})e_{\beta} \in G_{\gamma}G_{\beta} \subseteq G_{\gamma\beta}$. Hence $f(e_{\beta}) \in G_{\gamma\beta} \cap G_{\gamma}$ and thus $G_{\gamma\beta} = G_{\gamma}$, which implies that $\gamma\beta = \gamma$. Therefore $\gamma \leq \beta$ ($e_{\gamma} \leq e_{\beta}$). Now let $x \in G_{\beta}$; then $f(x) = f(e_{\beta}x) = f(e_{\beta})x \in G_{\gamma}G_{\beta} \subseteq G_{\gamma\beta} = G_{\gamma}$. Thus we have $f(G_{\beta}) \subseteq G_{\gamma}$. It is clear that e_{γ} is unique since S is the disjoint union of the groups G_{α} ($\alpha \in Y$).

If $y \in G_{\gamma}$, then we have $e_{\beta}y = y$, by 3.4. Thus we have $f(y) = f(e_{\beta}y) = f(e_{\beta})y \in G_{\gamma}G_{\gamma} \subseteq G_{\gamma}$. Hence $f(G_{\gamma}) \subseteq G_{\gamma}$. Finally it remains to show that f takes G_{γ} one-to-one and onto itself. Assume that $y, z \in G_{\gamma}$, with f(y) = f(z); then $f(y) = f(e_{\gamma}y) = f(e_{\gamma})y = f(e_{\gamma})z = f(e_{\gamma}z) = f(z)$. Cancelling $f(e_{\gamma})$, we have that y = z. Now let $w \in G_{\gamma}$; then there exists an element $u \in G_{\gamma}$ such that $f(e_{\gamma})u = w$. But $f(e_{\gamma})u = f(u)$, and this completes the proof.

REMARK 3.6. Suppose that $f \in H_s$ and $e_\beta \in E_f$. Let e_γ be as given in 3.5. Then ff is also a one-to-one mapping of G_γ onto G_γ .

THEOREM 3.7. Q(S) is a regular semigroup.

Proof. Let $[f] \in Q(S)$. We shall define a mapping $g \in H_S$ such that [f][g][f] = [f]. Let $x \in D_f$, so that $x \in G_\beta$ for some $e_\beta \in E_f$. Let e_γ be as in 3.5. Then from 3.6, we see that there exists a unique $y \in G_\gamma$ such that ff(y) = f(x). Define the mapping $g: D_f \to S$ by g(x) = y. We assert that g is a right S-homomorphism. Assume that $x \in D_f$ with $x \in G_\beta$, and $s \in S$ with $s \in G_\alpha$. Let $y \in G_\gamma$ be as chosen above. Set z = g(xs). Since $f(xs) = f(x)s \in G_\gamma G_\alpha \subseteq G_{\gamma\alpha}$, it follows

F. R. MCMORRIS

that $z \in G_{\gamma \alpha}$ with ff(z) = f(xs). Now ff(z) = f(xs) = f(x)s = (ff(y))s = ff(ys). Since $z, ys \in G_{\gamma \alpha}$ and ff is one-to-one on $G_{\gamma \alpha}$, we have z = ys; that is, g(xs) = g(x)s.

We show that [f][g][f] = [f] by proving that fgf agrees with f on D_f . Again let $x \in D_f$ with $x \in G_\beta$, and G_γ be as above. Now fgf(x) = f(u), where $u = g(f(x)) \in G_\gamma$, and ff(u) = f(f(x)). Since f is one-to-one on G and $f(u), f(x) \in G_\gamma$, we have f(u) = f(x); that is, fgf(x) = f(x).

We recall from 3.1 that every idempotent of S is in the center of S. This fact will be used throughout the proofs of the following lemmas.

LEMMA 3.8. Let $f \in H_s$. If ff = f on some ideal J with $J \subseteq D_f$, then $f(e) \in E(J)$ for all $e \in E(J)$.

Proof. Let
$$e \in E(J)$$
; then $f(e) = ff(e) = ff(ee) = f(f(e)e) = f(ef(e)) = f(e)f(e)$.

LEMMA 3.9. Let $f \in H_s$; then ff = f on an ideal J with $J \subseteq D_f$ if and only if f(xy) = f(x)f(y) for all $x, y \in J$.

Proof. Assume that ff = f on $J \subseteq D_f$, and let $x, y \in J$ with $x \in G_{\alpha}$ and $y \in G_{\beta}$. Applying 3.8, we have

$$f(xy) = ff(xy) = ff(e_{\alpha} xe_{\beta} y) = ff(e_{\alpha} e_{\beta} xy)$$
$$= (ff(e_{\alpha} e_{\beta}))xy = (f(f(e_{\alpha})e_{\beta}))xy = (f(e_{\alpha}f(e_{\beta})))xy$$
$$= f(e_{\alpha})f(e_{\beta})xy = f(e_{\alpha})xf(e_{\beta})y = f(x)f(y).$$

For the converse, let $z \in J$ with $z \in G_y$. Then

$$f(z) = f(e_y z) = f(e_y)f(z) = f(e_y f(z)) = f(f(z)e_y) = f(f(z)) = ff(z).$$

PROPOSITION 3.10 (2.33 of [4]). If T is a right quotient semigroup of S, then an element of T commutes with every element of S if and only if it is in the centre of T.

PROPOSITION 3.11. The idempotents of Q(S) are in the center of Q(S).

Proof. We need only show that if [f] is an idempotent of Q(S), then [f]x = x[f] for all $x \in S$. That is we must show that the mappings $x_i f$ and fx_i agree on some dense ideal of S. Assume that ff = f on $D \in S^{\Delta}$, with $D \subseteq D_f$. Set $D^* = D \cap D_{fx_i}$ and let $d \in D^*$ with $d \in G_{\alpha}$. Applying 3.8 and 3.9, we have

$$(fx_{i})(d) = f(xd) = f(xe_{\alpha}d) = f(xe_{\alpha})f(d) = f(e_{\alpha})xf(d) = xf(e_{\alpha})f(d) = xf(e_{\alpha}d) = xf(d) = (x_{i}f)(d).$$

Hence $x_i f = f x_i$ on $D^* \in S^{\Delta}$.

THEOREM 3.12. Q(S) is a semilattice of groups.

Proof. From 3.7 and 3.11, Q(S) is a regular semigroup with central idempotents. Hence, by 3.1, Q(S) is a semilattice of groups.

From 3.1, a commutative semigroup is regular if and only if it is a semilattice of groups. The following example is a commutative example in which Q(T) is regular but T is not. Hence the converse to 3.12 is not necessarily true.

EXAMPLE 3.13. Let T be the infinite cyclic semigroup generated by the element a, with 0 and 1 adjoined; that is, $T = \{a, a^2, a^3, \ldots\} \cup 0 \cup 1$. Thus T is a commutative semigroup that is not regular. Every ideal of T is of the form $\{a^k, a^{k+1}, \ldots\} \cup 0$ where $k \ge 1$. It can be shown that every ideal of T is dense, and every $f \in H_T$ is one-to-one. Let f' be the inverse mapping of f. Hence f' is a right S-homomorphism from $f(D_f) \in T^{\Delta}$ into T such that ff'f = f on D_f . Therefore [f][f'][f] = [f], which implies that Q(T) is a regular semigroup. Q(T) is commutative, by 2.35 of [4].

4. Throughout this section, we shall assume that E(S) is a chain.

PROPOSITION 4.1. Let G_1 denote the group of units of S. If $D \in S^{\Delta}$, then D = S or $D = S - G_1$, where $S - G_1 = \{x \in S : x \notin G_1\}$.

Proof. Assume that $D \in S^{\Delta}$ with $D \not\equiv S$. From 3.2, D is a semilattice X_D of groups, where X_D is isomorphic to E(D). Thus we need only show that $E(D) = E(S) - \{1\}$. Let $e_{\beta} \in E(S) - E(D)$. It is easy to verify that $e_{\alpha} \leq e_{\beta}$ for all $e_{\alpha} \in E(D)$. Hence, from 3.4, $1d = d = e_{\beta}d$ for all $d \in D$. Since $D \in S^{\Delta}$, this implies that $1 = e_{\beta}$.

LEMMA 4.2. Let $[f] \in Q(S)$ and $D = S - G_1$. If ff = f on D and e_{α} , $e_{\beta} \in E(D) - f(D)$, then $f(e_{\alpha}) = f(e_{\beta})$.

Proof. By 4.1, we have $D \subseteq D_f$. Also $f(e_{\alpha}), f(e_{\beta}) \in E(D)$, from 3.8. Assume that $e_{\alpha} \leq e_{\beta}$. We assert that $f(e_{\beta}) < e_{\alpha}$. If $e_{\alpha} \leq f(e_{\beta})$, then $e_{\alpha} = f(e_{\beta})e_{\alpha} = f(e_{\beta}e_{\alpha}) = f(e_{\alpha})$, which contradicts the fact that $e_{\alpha} \notin f(D)$. Hence $f(e_{\beta}) = f(e_{\beta})e_{\alpha} = f(e_{\beta}e_{\alpha}) = f(e_{\alpha})$.

THEOREM 4.3. The idempotents of S and Q(S) are identical.

Proof. Let E(Q) denote the set of idempotents of Q(S). There are two cases: $S - G_1 \in S^{\Delta}$ or $S - G_1 \notin S^{\Delta}$.

Assume that $S - G_1 \notin S^{\Delta}$ and let $[f] \in Q(S)$. Then $f \in \text{Hom}_S(S, S)$ and hence $[f] = [(f(1))_i] = f(1) \in S$. Therefore S = Q(S).

Now let $D = S - G_1$ and suppose that $D \in S^{\Delta}$. If $[f] \in E(Q)$, then ff = f on D. From 3.3, $f(D) \subseteq D$. Assume that f(D) = D. We claim that $f = 1_D$, where 1_D is the identity map on D. If $d \in D$, then there exists an element $x \in D$ such that f(x) = d. Thus f(d) = ff(x) = f(x) = d. In [4] it was shown that $[1_D] = 1$. Therefore $[f] = [1_D] = 1 \in E(S)$.

Let $f(D) \notin D$. Since f(D) is an ideal of S, 3.2 implies that there exists an element $e_a \in E(D) - f(D)$. Set $e = f(e_a)$; then $e \in E(S)$. Let $d \in D$ with $d \in G_\beta$. If $e_\beta \leq e_a$, then $f(d) = f(e_a d) = f(e_a) d = ed$. If $e_a < e_\beta$, then $e_\beta \in E(D) - f(D)$ and we have $f(d) = f(e_\beta d) = f(e_\beta) d = f(e_\beta) d = f(e_\beta) d = ed$, by 4.2. Hence $[f] = [e_i] = e \in E(S)$.

Theorem 16 of [1] states that, if S is a semilattice $(G_{\gamma} = \{e_{\gamma}\}$ for all $\gamma \in Y$), then so is Q(S). The following corollary then follows.

COROLLARY 4.4. If S is a chain, then S = Q(S).

On page 45 of [3], it is shown that if R is a Boolean ring (aa = a for all $a \in R$), then its Dedekind-MacNeille completion is isomorphic over R to the maximal right quotient ring of R. An analogous theorem is not true for semilattices: that is, if S is a non-complete chain, then S = Q(S), which is properly contained in its completion.

If T is a semigroup, then E(T) is dually well-ordered if every non-empty subset of E(T) has a greatest element in the set.

THEOREM 4.5. If T is a regular semigroup such that E(T) is dually well-ordered, then T = Q(T).

Proof. We first show that every right ideal is generated by an idempotent. Let R be a right ideal of T. Since T is regular, we have $R \cap E(T) \neq \emptyset$. Let e be the greatest idempotent of T contained in R. Clearly $eT \subseteq R$. If $x \in R$, then there exists an element $x' \in T$ such that xx'x = x and $xx' \in E(T)$. Now $xx' \in R \cap E(T)$, so that $xx' \leq e$. Thus $x = (xx')x = e(xx')x \in eT$. Hence eT = R.

Now let $f \in H_T$; then $D_f = iT$, where $i \in E(T)$. We have f(iy) = f(iiy) = f(i)iy for all $iy \in iT$. By 2.31 of [4], T = Q(T).

We shall now write Q(S) as the semilattice I of groups $H_{\alpha}(\alpha \in I)$, where I is isomorphic to E(Q). Note that we may assume that $Y \subseteq I$ and $G_{\alpha} \subseteq H_{\alpha}$ for all $\alpha \in Y$.

LEMMA 4.6. If $\alpha \in Y$ with $\alpha \neq 1$, then $G_{\alpha} = H_{\alpha}$.

Proof. Let $[f] \in H_{\alpha}$, where $\alpha \in Y$ with $\alpha \neq 1$. Thus $e_{\alpha} \neq 1$. Set $e = e_{\alpha}$; then [f]e = [f], which implies that $fe_{l} = f$ on some $D \in S^{\Delta}$, with $D \subseteq D_{f}$. Since D = S or $D = S - G_{1}$, we have $e \in D$. Hence $(fe_{l})(d) = f(ed) = f(e)d$. Therefore $[f] = [f]e = [(f(e))_{l}] \in S$, and thus $[f] \in G_{\alpha}$.

THEOREM 4.7. $Q(S) = (\bigcup_{a \neq 1} G_a) \cup H_1.$

Proof. By 4.3, Y = I and hence the result follows from 4.6.

5. For the remainder of this paper, let T be a semigroup with 0 and 1. A right ideal R of T is said to be *minimal* if $R \neq 0$ and if K is a right ideal of T with $0 \neq K \subseteq R$, then K = R. T is said to satisfy the *minimum condition* on right ideals if every non-empty set of right ideals of T has a minimal member.

PROPOSITION 5.1. If T has a minimal dense right ideal, then it is unique.

Proof. This follows from the fact that the intersection of two dense ideals is a dense ideal. Assume that T has a minimal dense right ideal D, and let $f, g \in \text{Hom}_T(D, T)$. Let fg be the composition map with domain $g^{-1}D = \{x \in D : g(x) \in D\}$. By 2.14 of [4], $g^{-1}D \in T^{\Delta}$, which implies that $g^{-1}D = D$ since D is minimal. Thus $\text{Hom}_T(D, T)$ is a semigroup under this

THEOREM 5.2. If T has a minimal dense right ideal D, then Q(T) is isomorphic to $\operatorname{Hom}_{T}(D, T)$.

operation.

Proof. Define the mapping $\mu: Q(T) \to \operatorname{Hom}_T(D, T)$ by $\mu([f]) = f|_D$, where $f|_D$ is the restriction of f to D. μ is an isomorphism.

COROLLARY 5.3. Let T satisfy the minimum condition on right ideals, and let D be the unique minimal dense right ideal of T. Then Q(T) is isomorphic to Hom_T(D, T).

COROLLARY 5.4. Assume that S is a semilattice of groups and E(S) is a finite set. Let D^* be the intersection of all the dense ideals of S. Then Q(S) is isomorphic to $Hom_s(D^*, S)$.

REFERENCES

1. P. Berthiaume, The injective envelope of S-sets, Canad. Math. Bull. 10 (1967), 261-273.

2. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. 1, Math. Surveys of the Amer. Math. Soc., 7 (Providence, R.I., 1961).

3. J. Lambek, Lectures on rings and modules (Blaisdell, 1966).

4. F. R. McMorris, On quotient semigroups; submitted.

5. Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1-18.

BOWLING GREEN STATE UNIVERSITY BOWLING GREEN, OHIO 43402