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On the Dual König Property of the
Order-interval Hypergraph of Two Classes
of N-free Posets

Isma Bouchemakh and Kaci Fatma

Abstract. Let P be a ûnite N-free poset. We consider the hypergraph H(P) whose vertices are the
elements of P and whose edges are themaximal intervals of P. We study the dual König property of
H(P) in two subclasses of N-free class.

1 Introduction

Let (P, ≤) be a ûnite partially ordered set (brie�y poset P). A subset of P is called a
chain (resp. antichain) if every two elements in P are comparable (resp. incomparable).
_e number of elements in a chain is the length of the chain. _e height of an element
x ∈ P, denoted by h(x), is the length of a longest chain in P having x as its maximum
element. _e height of a poset P, denoted h(P), is the length of a longest chain in P.
_e i-level or height-i-set of P, denoted by N i , is the set of all elements of P that have
height i.

Let p and q be two elements of P. We say q covers p, andwe denote p ≺ q, if p ≺ v ≤
q implies v = q. Furthermorewe denote byMax P (resp. Min P) the set of all maximal
(resp. minimal) elements of P. A subset I of P of the form I = {v ∈ P, p ≤ v ≤ q} (de-
noted [p, q]) is called an interval. It is maximal if p (resp. q) is aminimal (resp. max-
imal) element of P. Denote by I(P) the family ofmaximal intervals of P. _e hyper-
graph H(P)=(P,I(P)) whose vertices are the elements of P and whose edges are the
maximal intervals of P is said to be the order-interval hypergraph of P.
A subset A (resp. T) of P is called independent (resp. a point cover or transversal

set) if every edge ofH contains at most one point of A (resp. at least one point of T).
A subset M (resp. R) of I is called a matching (resp. an edge cover) if every point of
P is contained in at most onemember ofM (resp. at least onemember ofmember of
R). Let

α(H) = max{∣A∣ ∶ A is independent},
τ(H) = min{∣T ∣ ∶ T is a point cover},
ν(H) = max{∣M∣ ∶M is amatching},
ρ(H) = min{∣R∣ ∶ R is an edge cover}.
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_ese numbers are called the independence number, the point covering number, the
matching number, and the edge covering number of H(P), respectively. It is easy to
see that ν(H) ≤ τ(H) and α(H) ≤ ρ(H). We say that H has the König property
if ν(M) = τ(M) and dual König property if ν(H∗) = τ(H∗), i.e., α(H) = ρ(H),
since α(H) = ν(H∗) and ρ(H) = τ(H∗). _is class of hypergraphs has been studied
intensively in the past, and we ûnd interesting results from an algorithmic point of
view as well as min-max relations [2–8].

Let P1 = (E1 , ≤1) and P2 = (E2 , ≤2) be two posets such that E1 and E2 are disjoint.
_e disjoint sum P1 +P2 of P1 and P2 is the poset deûned on E1 ∪E2 such that x ≤ y in
P1 + P2 if and only if (x , y ∈ P1 and x ≤1 y) or (x , y ∈ P2 and x ≤2 y). _e linear sum
P1 ⊕ P2 of P1 and P2 is the poset deûned on E1 ∪ E2 such that x ≤ y in P1 ⊕ P2 if and
only if (x , y ∈ P1 and x ≤1 y) or (x , y ∈ P2 and x ≤2 y) or (x ∈ P1 and y ∈ P2).

Let A ⊆ Max P1 and B ⊆ Min P2 with A and B are not empty. _e quasi-series
composition of P1 and P2 denoted P = (P1 ,A) ∗ (P2 , B) is the poset P = (E1 ∪ E2 , ≤)
such that x ≤ y if (x , y ∈ E1 and x ≤1 y) or ( x , y ∈ E2 and x ≤2 y) or (x ∈ E1 , y ∈ E2),
and there exist α ∈ A, β ∈ B such that x ≤1 α and β ≤2 y.

2 N-free Poset

A poset P is said to be series-parallel, if it can be constructed from singletons P0 (P0
is the poset having only one element) using only the two operations disjoint sum and
linear sum. It may be characterized by the fact that it does not contain the poset N as
an induced subposet [12, 13]. P is called N-free if and only if its Hasse diagram does
not contain four vertices v1 , v2 , v3, v4, where v1 ≺ v2, v2 ≻ v3 and v3 ≺ v4, and v1 and
v4, v1 and v3, v2 and v4, are incomparable. _e class of N-free posets contains the
class of series-parallel posets. Habib and Jegou [10] deûned the Quasi- Series-Parallel
(QSP) class of posets, as the smallest class of posets that contains P0 and closed under
quasi-series composition and linear sum. _ey proved that a poset is N-free if and
only if it is aQSP poset. _e following theorem gives many other characterizations of
N-free posets (see [9–11]).

_eorem 2.1 _e four following properties are equivalent:
(i) P is QSP.
(ii) P is an N-free poset.
(iii) P is a C.A.C. (Chain-Antichain Complete) order i.e., every maximal chain inter-

sects each maximal antichains.
(iv) _e Hasse diagram of P is a line-digraph.
(v) For every two elements p, q ∈ P, if N(p) ∩ N(q) /= ∅, then N(p) = N(q), where

N(p) denoted the set of all elements of P that cover p in P.

It is known that the order-interval hypergraphH(P) has theKönig and dual König
properties for the class of series-parallel posets [3]. In [4], itwas proved thatH(P) has
again the dual König property for the class of a posets that contains the series-parallel
posets and whose members have comparability graphs that are distance-hereditary
graphs or generalizations of them. If P is an N-free poset, the König property is not
satisûed in general; see [4]. _e poset of Figure 1 is an example where ν(H(P)) = 1,

https://doi.org/10.4153/CMB-2016-036-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-036-8


On the Dual König Property 45

Figure 1: ν(H(P)) = 1 and τ(H(P)) = 2

τ(H(P)) = 2. In this paper, we consider two classes of N-free posets and prove that
the dual König property of the order-interval hypergraph of these classes of posets are
satisûed.

2.1 Blocks in an N-free Poset

_ere is a useful representation of an N-free poset, namely the block (see [1]). If P
is an N-free poset with levels N1 , . . . ,Nr , a block of P is maximal complete bipartite
graph in theHasse diagramof P. More precisely, a block of P is a pair (A i , B i),where
A i , B i ⊂ P such that A i is the set of all lower covers of every x ∈ B i and B i is the set
of all upper covers of every y ∈ A i . By convention, (∅,Min P) and (Max P,∅) are
blocks

a b 

c 

d e 

Figure 2: P is N-free with blocks (∅, {a, b}), ({b}, {c, e}), ({a, c}, {d}) and ({d , e},∅) .

In this paper, we say that (A i , B i) and (A j , B j) are adjacent if there exists at least
one vertex of A i ∪ B i in the same interval in P with at least one vertex of A j ∪ B j . For
example, the blocks ({b}, {c, e}) and ({a, c}, {d}) of poset of Figure 2 are adjacent.

2.2 N-free Poset of Type 1

Deûnition 2.2 Let P be a connected poset with levels N1 ,N2 , . . . ,Nr . We say that
P is of Type 1 if there exists an integer n such that the induced subposet Pn ,n+1 formed
from the consecutive levels Nn ∪ Nn+1 is of the form Nn ⊕ Nn+1.

For the class of posets of Type 1, we give the following result.
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_eorem 2.3 Let P be a poset of Type 1. _enH(P) has the dual König property, and
we have α(H(P)) = ρ(H(P)) =Max{∣Max P∣, ∣Min P∣}.

Proof We set Min P = {a1 , a2 , . . . , ak} andMax P = {b1 , b2 , . . . , b l}. Consider the
family of edges I ofH(P) such that

I =
⎧⎪⎪⎨⎪⎪⎩

{[a j , b j], j = 1, . . . , k} ∪ {[ak , b j], j = k + 1, . . . , l} if k ≤ l ,
{[a j , b j], j = 1, . . . , l} ∪ {[a j , b l ], j = l + 1, . . . , k} if k > l .

It is not diõcult to see that I is an edge-covering family ofH(P) of cardinality equal to
Max{∣Max P∣, ∣Min P∣}. Hence, α(H(P)) = ρ(H(P)) =Max{∣Max P∣, ∣Min P∣}

In particular, the order-interval hypergraph of the N-free poset of Type 1 has the
dual König property.

3 N-free Poset of Type 2

Definitions

(a) Let P be a connected N-free poset with levels N1 ,N2 , . . . ,Nr . We say that P is
a poset of Type 2 if there exists an integer n such that Nn is the ûrst level where the
induced subposet Pn ,r is disconnected of the form Pn ,r = P1 + P2 + ⋅ ⋅ ⋅ + Pl , and for all
i ∈ L = {1, . . . , l}, Pi is connected poset of Type 1.

(b) We say that the subposet Pi is linked with the subposet Pj by a vertex z of
N1, if we can obtain intervals of the form [z, x] and [z, y] for each x ∈ Max Pi and
y ∈ Max Pj , and we say z links Pi with Pj .

(c) We say that Pi is linked with Pj by the subset R of N1 if for every element z of
R, z links Pi with Pj .

Example 3.1 _e poset P in Figure 3 is N-free of Type 2; it is easy to see that N2 is
the ûrst level where P2,3 = P1 + P2 is disconnected poset where P1 and P2 are posets of
Type 1. On the other hand, Q is an N-free poset but not of Type 2.

N

N

N

3

2

1

P

P

1

2

N
4

Q
1

2

P Q

Q

Figure 3:
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In order to prove the dual König property ofH(P), where P is N-free of Type 2,
let us introduce the following notation.

Notation

(a) For every subposet Pk , we denote by Rk the subset of N1, where every element
of Rk is comparable with all elements of Max Pk , and Rk does not link Pk with any
other poset Ps , s ∈ L. _e set Rk can be empty.

(b) For every subposet Pk , we denote by R′ik , i ∈ Ik = {1, 2, . . . , ∣N1∣}, the subset
of N1 that links Pk with the same family of poset {Ps}s∈L . We can obtain R′ik = R′j l for
i /= j and k /= l .

Observation 3.2 _e family {R′ik}k∈L , i∈Ik is pairwise disjoint.

See Figure 4 for an illustration of the class of N-free posets of Type 2.

P
1

P P P
2 m l

Block

Block

Block 

Block

R R’ R’ R’ R’ R
1 l1 1 2 1 m 1 m 2

Figure 4: Illustration of an N-free poset of Type 2

3.1 Maximal Stable Sets of H(P)

In our poset, it is clear that for a linked subposet family Fk = {Pl}l∈L , we can obtain
blocks (A i , B i) in the level Nn− j , for j ∈ {0, 1, . . . , n − 1}, i.e., B i intersects Nn− j , and
every element x of A i , x links a subfamily Fs of Fk , we say (A i , B i) links Fs . Such
blocks must exist in Nn since P is N-free poset of Type 2.

We note the following observation.

Observation 3.3 For every block (A i , B i) that links Fs , B i has the following partition:
B i = ⋃t∈T B i ,t , where ∀x ∈ B i ,t , x is comparablewith a vertex ofMin Pt , where Pt ∈ Fs ,
and ∣Fs ∣ = ∣T ∣

Let us now give two algorithms to ûnd maximal stable sets of an N-free poset of
Type 2; the second algorithm can be applied only a�er the ûrst.
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Maximal Stable-set 1 Algorithm

INPUT: An N-free poset P of Type 2. F1 , F2 , . . . , Fm all linked subposet families of P.
(a) For each k, from k = 1 to m.
(b) For each j, from j = 0 to n − 1, in Nn− j we determine Ck , j by taking for every

block (A i , B i) that links a subfamily of Fk , one vertex from each B i ,t such that:
(i) if there exists a family {B i ,t}i from block family that are adjacent pairwise,

we take only one vertex from only one set of {B i ,t}i ;
(ii) we delete every vertex which is in the same interval with a vertex of Ck ,t ,

t < j.
(c) Put Ck = ⋃n−1

j=0 Ck , j .
(d) Output C = (⋃m

k=1 Ck) ∪ (⋃l∈L R l). End

_eorem 3.4 _e set C is amaximal stable set ofH(P).

Proof C is a stable set by construction of every Ck . It remains themaximality of C.
We say that an interval I crosses a block (A i , B i) if I intersects B i . Let us show that for
every interval I of P, I contains one vertex of C, and this means that for every x ∈ P,
C ∪ {x} will not be a stable set.

In the case where I does not cross any block, theminimal vertex of I will be in R l .
Now, in the case where I crosses a block (A i , B i), let y be a commun vertex of B i

and I. If y ∈ C, then I intersectsC. Otherwise, y ∉ C,whichmeans that y is in the same
interval J with an element y′ of C. Consequently, I and J will have minimal vertices
in R′pq andmaximal vertices in Max Pl ; this gives y′ ∈ I.

a b c d e f

Figure 5: An N-free poset P of Type 2. Applying theMaximal Stable-Set 1 algorithm on P; the
framed vertices form amaximal stable set ofH(P).

Example 3.5 _e poset of Figure 5 is N-free of Type 2, where P1, P2, and P3 are the
supbosets surrounded from le� to right. We have R′11 = R′12 = {a, b}, R′21 = R′22 =
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R′13 = {c}, R′31 = R′23 = {d}, R′41 = R′33 = {e}, and R3 = { f }. _e framed vertices form
themaximal stable set C ofH(P) obtained by theMaximal Stable-set 1 algorithm.

We will need the following deûnition.

Deûnition 3.6 In H(P), for every vertex x ∈ P, a stable adjacent Mx to x is the set
of all vertices y such that x and y are in the same interval of P,whereMx is stable. Mx
can be equal to {x}. We say MD is a stable adjacent to the set D of P if it is amaximal
stable subset of the union of all Mx , x ∈ D, where ∣MD ∣ ≥ ∣D∣.

We can write ⋃m
k=1 Ck = D1 ∪ D2 ∪ ⋅ ⋅ ⋅ ∪ Dm for the stable set obtained from the

Maximal Stable-set 1 algorithm, where D i are subsets of blocks of P. We determine a
new maximal stable set C′ from C as follows.

Maximal Stable-set 2 Algorithm

INPUT: An N-free poset P of Type 2, andmaximal stable set C.
OUTPUT: A new maximal stable set C′.
1. C′ ∶= C.
2. For each i, from i = 1 to m.
3. We determineMD i the stable adjacent to D i such that C− (⋃t=i

t=1 Dt)∪ (⋃t=i
t=1 MD t)

is stable.
4. We take C′ ∶= C − (⋃t=i

t=1 Dt) ∪ (⋃t=i
t=1 MD t).

5. Stop.
By construction of C′, we deduce the following result.

Proposition 3.7 _e set C′ is amaximal stable set ofH(P).

We denote by C′k the set of all vertices obtained from every x i ∈ Ck using the
Maximal Stable-set 2 algorithm.
As a consequence of the previous algorithms, wemake the following observation.

Observation 3.8 Consider the subposet family Fk linked by R′pq .
(i) _e set R′pq has the following partition: R′pq = ⋃s R′pq ,s , where for every s, R′pq ,s

is a stable adjacent to As a subset of C′k .
(ii) It will be possible to obtain that the family {As}s is pairwise disjoint.

Proof To prove the second observation, we suppose that x is a common vertex of
As and As′ . Let I (resp. J) an interval containing x with minimal element c j ∈ R′pq ,s
(resp. c j′ ∈ R′p′q′ ,s′). In I (resp. J) there exists a vertex z (resp. z′) that is incomparable
with every vertex of R′p′q′ ,s′ (resp. R

′
pq ,s) (we take as an example, the vertex z (resp. z′)

such that c j ≺ z (resp. c j′ ≺ z′)). Otherwise, we will obtain R′pq ,s = R′p′q′ ,s′ since P
is N-free. In this case, we can reconstruct C by starting with z and z′ respectively to
obtain two new disjoint sets.

In the remainder of this paper, we suppose that C′ veriûes Observation 3.8(ii).
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Example 3.9 _e poset of Figure 6 is N-free of Type 2, where C = {a, b}. Applying
theMaximal Stable-set 2 algorithm, we obtain two diòerent maximal stable sets: C′1 is
the framed vertex set and C′2 is the surrounded vertex set. We remark that C′2 veriûes
Observation 3.8(ii), while C′1 does not.

a b

Figure 6: Two diòerent maximal stable sets of H(P) by applying the Maximal Stable-set 2
algorithm.

3.2 Edge Covering Family of H(P)

In this section, we will present an algorithm to construct an edge covering family of
H(P) where P is an N-free of Type 2.

We set

Max Pl = {b l
1 , b

l
2 , . . . , b

l
∣Max Pl ∣}, R l = {a1 , a2 , . . . , a∣R l ∣},

R′pq ,s = {c1 , c2 , . . . , c∣R′pq ,s ∣}, ⋃
i∈I l

R′i l = {c′1 , c′2 , . . . , c′m l
}.

_eorem 3.10 If for every k ∈ L we have

(3.1) ∣Max Pk ∣ ≥ ∣Rk ∣ +∑
i∈Ik

∣R′ik ∣,

then H(P) has the dual König property and α(H(P)) = ρ(H(P)) = ∣Max P∣.

Proof For every Pk , we consider the edge family:

Ik = {[a i , b i], i = 1, . . . , ∣Rk ∣} ∪ {[c′j−∣Rk ∣ , b j], j = ∣Rk ∣ + 1, . . . , ∣Rk ∣ +mk}
∪ {[c′mk

, bs], s = mk + ∣Rk ∣ + 1, . . . , ∣Max Pk ∣} .

_e union of all Ik , k ∈ L is an edge covering family ofH(P)with cardinality equal to
∣Max P∣ and as Max P is a stable set ofH(P) then α(H(P)) = ρ(H(P)) = ∣Max P∣.

We remark that by applying theMaximal Stable-set 2 algorithm to P,we can obtain
diòerent maximal stable sets ofH(P), and this depends on the choice ofMD i . In the
next algorithm we need to characterize the set C′ as follows.
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C′ is determined such that for every subposet family Fk that contains subposets Pl
verifying (3.1), we determine MD i diòerent to D i , and if x ∈ D i is incomparable with
all vertices ofMax Pl , then Mx will be too. For other subposet families,MD i does not
contain a vertex ofMax Pm , where Rm is not empty.

Edge-Cover Algorithm

INPUT: An N-free poset P of Type 2 and themaximal stable set C′.
OUTPUT: An edge covering family I(H(P)).
Step 1 For every R l , where Pl does not verify (3.1), we construct the edge family E l
with ∣R l ∣ intervals as follows:

1.1 If ∣R l ∣ ≤ ∣Max Pl ∣: E l = {[a j , b l
j], j = 1, 2, . . . , ∣R l ∣}.

1.2 Otherwise: E l = {[a j , b l
j], j = 1, 2, . . . , ∣Max .Pl ∣} ∪ {[at , b∣Max Pl ∣], t = ∣Max Pl ∣ +

1, . . . , ∣R l ∣}.
Step 2 For every Pl , where Pl veriûes (3.1), we construct the edge family J l as follows:

J l = {[a i , b i], i = 1, . . . , ∣R l ∣} ∪ {[c′j−∣R l ∣ , b j], j = ∣R l ∣ + 1, . . . , ∣R l ∣ +m l}
∪ {[c′m l

, bs], s = m l + ∣R l ∣ + 1, . . . , ∣Max Pl ∣} .

We obtain ∣Max Pl ∣ intervals.
Step 3 First, determine all linked subposet families F1 , F2 , . . . , Fm . _en apply this
step to Fk = {Pl}l∈Sk , which is linked by R′pq for k = 1 to k = m.

In this step, we use the vertices b l
t ofMax Pl , Pl ∈ Fk , which are not used in Step 1

or in the application of this step to Ft , where t < k ; otherwise, we use vertices already
used.

LetA′s be the setAs deleting all vertices comparablewithMax Pm ,where Pm veriûes
(3.1), and F′k = {Pl}l∈S′kbe the family Fk deleting all subposets verifying (3.1) . For
every R′pq ,s we construct the edge family Is as follows:
3.1 If ∣A′s ∣ ≤ ∣R′pq ,s ∣, then Is = {[c j , b l

t], j = 1, 2, . . . , ∣A′s ∣ and l ∈ S′k} . We obtain ∣A′s ∣
intervals.
3.2 If ∣A′s ∣ > ∣R′pq ,s ∣, then

Is = {[c j , b l
t], j = 1, 2, . . . , ∣R′pq ,s ∣ and l ∈ S′′k ⊂ S′k} ∪ {[c1 , b l

t], l ∈ (S′k − S′′k )} .

We obtain ∣A′s ∣ intervals.
Step 4 It remains some minimal vertices c j that are not used in Steps 1 and 3 such
that c j ∈ R′pq ,s and R′pq does not link any subposet verifying (3.1). In this step, we
construct Jc j the interval containing c j and b l

t a maximal vertex that is not already
used, otherwise, Jc j is any interval containing c j .
Step 5We take I(H(P)) to be the set of all intervals obtained from Step 1 to Step 4.
END

_eorem 3.11 _e Edge-Cover algorithm applied to anN-free poset P ofType 2, yields
an edge-covering family ofH(P).
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Proof We can assert that every z of P that is aminimal element, comparable with a
vertex of Rm or comparable with a vertex ofMax Pl , where Pl veriûes (3.1) is covered
by I(H(P)).

Moreover, if z > x, where x ∈ A′s , then z would be covered by the interval of
I(H(P)) that intersects A′s .

In other cases, suppose that there exists z of P that is not covered by I(H(P)). We
distinguish two cases.

Case 1. If z is amaximal of Pl and no interval obtained from Step 3 or Step 4 covers z,
then Pl necessarily would verify (3.1). _is contradicts the construction of intervals
in these steps.

Case 2. Let J ∉ I(H(P)) containing z and x, where x ∈ A′s and x ≮ z. Let I be the
interval of I(H(P)) containing x. _e only form of I and J is that they will have
maximal elements in Max Pl and two diòerent minimal elements in R′pq ,s . _en z is
not covered by I, then for every couple (t, t′) of (I, J), where t ≤ x and t′ ≤ z, we will
have t ≰ t′. We suppose that such a couple exists.

If t and t′ are not in the same interval and A′s ∪ {t, t′} − {x} is stable, then x can
be replaced by t and t′ in C′, and this contradicts the construction of C′. Otherwise,
we can reconstruct A′s starting by z. In this case, R′pq ,s will be partitioned into at least
two subsets, and by applying the Edge-Cover algorithm; z will be covered by the new
family.

As a consequence of_eorem 3.11, we have the following corollary.

Corollary 3.12 If in the Edge-Cover algorithm, for every vertex x of Max P
(resp. Min P), x is taken only once in the construction of I(H(P)), then P will have
the dual König property.

Proof In this case, we will have ∣I(H(P))∣ = ∣Max P∣ (resp. ∣Min P∣), and as Max P
andMin P are stable sets ofH(P), therefore

α(H(P)) = ρ(H(P)) = ∣Max P∣ (resp., α(H(P)) = ρ(H(P)) = ∣Min P∣).

_eorem 3.13 Let P be an N-free poset of type 2. _en H(P) has the dual König
property.

Proof _emain idea of the proof is to use I(H(P)) obtained from the Edge-Cover
algorithm for constructing a stable set C(H) ofH(P)with the same size as I(H(P)).

Let B1 (resp. B2) be the union of all R l (resp. Max Pk), where Pl (resp. Pk) does not
verify (resp. veriûes) (3.1).
From Step 1 (resp. Step 2) of the Edge-Cover algorithm, B1 (resp. B2) is a stable set

with the cardinality equal to the cardinality of the union of all E l (resp. J l ). It becomes
clear that B1 ∪ B2 is stable set.

_e union of all Is of Step 3.1 can be partitioned into 2 subsets. _e ûrst denoted
by D1, which is the union of all Is , where R′pq ,s does not link subposets verifying (3.1),
and the second is denoted by D2. Let B3,1 be the union of all R′pq ,s , where R′pq does
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not link subposets verifying (3.1) and ∣R′pq ,s ∣ > ∣As ∣. B3,1 is a stable setwith cardinality
equal to ∣D1∣ plus the cardinality of the union of all Jc j of Step 4.

We denote by B3,2 the union of all A′s such that ∣A′s ∣ > ∣R′pq ,s ∣ or ∣A′s ∣ ≤ ∣R′pq ,s ∣,
where R′pq links subposets verifying (3.1). From Observation 3.8(ii), we deduce that
there is no commun vertex x of As and As′ that is covered by two diòerent intervals
of I(H(P)) . Consequently, ∣B3,2∣ is equal to ∣D2∣ plus the cardinality of the union of
all Is of Step 3.2. Consider the set C(H) = B1 ∪ B2 ∪ B3,1 ∪ B3,2 .

Hence, it is not diõcult to see that C(H) is a stable set with size ∣I(H(P))∣.
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