On the Dual König Property of the Order-interval Hypergraph of Two Classes of N-free Posets

Isma Bouchemakh and Kaci Fatma

Abstract. Let P be a finite N -free poset. We consider the hypergraph $\mathcal{H}(P)$ whose vertices are the elements of P and whose edges are the maximal intervals of P. We study the dual König property of $\mathcal{H}(P)$ in two subclasses of N -free class.

1 Introduction

Let (P, \leq) be a finite partially ordered set (briefly poset P). A subset of P is called a chain (resp. antichain) if every two elements in P are comparable (resp. incomparable). The number of elements in a chain is the length of the chain. The height of an element $x \in P$, denoted by $h(x)$, is the length of a longest chain in P having x as its maximum element. The height of a poset P, denoted $h(P)$, is the length of a longest chain in P. The i-level or height- i-set of P, denoted by N_{i}, is the set of all elements of P that have height i.

Let p and q be two elements of P. We say q covers p, and we denote $p<q$, if $p<v \leq$ q implies $v=q$. Furthermore we denote by $\operatorname{Max} P($ resp. $\operatorname{Min} P)$ the set of all maximal (resp. minimal) elements of P. A subset I of P of the form $I=\{v \in P, p \leq v \leq q\}$ (denoted $[p, q]$) is called an interval. It is maximal if p (resp. q) is a minimal (resp. maximal) element of P. Denote by $\mathcal{J}(P)$ the family of maximal intervals of P. The hypergraph $\mathcal{H}(P)=(P, \mathcal{J}(P))$ whose vertices are the elements of P and whose edges are the maximal intervals of P is said to be the order-interval hypergraph of P.

A subset A (resp. T) of P is called independent (resp. a point cover or transversal set) if every edge of \mathcal{H} contains at most one point of A (resp. at least one point of T). A subset \mathcal{M} (resp. \mathcal{R}) of \mathcal{J} is called a matching (resp. an edge cover) if every point of P is contained in at most one member of \mathcal{M} (resp. at least one member of member of \mathcal{R}). Let

$$
\begin{aligned}
\alpha(\mathcal{H}) & =\max \{|A|: A \text { is independent }\}, \\
\tau(\mathcal{H}) & =\min \{|T|: T \text { is a point cover }\}, \\
\nu(\mathcal{H}) & =\max \{|\mathcal{M}|: \mathcal{N} \text { is a matching }\}, \\
\rho(\mathcal{H}) & =\min \{|\mathcal{R}|: \mathcal{R} \text { is an edge cover }\} .
\end{aligned}
$$

[^0]These numbers are called the independence number, the point covering number, the matching number, and the edge covering number of $\mathcal{H}(P)$, respectively. It is easy to see that $v(\mathcal{H}) \leq \tau(\mathcal{H})$ and $\alpha(\mathcal{H}) \leq \rho(\mathcal{H})$. We say that \mathcal{H} has the König property if $v(\mathcal{M})=\tau(\mathcal{M})$ and dual König property if $v\left(\mathcal{H}^{*}\right)=\tau\left(\mathcal{H}^{*}\right)$, i.e., $\alpha(\mathcal{H})=\rho(\mathcal{H})$, since $\alpha(\mathcal{H})=v\left(\mathcal{H}^{*}\right)$ and $\rho(\mathcal{H})=\tau\left(\mathcal{H}^{*}\right)$. This class of hypergraphs has been studied intensively in the past, and we find interesting results from an algorithmic point of view as well as min-max relations [2-8].

Let $P_{1}=\left(E_{1}, \leq_{1}\right)$ and $P_{2}=\left(E_{2}, \leq_{2}\right)$ be two posets such that E_{1} and E_{2} are disjoint. The disjoint sum $P_{1}+P_{2}$ of P_{1} and P_{2} is the poset defined on $E_{1} \cup E_{2}$ such that $x \leq y$ in $P_{1}+P_{2}$ if and only if ($x, y \in P_{1}$ and $x \leq_{1} y$) or ($x, y \in P_{2}$ and $x \leq_{2} y$). The linear sum $P_{1} \oplus P_{2}$ of P_{1} and P_{2} is the poset defined on $E_{1} \cup E_{2}$ such that $x \leq y$ in $P_{1} \oplus P_{2}$ if and only if $\left(x, y \in P_{1}\right.$ and $\left.x \leq_{1} y\right)$ or ($x, y \in P_{2}$ and $x \leq_{2} y$) or ($x \in P_{1}$ and $y \in P_{2}$).

Let $A \subseteq \operatorname{Max} P_{1}$ and $B \subseteq \operatorname{Min} P_{2}$ with A and B are not empty. The quasi-series composition of P_{1} and P_{2} denoted $P=\left(P_{1}, A\right) *\left(P_{2}, B\right)$ is the poset $P=\left(E_{1} \cup E_{2}, \leq\right)$ such that $x \leq y$ if $\left(x, y \in E_{1}\right.$ and $\left.x \leq_{1} y\right)$ or $\left(x, y \in E_{2}\right.$ and $\left.x \leq_{2} y\right)$ or $\left(x \in E_{1}, y \in E_{2}\right)$, and there exist $\alpha \in A, \beta \in B$ such that $x \leq_{1} \alpha$ and $\beta \leq_{2} y$.

$2 N$-free Poset

A poset P is said to be series-parallel, if it can be constructed from singletons P_{0} (P_{0} is the poset having only one element) using only the two operations disjoint sum and linear sum. It may be characterized by the fact that it does not contain the poset N as an induced subposet $[12,13] . P$ is called N -free if and only if its Hasse diagram does not contain four vertices $v_{1}, v_{2}, v_{3}, v_{4}$, where $v_{1}<v_{2}, v_{2}>v_{3}$ and $v_{3}<v_{4}$, and v_{1} and v_{4}, v_{1} and v_{3}, v_{2} and v_{4}, are incomparable. The class of N -free posets contains the class of series-parallel posets. Habib and Jegou [10] defined the Quasi- Series-Parallel (QSP) class of posets, as the smallest class of posets that contains P_{0} and closed under quasi-series composition and linear sum. They proved that a poset is N -free if and only if it is a QSP poset. The following theorem gives many other characterizations of N -free posets (see [9-11]).

Theorem 2.1 The four following properties are equivalent:
(i) P is QSP.
(ii) P is an N-free poset.
(iii) P is a C.A.C. (Chain-Antichain Complete) order i.e., every maximal chain intersects each maximal antichains.
(iv) The Hasse diagram of P is a line-digraph.
(v) For every two elements $p, q \in P$, if $N(p) \cap N(q) \neq \varnothing$, then $N(p)=N(q)$, where $N(p)$ denoted the set of all elements of P that cover p in P.

It is known that the order-interval hypergraph $\mathcal{H}(P)$ has the König and dual König properties for the class of series-parallel posets [3]. In [4], it was proved that $\mathcal{H}(P)$ has again the dual König property for the class of a posets that contains the series-parallel posets and whose members have comparability graphs that are distance-hereditary graphs or generalizations of them. If P is an N -free poset, the König property is not satisfied in general; see [4]. The poset of Figure 1 is an example where $v(\mathcal{H}(P))=1$,

Figure 1: $v(\mathcal{H}(P))=1$ and $\tau(\mathcal{H}(P))=2$
$\tau(\mathcal{H}(P))=2$. In this paper, we consider two classes of N -free posets and prove that the dual König property of the order-interval hypergraph of these classes of posets are satisfied.

2.1 Blocks in an N-free Poset

There is a useful representation of an N -free poset, namely the block (see [1]). If P is an N -free poset with levels N_{1}, \ldots, N_{r}, a block of P is maximal complete bipartite graph in the Hasse diagram of P. More precisely, a block of P is a pair $\left(A_{i}, B_{i}\right)$, where $A_{i}, B_{i} \subset P$ such that A_{i} is the set of all lower covers of every $x \in B_{i}$ and B_{i} is the set of all upper covers of every $y \in A_{i}$. By convention, $(\varnothing, \operatorname{Min} P)$ and $(\operatorname{Max} P, \varnothing)$ are blocks

Figure 2: P is N-free with blocks $(\varnothing,\{a, b\}),(\{b\},\{c, e\}),(\{a, c\},\{d\})$ and $(\{d, e\}, \varnothing)$.

In this paper, we say that $\left(A_{i}, B_{i}\right)$ and $\left(A_{j}, B_{j}\right)$ are adjacent if there exists at least one vertex of $A_{i} \cup B_{i}$ in the same interval in P with at least one vertex of $A_{j} \cup B_{j}$. For example, the blocks $(\{b\},\{c, e\})$ and $(\{a, c\},\{d\})$ of poset of Figure 2 are adjacent.

$2.2 N$-free Poset of Type 1

Definition 2.2 Let P be a connected poset with levels $N_{1}, N_{2}, \ldots, N_{r}$. We say that P is of Type 1 if there exists an integer n such that the induced subposet $P_{n, n+1}$ formed from the consecutive levels $N_{n} \cup N_{n+1}$ is of the form $N_{n} \oplus N_{n+1}$.

For the class of posets of Type 1, we give the following result.

Theorem 2.3 Let P be a poset of Type 1. Then $\mathcal{H}(P)$ has the dual König property, and we have $\alpha(\mathcal{H}(P))=\rho(\mathcal{H}(P))=\operatorname{Max}\{|\operatorname{Max} P|,|\operatorname{Min} P|\}$.

Proof We set $\operatorname{Min} P=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $\operatorname{Max} P=\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$. Consider the family of edges \mathcal{J} of $\mathcal{H}(P)$ such that

$$
\mathcal{J}= \begin{cases}\left\{\left[a_{j}, b_{j}\right], j=1, \ldots, k\right\} \cup\left\{\left[a_{k}, b_{j}\right], j=k+1, \ldots, l\right\} & \text { if } k \leq l, \\ \left\{\left[a_{j}, b_{j}\right], j=1, \ldots, l\right\} \cup\left\{\left[a_{j}, b_{l}\right], j=l+1, \ldots, k\right\} & \text { if } k>l .\end{cases}
$$

It is not difficult to see that \mathcal{J} is an edge-covering family of $\mathcal{H}(P)$ of cardinality equal to $\operatorname{Max}\{|\operatorname{Max} P|,|\operatorname{Min} P|\}$. Hence, $\alpha(\mathcal{H}(P))=\rho(\mathcal{H}(P))=\operatorname{Max}\{|\operatorname{Max} P|,|\operatorname{Min} P|\}$

In particular, the order-interval hypergraph of the N -free poset of Type 1 has the dual König property.

3 N-free Poset of Type 2

Definitions

(a) Let P be a connected N -free poset with levels $N_{1}, N_{2}, \ldots, N_{r}$. We say that P is a poset of Type 2 if there exists an integer n such that N_{n} is the first level where the induced subposet $P_{n, r}$ is disconnected of the form $P_{n, r}=P_{1}+P_{2}+\cdots+P_{l}$, and for all $i \in L=\{1, \ldots, l\}, P_{i}$ is connected poset of Type 1 .
(b) We say that the subposet P_{i} is linked with the subposet P_{j} by a vertex z of N_{1}, if we can obtain intervals of the form $[z, x]$ and $[z, y]$ for each $x \in \operatorname{Max} P_{i}$ and $y \in \operatorname{Max} P_{j}$, and we say z links P_{i} with P_{j}.
(c) We say that P_{i} is linked with P_{j} by the subset R of N_{1} if for every element z of R, z links P_{i} with P_{j}.

Example 3.1 The poset P in Figure 3 is N -free of Type 2; it is easy to see that N_{2} is the first level where $P_{2,3}=P_{1}+P_{2}$ is disconnected poset where P_{1} and P_{2} are posets of Type 1 . On the other hand, Q is an N -free poset but not of Type 2 .

Figure 3:

In order to prove the dual König property of $\mathcal{H}(P)$, where P is N -free of Type 2, let us introduce the following notation.

Notation

(a) For every subposet P_{k}, we denote by R_{k} the subset of N_{1}, where every element of R_{k} is comparable with all elements of $\operatorname{Max} P_{k}$, and R_{k} does not link P_{k} with any other poset $P_{s}, s \in L$. The set R_{k} can be empty.
(b) For every subposet P_{k}, we denote by $R_{i k}^{\prime}, i \in I_{k}=\left\{1,2, \ldots,\left|N_{1}\right|\right\}$, the subset of N_{1} that links P_{k} with the same family of poset $\left\{P_{s}\right\}_{s \in L}$. We can obtain $R_{i k}^{\prime}=R_{j l}^{\prime}$ for $i \neq j$ and $k \neq l$.

Observation 3.2 The family $\left\{R_{i k}^{\prime}\right\}_{k \in L, i \in I_{k}}$ is pairwise disjoint.
See Figure 4 for an illustration of the class of N -free posets of Type 2.

Figure 4: Illustration of an N-free poset of Type 2

3.1 Maximal Stable Sets of $\mathcal{H}(P)$

In our poset, it is clear that for a linked subposet family $F_{k}=\left\{P_{l}\right\}_{l \in L}$, we can obtain blocks $\left(A_{i}, B_{i}\right)$ in the level N_{n-j}, for $j \in\{0,1, \ldots, n-1\}$, i.e., B_{i} intersects N_{n-j}, and every element x of A_{i}, x links a subfamily F_{s} of F_{k}, we say $\left(A_{i}, B_{i}\right)$ links F_{s}. Such blocks must exist in N_{n} since P is N -free poset of Type 2.

We note the following observation.
Observation 3.3 For every block $\left(A_{i}, B_{i}\right)$ that links F_{s}, B_{i} has the following partition: $B_{i}=\bigcup_{t \in T} B_{i, t}$, where $\forall x \in B_{i, t}, x$ is comparable with a vertex of $\operatorname{Min} P_{t}$, where $P_{t} \in F_{s}$, and $\left|F_{s}\right|=|T|$

Let us now give two algorithms to find maximal stable sets of an N -free poset of Type 2; the second algorithm can be applied only after the first.

Maximal Stable-set 1 Algorithm

INPUT: An N -free poset P of Type 2. $F_{1}, F_{2}, \ldots, F_{m}$ all linked subposet families of P.
(a) For each k, from $k=1$ to m.
(b) For each j, from $j=0$ to $n-1$, in N_{n-j} we determine $C_{k, j}$ by taking for every block $\left(A_{i}, B_{i}\right)$ that links a subfamily of F_{k}, one vertex from each $B_{i, t}$ such that:
(i) if there exists a family $\left\{B_{i, t}\right\}_{i}$ from block family that are adjacent pairwise, we take only one vertex from only one set of $\left\{B_{i, t}\right\}_{i}$;
(ii) we delete every vertex which is in the same interval with a vertex of $C_{k, t}$, $t<j$.
(c) Put $C_{k}=\bigcup_{j=0}^{n-1} C_{k, j}$.
(d) Output $\mathcal{C}=\left(\bigcup_{k=1}^{m} C_{k}\right) \cup\left(\bigcup_{l \in L} R_{l}\right)$. End

Theorem 3.4 The set \mathcal{C} is a maximal stable set of $\mathcal{H}(P)$.
Proof \mathcal{C} is a stable set by construction of every C_{k}. It remains the maximality of \mathcal{C}. We say that an interval I crosses a block $\left(A_{i}, B_{i}\right)$ if I intersects B_{i}. Let us show that for every interval I of P, I contains one vertex of \mathcal{C}, and this means that for every $x \in P$, $\mathcal{C} \cup\{x\}$ will not be a stable set.

In the case where I does not cross any block, the minimal vertex of I will be in R_{l}.
Now, in the case where I crosses a block $\left(A_{i}, B_{i}\right)$, let y be a commun vertex of B_{i} and I. If $y \in \mathcal{C}$, then I intersects \mathcal{C}. Otherwise, $y \notin \mathcal{C}$, which means that y is in the same interval J with an element y^{\prime} of \mathcal{C}. Consequently, I and J will have minimal vertices in $R_{p q}^{\prime}$ and maximal vertices in $\operatorname{Max} P_{l}$; this gives $y^{\prime} \in I$.

Figure 5: An N -free poset P of Type 2. Applying the Maximal Stable-Set 1 algorithm on P; the framed vertices form a maximal stable set of $\mathcal{H}(P)$.

Example 3.5 The poset of Figure 5 is N-free of Type 2, where P_{1}, P_{2}, and P_{3} are the supbosets surrounded from left to right. We have $R_{11}^{\prime}=R_{12}^{\prime}=\{a, b\}, R_{21}^{\prime}=R_{22}^{\prime}=$
$R_{13}^{\prime}=\{c\}, R_{31}^{\prime}=R_{23}^{\prime}=\{d\}, R_{41}^{\prime}=R_{33}^{\prime}=\{e\}$, and $R_{3}=\{f\}$. The framed vertices form the maximal stable set \mathcal{C} of $\mathcal{H}(P)$ obtained by the Maximal Stable-set 1 algorithm.

We will need the following definition.
Definition 3.6 In $\mathcal{H}(P)$, for every vertex $x \in P$, a stable adjacent M_{x} to x is the set of all vertices y such that x and y are in the same interval of P, where M_{x} is stable. M_{x} can be equal to $\{x\}$. We say M_{D} is a stable adjacent to the set D of P if it is a maximal stable subset of the union of all $M_{x}, x \in D$, where $\left|M_{D}\right| \geq|D|$.

We can write $\bigcup_{k=1}^{m} C_{k}=D_{1} \cup D_{2} \cup \cdots \cup D_{m}$ for the stable set obtained from the Maximal Stable-set 1 algorithm, where D_{i} are subsets of blocks of P. We determine a new maximal stable set \mathcal{C}^{\prime} from \mathcal{C} as follows.

Maximal Stable-set 2 Algorithm

INPUT: An N -free poset P of Type 2 , and maximal stable set \mathcal{C}.
OUTPUT: A new maximal stable set C^{\prime}.

1. $\mathcal{C}^{\prime}:=\mathcal{C}$.
2. For each i, from $i=1$ to m.
3. We determine $M_{D_{i}}$ the stable adjacent to D_{i} such that $\mathcal{C}-\left(\cup_{t=1}^{t=i} D_{t}\right) \cup\left(\cup_{t=1}^{t=i} M_{D_{t}}\right)$ is stable.
4. We take $\mathcal{C}^{\prime}:=\mathcal{C}-\left(\bigcup_{t=1}^{t=i} D_{t}\right) \cup\left(\bigcup_{t=1}^{t=i} M_{D_{t}}\right)$.
5. Stop.

By construction of \mathcal{C}^{\prime}, we deduce the following result.
Proposition 3.7 The set \mathcal{C}^{\prime} is a maximal stable set of $\mathcal{H}(P)$.
We denote by C_{k}^{\prime} the set of all vertices obtained from every $x_{i} \in C_{k}$ using the Maximal Stable-set 2 algorithm.

As a consequence of the previous algorithms, we make the following observation.
Observation 3.8 Consider the subposet family F_{k} linked by $R_{p q}^{\prime}$.
(i) The set $R_{p q}^{\prime}$ has the following partition: $R_{p q}^{\prime}=\bigcup_{s} R_{p q, s}^{\prime}$, where for every $s, R_{p q, s}^{\prime}$ is a stable adjacent to A_{s} a subset of C_{k}^{\prime}.
(ii) It will be possible to obtain that the family $\left\{A_{s}\right\}_{s}$ is pairwise disjoint.

Proof To prove the second observation, we suppose that x is a common vertex of A_{s} and $A_{s^{\prime}}$. Let I (resp. J) an interval containing x with minimal element $c_{j} \in R_{p q, s}^{\prime}$ (resp. $\left.c_{j^{\prime}} \in R_{p^{\prime} q^{\prime}, s^{\prime}}^{\prime}\right)$. In I (resp. J) there exists a vertex z (resp. z^{\prime}) that is incomparable with every vertex of $R_{p^{\prime} q^{\prime}, s^{\prime}}^{\prime}\left(\right.$ resp. $\left.R_{p q, s}^{\prime}\right)$ (we take as an example, the vertex z (resp. z^{\prime}) such that $c_{j}<z$ (resp. $\left.c_{j^{\prime}}<z^{\prime}\right)$). Otherwise, we will obtain $R_{p q, s}^{\prime}=R_{p^{\prime} q^{\prime}, s^{\prime}}^{\prime}$ since P is N -free. In this case, we can reconstruct \mathcal{C} by starting with z and z^{\prime} respectively to obtain two new disjoint sets.

In the remainder of this paper, we suppose that \mathcal{C}^{\prime} verifies Observation 3.8(ii).

Example 3.9 The poset of Figure 6 is N -free of Type 2, where $\mathcal{C}=\{a, b\}$. Applying the Maximal Stable-set 2 algorithm, we obtain two different maximal stable sets: $\mathfrak{C}_{1}^{\prime}$ is the framed vertex set and $\mathfrak{C}_{2}^{\prime}$ is the surrounded vertex set. We remark that $\mathfrak{C}_{2}^{\prime}$ verifies Observation 3.8(ii), while $\mathfrak{C}_{1}^{\prime}$ does not.

Figure 6: Two different maximal stable sets of $\mathcal{H}(P)$ by applying the Maximal Stable-set 2 algorithm.

3.2 Edge Covering Family of $\mathcal{H}(P)$

In this section, we will present an algorithm to construct an edge covering family of $\mathcal{H}(P)$ where P is an N -free of Type 2.

We set

$$
\begin{aligned}
\operatorname{Max} P_{l} & =\left\{b_{1}^{l}, b_{2}^{l}, \ldots, b_{\left|\operatorname{Max} P_{l}\right|}^{l}\right\}, & & R_{l}=\left\{a_{1}, a_{2}, \ldots, a_{\left|R_{l}\right|}\right\}, \\
R_{p q, s}^{\prime} & =\left\{c_{1}, c_{2}, \ldots, c_{\left|R_{p q, s}^{\prime}\right|}^{\prime}\right\}, & & \bigcup_{i \in I_{l}} R_{i l}^{\prime}=\left\{c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{m_{l}}^{\prime}\right\} .
\end{aligned}
$$

Theorem 3.10 If for every $k \in L$ we have

$$
\begin{equation*}
\left|\operatorname{Max} P_{k}\right| \geq\left|R_{k}\right|+\sum_{i \in I_{k}}\left|R_{i k}^{\prime}\right| \tag{3.1}
\end{equation*}
$$

then $\mathcal{H}(P)$ has the dual König property and $\alpha(\mathcal{H}(P))=\rho(\mathcal{H}(P))=|\operatorname{Max} P|$.
Proof For every P_{k}, we consider the edge family:

$$
\begin{aligned}
\mathcal{J}_{k}=\left\{\left[a_{i}, b_{i}\right], i=1, \ldots,\left|R_{k}\right|\right\} \cup & \left.\cup\left[c_{j-\mid R_{k}}^{\prime}, b_{j}\right], j=\left|R_{k}\right|+1, \ldots,\left|R_{k}\right|+m_{k}\right\} \\
& \cup\left\{\left[c_{m_{k}}^{\prime}, b_{s}\right], s=m_{k}+\left|R_{k}\right|+1, \ldots,\left|\operatorname{Max} P_{k}\right|\right\}
\end{aligned}
$$

The union of all $\mathcal{J}_{k}, k \in L$ is an edge covering family of $\mathcal{H}(P)$ with cardinality equal to $|\operatorname{Max} P|$ and as $\operatorname{Max} P$ is a stable set of $\mathcal{H}(P)$ then $\alpha(\mathcal{H}(P))=\rho(\mathcal{H}(P))=|\operatorname{Max} P|$.

We remark that by applying the Maximal Stable-set 2 algorithm to P, we can obtain different maximal stable sets of $\mathcal{H}(P)$, and this depends on the choice of $M_{D_{i}}$. In the next algorithm we need to characterize the set \mathcal{C}^{\prime} as follows.
\mathcal{C}^{\prime} is determined such that for every subposet family F_{k} that contains subposets P_{l} verifying (3.1), we determine $M_{D_{i}}$ different to D_{i}, and if $x \in D_{i}$ is incomparable with all vertices of $\operatorname{Max} P_{l}$, then M_{x} will be too. For other subposet families, $M_{D_{i}}$ does not contain a vertex of $\operatorname{Max} P_{m}$, where R_{m} is not empty.

Edge-Cover Algorithm

INPUT: An N-free poset P of Type 2 and the maximal stable set \mathcal{C}^{\prime}.
OUTPUT: An edge covering family $\mathcal{J}(\mathcal{H}(P))$.
Step 1 For every R_{l}, where P_{l} does not verify (3.1), we construct the edge family E_{l} with $\left|R_{l}\right|$ intervals as follows:
1.1 If $\left|R_{l}\right| \leq\left|\operatorname{Max} P_{l}\right|: E_{l}=\left\{\left[a_{j}, b_{j}^{l}\right], j=1,2, \ldots,\left|R_{l}\right|\right\}$.
1.2 Otherwise: $E_{l}=\left\{\left[a_{j}, b_{j}^{l}\right], j=1,2, \ldots,\left|\operatorname{Max} . P_{l}\right|\right\} \cup\left\{\left[a_{t}, b_{\left|\operatorname{Max} P_{l}\right|}\right], t=\left|\operatorname{Max} P_{l}\right|+\right.$ $\left.1, \ldots,\left|R_{l}\right|\right\}$.
Step 2 For every P_{l}, where P_{l} verifies (3.1), we construct the edge family J_{l} as follows:

$$
\begin{aligned}
J_{l}=\left\{\left[a_{i}, b_{i}\right], i=1, \ldots,\left|R_{l}\right|\right\} & \cup\left\{\left[c_{j-\left|R_{l}\right|}^{\prime}, b_{j}\right], j=\left|R_{l}\right|+1, \ldots,\left|R_{l}\right|+m_{l}\right\} \\
& \cup\left\{\left[c_{m_{l}}^{\prime}, b_{s}\right], s=m_{l}+\left|R_{l}\right|+1, \ldots,\left|\operatorname{Max} P_{l}\right|\right\} .
\end{aligned}
$$

We obtain $\left|\operatorname{Max} P_{l}\right|$ intervals.
Step 3 First, determine all linked subposet families $F_{1}, F_{2}, \ldots, F_{m}$. Then apply this step to $F_{k}=\left\{P_{l}\right\}_{l \in S_{k}}$, which is linked by $R_{p q}^{\prime}$ for $k=1$ to $k=m$.

In this step, we use the vertices b_{t}^{l} of $\operatorname{Max} P_{l}, P_{l} \in F_{k}$, which are not used in Step 1 or in the application of this step to F_{t}, where $t<k$; otherwise, we use vertices already used.

Let A_{s}^{\prime} be the set A_{s} deleting all vertices comparable with $\operatorname{Max} P_{m}$, where P_{m} verifies (3.1), and $F_{k}^{\prime}=\left\{P_{l}\right\}_{l \in S_{k}^{\prime}}$ be the family F_{k} deleting all subposets verifying (3.1). For every $R_{p q, s}^{\prime}$ we construct the edge family I_{s} as follows:
3.1 If $\left|A_{s}^{\prime}\right| \leq\left|R_{p q, s}^{\prime}\right|$, then $I_{s}=\left\{\left[c_{j}, b_{t}^{l}\right], j=1,2, \ldots,\left|A_{s}^{\prime}\right|\right.$ and $\left.l \in S_{k}^{\prime}\right\}$. We obtain $\left|A_{s}^{\prime}\right|$ intervals.
3.2 If $\left|A_{s}^{\prime}\right|>\left|R_{p q, s}^{\prime}\right|$, then

$$
I_{s}=\left\{\left[c_{j}, b_{t}^{l}\right], j=1,2, \ldots,\left|R_{p q, s}^{\prime}\right| \text { and } l \in S_{k}^{\prime \prime} \subset S_{k}^{\prime}\right\} \cup\left\{\left[c_{1}, b_{t}^{l}\right], l \in\left(S_{k}^{\prime}-S_{k}^{\prime \prime}\right)\right\}
$$

We obtain $\left|A_{s}^{\prime}\right|$ intervals.
Step 4 It remains some minimal vertices c_{j} that are not used in Steps 1 and 3 such that $c_{j} \in R_{p q, s}^{\prime}$ and $R_{p q}^{\prime}$ does not link any subposet verifying (3.1). In this step, we construct $J_{c_{j}}$ the interval containing c_{j} and b_{t}^{l} a maximal vertex that is not already used, otherwise, $J_{c_{j}}$ is any interval containing c_{j}.
Step 5 We take $\mathcal{J}(\mathcal{H}(P))$ to be the set of all intervals obtained from Step 1 to Step 4. END

Theorem 3.11 The Edge-Cover algorithm applied to an N-free poset P of Type 2, yields an edge-covering family of $\mathcal{H}(P)$.

Proof We can assert that every z of P that is a minimal element, comparable with a vertex of R_{m} or comparable with a vertex of $\operatorname{Max} P_{l}$, where P_{l} verifies (3.1) is covered by $\mathcal{J}(\mathcal{H}(P))$.

Moreover, if $z>x$, where $x \in A_{s}^{\prime}$, then z would be covered by the interval of $\mathcal{J}(\mathcal{H}(P))$ that intersects A_{s}^{\prime}.

In other cases, suppose that there exists z of P that is not covered by $\mathcal{J}(\mathcal{H}(P))$. We distinguish two cases.
Case 1. If z is a maximal of P_{l} and no interval obtained from Step 3 or Step 4 covers z, then P_{l} necessarily would verify (3.1). This contradicts the construction of intervals in these steps.

Case 2. Let $J \notin \mathcal{J}(\mathcal{H}(P))$ containing z and x, where $x \in A_{s}^{\prime}$ and $x \nless z$. Let I be the interval of $\mathcal{J}(\mathcal{H}(P))$ containing x. The only form of I and J is that they will have maximal elements in $\operatorname{Max} P_{l}$ and two different minimal elements in $R_{p q, s}^{\prime}$. Then z is not covered by I, then for every couple $\left(t, t^{\prime}\right)$ of (I, J), where $t \leq x$ and $t^{\prime} \leq z$, we will have $t \not \approx t^{\prime}$. We suppose that such a couple exists.

If t and t^{\prime} are not in the same interval and $A_{s}^{\prime} \cup\left\{t, t^{\prime}\right\}-\{x\}$ is stable, then x can be replaced by t and t^{\prime} in \mathcal{C}^{\prime}, and this contradicts the construction of \mathcal{C}^{\prime}. Otherwise, we can reconstruct A_{s}^{\prime} starting by z. In this case, $R_{p q, s}^{\prime}$ will be partitioned into at least two subsets, and by applying the Edge-Cover algorithm; z will be covered by the new family.

As a consequence of Theorem 3.11, we have the following corollary.
Corollary 3.12 If in the Edge-Cover algorithm, for every vertex x of $\operatorname{Max} P$ (resp. Min P), x is taken only once in the construction of $\mathcal{J}(\mathcal{H}(P))$, then P will have the dual König property.

Proof In this case, we will have $|\mathcal{J}(\mathcal{H}(P))|=|\operatorname{Max} P|$ (resp. $|\operatorname{Min} P|$), and as $\operatorname{Max} P$ and Min P are stable sets of $\mathcal{H}(P)$, therefore

$$
\alpha(\mathcal{H}(P))=\rho(\mathcal{H}(P))=|\operatorname{Max} P| \quad(\text { resp., } \alpha(\mathcal{H}(P))=\rho(\mathcal{H}(P))=|\operatorname{Min} P|)
$$

Theorem 3.13 Let P be an N-free poset of type 2. Then $\mathcal{H}(P)$ has the dual König property.

Proof The main idea of the proof is to use $\mathcal{J}(\mathcal{H}(P))$ obtained from the Edge-Cover algorithm for constructing a stable set $\mathcal{C}(\mathcal{H})$ of $\mathcal{H}(P)$ with the same size as $\mathcal{J}(\mathcal{H}(P))$.

Let B_{1} (resp. B_{2}) be the union of all R_{l} (resp. Max P_{k}), where P_{l} (resp. P_{k}) does not verify (resp. verifies) (3.1).

From Step 1 (resp. Step 2) of the Edge-Cover algorithm, B_{1} (resp. B_{2}) is a stable set with the cardinality equal to the cardinality of the union of all E_{l} (resp. J_{l}). It becomes clear that $B_{1} \cup B_{2}$ is stable set.

The union of all I_{s} of Step 3.1 can be partitioned into 2 subsets. The first denoted by D_{1}, which is the union of all I_{s}, where $R_{p q, s}^{\prime}$ does not link subposets verifying (3.1), and the second is denoted by D_{2}. Let $B_{3,1}$ be the union of all $R_{p q, s}^{\prime}$, where $R_{p q}^{\prime}$ does
not link subposets verifying (3.1) and $\left|R_{p q, s}^{\prime}\right|>\left|A_{s}\right|$. $B_{3,1}$ is a stable set with cardinality equal to $\left|D_{1}\right|$ plus the cardinality of the union of all $J_{c_{j}}$ of Step 4.

We denote by $B_{3,2}$ the union of all A_{s}^{\prime} such that $\left|A_{s}^{\prime}\right|>\left|R_{p q, s}^{\prime}\right|$ or $\left|A_{s}^{\prime}\right| \leq\left|R_{p q, s}^{\prime}\right|$, where $R_{p q}^{\prime}$ links subposets verifying (3.1). From Observation 3.8(ii), we deduce that there is no commun vertex x of A_{s} and $A_{s^{\prime}}$ that is covered by two different intervals of $\mathcal{J}(\mathcal{H}(P))$. Consequently, $\left|B_{3,2}\right|$ is equal to $\left|D_{2}\right|$ plus the cardinality of the union of all I_{s} of Step 3.2. Consider the set $\mathcal{C}(\mathcal{H})=B_{1} \cup B_{2} \cup B_{3,1} \cup B_{3,2}$.

Hence, it is not difficult to see that $\mathcal{C}(\mathcal{H})$ is a stable set with size $|\mathcal{J}(\mathcal{H}(P))|$.

References

[1] B. I. Bayoumi, M. H. El-Zahar, and S.M. Khamis, Asymptotic enumeration of N-free partial orders. Order 6(1989), no. 3, 219-232. http://dx.doi.org/10.1007/BF00563522
[2] I. Bouchemakh, On the chromatic number of order-interval hypergraphs. Rostock. Math. Kolloq. 54(2000), 81-89.
[3] _ On the König and dual König properties of the order interval hypergraphs of series-parallel posets. Rostock. Math. Kolloq. 56(2002), 3-8.
[4] \longrightarrow, On the dual König property of the order-interval hypergraph of a new class of posets. Rostock. Math. Kolloq. 59(2005), 19-27.
[5] I. Bouchemakh and K. Engel, Interval stability and interval covering property in finite posets. Order 9(1992), no. 2, 163-175. http://dx.doi.org/10.1007/BF00814408
[6] _, The order-interval hypergraph of a finite poset and the König property. Discrete Math. 170(1997), 51-61. http://dx.doi.org/10.1016/0012-365X(95)00356-2
[7] I. Bouchemakh and S. Ouatiki, On the domatic and the total domatic numbers of the 2-section graph of the order-interval hypergraph of the finite poset. Discrete Math. 309(2009), no. 11, 3694-3679.
[8] K. Engel, Interval packing and covering in the Boolean lattice. Combin Probab. Comput. 5(1996), no. 4, 373-384. http://dx.doi.org/10.1017/S0963548300002121
[9] P.A. Grillet, Maximal chains and antichains. Fund. Math. 65(1969), 157-167.
[10] M. Habib and R. Jegou, N-free posets as generalizations of series-parallel posets. Discrete Appl. Math. 12(1985), no. 3, 279-291. http://dx.doi.org/10.1016/0166-218X(85)90030-7
[11] C. Heuchenne, Sur une certaine correspondance entre graphes. Bull. Soc. Roy. Sci. Liège 33(1964), 743-753.
[12] D. P. Summer, Graphs indecomposable with respect to the X-join. Discrete Math. 6(1973), 281-298. http://dx.doi.org/10.1016/0012-365X(73)90100-3
[13] J. Valdes, R. E Tarjan, and E. L Lawler, The recognition of series-parallel digraphs. Siam J. Comput. 11(1982), no. 2, 298-313. http://dx.doi.org/10.1137/0211023
L'IFORCE Laboratory, University of Sciences and Technology Houari Boumediene, Faculty of Mathematics, B.P. 32 El-Alia, Bab-Ezzouar, 16111, Algiers, Algeria e-mail: ibouchemakh@usthb.dz
L'IFORCE Laboratory, Mohamed Khider University of Biskra,, Department of Mathematics, 07000, Algeria
e-mail: kaci_fatma2000@yahoo.fr

[^0]: Received by the editors November 13, 2013; revised September 15, 2015.
 Published electronically November 8, 2016.
 AMS subject classification: 05C65.
 Keywords: poset, interval, N-free, hypergraph, König property, dual König property.

