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Surface roughness of fairly small (micron-sized) height is known to influence significantly
three-dimensional boundary-layer transition. In this paper, we investigate this sensitive
effect from the viewpoint that roughness alters the base flow thereby inducing new
instabilities. We consider distributed roughness in the form of a wavy wall with its
height being taken to be of O(R~!/35*), where the Reynolds number R is defined using
the local boundary-layer thickness §*. Despite having a height much smaller than &%,
the roughness is high enough to induce nonlinear responses. The roughness-distorted
boundary-layer flow is characterised by a wall layer (WL) — a thin layer adjacent to the
surface — the main layer and a critical layer (CL) — the vicinity of a special position at
which a singularity of the Rayleigh equation occurs. The widths of both the WL and
CL are of O(R™'/38*). Surface roughness alters the base flow significantly, leading to
O(1) vorticity distortions in these layers. We show for the first time that the nonlinearly
distorted flows in these layers support small-scale local instabilities due to the roughness-
induced O(1) vorticities. Two types of modes, CL and WL modes, are identified. The
CL modes have short wavelengths and high frequencies, with the spatial and temporal
instabilities being governed by essentially the same equation. Thus, we focus on the
former, which can be formulated as a linear generalised eigenvalue problem. The WL
modes have short wavelengths but O(1) frequencies. The temporal WL mode is governed
by a linear eigenvalue problem similar to that for the CL modes, while the spatial WL mode
is described by a nonlinear eigenvalue problem. The onset of these small-scale fluctuations
could form a crucial step in the transition to turbulence.
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1. Introduction

It is well acknowledged that surface roughness can significantly influence boundary-
layer transition through different mechanisms, depending on its form, location and
scale. Experimental observations of surface roughness effects are reviewed first before
summarising related numerical and theoretical investigations.

Early experiments focused on identifying the critical height below which surface
roughness has no substantial effect on transition (Fage 1943; Tani 1961). Aimed at
obtaining empirical formulae, those experiments offered little insight into the mechanism
involved. Klebanoff & Tidstrom (1972) performed first detailed experiments to shed light
on the effect of two-dimensional isolated surface roughness on boundary-layer transition.
The roughness heights were set as 0.7-0.85* with 6* being the local boundary-layer
thickness. They attributed the mechanism to the flow distortion in the wake, which features
an inflectional profile and is thus susceptible to strong inviscid instability.

Two-dimensional boundary layers are known to be susceptible to Tollmien—Schlichting
(T-S) instability, which is of viscous nature. Corke, Bar-Sever & Morkovin (1986) studied,
by using hot-wire measurements and smoke-wire visualisation, the effect of distributed
surface roughness with heights approximately 0.56*. The T—S waves grew more rapidly in
the boundary layer over the rough wall than on the smooth wall. However, no inflectional
point appears in boundary-layer profiles over the rough wall, which possessed a similar
shape factor as that for the smooth wall. This suggested that the enhanced growth was not
due to inviscid instability, but rather likely caused by the distorted base flow, whereas the
excitation of T-S waves by the roughness interacting with free stream turbulence led to
increased amplitude. Ma’mun, Asai & Inasawa (2014) investigated effects of both two-
and three-dimensional sinusoidal surface corrugations on the growth of T-S waves in a
zero-pressure-gradient boundary layer. The wavelengths of surface corrugations are of the
same order as that of T-S modes, while the roughness heights are approximately 0.15*.
They found the two-dimensional surface corrugation significantly enhanced the growth of
T-S waves, while the three-dimensional corrugation had little effect despite its greater
height of 0.25*. However, the three-dimensional corrugation induced flow distortions,
which interacted with the planar T-S waves, generating pairs of oblique waves. The latter
may undergo rapid growth, facilitated by fundamental resonance, leading to transition of
Klebanoff-type, which is characterised by aligned peak-valley structures.

Three-dimensional boundary layers may support four types of instabilities including
attachment-line instability, centrifugal (Gortler) instability, streamwise (T-S) instability
and cross-flow instability (Saric, Reed & White 2003); the last has attracted much
attention since it plays a leading role in destabilisation and transition of boundary layers
over swept wings. Cross-flow instability comprises two modes: stationary vortices and
travelling vortices. Stationary vortices dominate transition in low free stream disturbance
environments such as flight conditions, while travelling vortices become important in
the presence of high-level free stream turbulence (Deyhle & Bippes 1996). It is well
recognised that surface roughness played a crucial role in the excitation of stationary cross-
flow vortices. Reibert et al. (1996) studied the impact of various surface roughness forms
on a three-dimensional boundary layer over a swept wing. They found that submicron-
sized irregular surface roughness located near the attachment line of the wing could excite
irregular stationary cross-flow vortices, while spanwise periodic roughness arrays excited
regular stationary vortices. The roughness spacings had considerable influence on the
excitation and growth of these vortices. Further experimental investigations by Carrillo,
Reibert & Saric (1997) and Saric, Carrillo & Reibert (1998) confirmed the dramatic
sensitivity of stationary cross-flow vortices to surface roughness. Radeztsky, Reibert &
Saric (1999) examined micron-sized roughness in both distributed (painted and polished
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surfaces) and isolated forms, showing that stationary cross-flow instability is strongly
altered by surface roughness while barely affected by acoustic disturbances.

Theoretically, four possible mechanisms have been identified or proposed by which
surface roughness affects boundary-layer transition: receptivity, local scattering, modal
interactions and alteration of the base flow thereby changing flow stability. Receptivity
refers to the process by which instability modes are excited by external disturbances. For
T-S waves in two- and three-dimensional boundary layers, the excitation requires a scale
conversion/tuning process, which includes roughness-acoustic (Ruban 1984; Goldstein
1985) and roughness-vortical disturbances interactions (Duck, Ruban & Zhikharev 1996;
Wu 20014, 2001b). For the excitation of travelling cross-flow vortices, it is generally
considered that the roughness-induced perturbation also needs to interact with unsteady
free-stream disturbances to generate suitable forcing. In contrast, stationary cross-flow
vortices can be excited alone by surface roughness with comparable length scales.
A mathematical description of this receptivity was formulated by Crouch (1993) and
Choudhari (1994) using the finite-Reynolds-number theory based on the Orr—Sommerfeld
(O-S) equation. However, non-parallelism cannot be incorporated in this approach, whose
applicability is restricted to roughness with sufficiently small heights. For receptivity
involving roughness with large height to induce nonlinear flow distortion, a high-
Reynolds-number asymptotic approach needs to be adopted as was done by Choudhari &
Duck (1996). Using this approach, Butler & Wu (2018) investigated the receptivity
of three-dimensional boundary layer to chordwise-localised, spanwise-periodic surface
roughness located near the leading edge, where non-parallelism plays a leading-order
role. They found that roughness with sharper edges could generate stronger vortices and
confirmed ‘superlinearity’ behaviour found in numerical simulations (Kurz & Kloker
2014).

A localised roughness element (hump) that has a length scale comparable to the
wavelength of the instability and is positioned in the main unstable regions can influence
transition by scattering the oncoming instability waves (Wu & Hogg 2006). The local
stability analysis fails in this case because of the strong non-parallelism associated with the
roughness-induced mean-flow distortion. The scattering problems of a small-amplitude
T-S wave by a shallow and large roughness that induces linear and nonlinear flow
distortions, were studied by Wu & Hogg (2006) and Wu & Dong (2016), respectively, using
the triple-deck theory (Smith 1979). They introduced, for the first time, the concept of a
transmission coefficient, which is defined as the ratio of the transmitted wave amplitude
to that of the incident wave. Xu er al. (2016) investigated the effect of scattering by
surface hump induced localised distortion using direct numerical simulation (DNS) and
confirmed the prediction by the asymptotic theory. A finite-Reynolds-number formulation
for the local scattering problem was developed by Huang & Wu (2017). The theoretical
predictions agreed well with DNS results and experimental data.

A possible explanation for the extreme sensitivity of three-dimensional boundary-
layer transition to micron-sized surface roughness, as reported in Reibert et al. (1996),
Carrillo et al. (1997), Saric et al. (1998) and Radeztsky et al. (1999), is the modal
interactions between cross-flow instability modes and ‘roughness modes’, which are
distortions induced by distributed roughness rather than usual eigenmodes (He, Butler &
Wu 2019). Resonant interactions, including a generalised Bragg scattering and a triadic
resonance, could take place among an appropriate roughness mode and one or more cross-
flow vortices, enhancing the amplification of the latter. This mechanism was demonstrated
for the Falkner—Skan—Cooke (FSC) flow (He et al. 2019) and the boundary layer over the
NLF(2)-0415 swept wing (Xu & Wu 2022).
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In addition to the mechanisms above, surface roughness located in the main unstable
region, which is a pervasive situation, can distort the base flow thereby changing stability
characteristics, or even inducing new instabilities. Theoretical studies for this mechanism
include calculating the roughness-distorted flow and performing stability analysis for the
new base state. The impact of a localised roughness on a two-dimensional boundary layer
has been examined by Nayfeh, Ragab & Al-Maaitah (1988), Cebeci & Egan (1989) and
Gao, Park & Park (2011). In general, the presence of a surface hump was found to promote
the growth of T-S waves. Wie & Malik (1998) investigated the effect of surface waviness,
which is widely used as a model for distributed surface roughness, on two-dimensional
boundary-layer transition. The distorted mean flow was calculated using the interactive
boundary layer (IBL) method. Then the method of linear parabolised stability equations
(PSE) was adopted to predict T-S wave amplification. The effect is characterised by
the N-factor increment AN, which was found to scale as h*2 /A%, where h* and A* are
the roughness height and wavelength, respectively. Masad (1996) considered the effect
of streamwise localised and spanwise uniform surface waviness on three-dimensional
boundary-layer transition. The roughness-distorted mean flow was also calculated using
the IBL method, and the transition location, predicted using linear stability analysis
coupled with the "V -method, was found to be shifted upstream. Floryan (1997) studied the
stability of wall-bounded shear layers subjected to distributed wall suctions, which were
introduced to model distributed surface roughness with short wavelengths comparable
to the shear-layer thickness. A linear approximation was made to calculate the flow
modification, and Floquet theory was adopted to study the stability of the modified flow.
For all cases considered (the Poiseuille flow, Couette flow and Blasius boundary layer), a
new type of instability in the form of streamwise vortices is induced.

Recently, Hall (2021) identified a streamwise vortex instability mechanism in boundary
layers caused by a two-dimensional wavy wall with the wavelength comparable to the
boundary-layer thickness. The streamwise vortex instability ‘mode’, which has the long
length scale of the underlying boundary layer, interacts with the wavy-wall induced flow
in the wall layer (WL) to generate a short-scale motion. The latter interacts in turn with the
waviness-induced flow to produce a spanwise velocity, which serves as an effective slip
condition on the streamwise vortex residing in the main boundary layer. This is essentially
a steady streaming effect, and renders the vortex to amplify over the same streamwise
length scale as that of the base flow when the waviness height is O(R~2/3/+/In R), where
R is Reynolds number based on the boundary-layer thickness.

Stationary cross-flow vortices in three-dimensional boundary layers resemble nonlinear
distortions induced by distributed roughness, and like the latter do not lead to transition
directly. Experiments show that under the influence of nonlinearity these vortices saturate
well before transition happens (Reibert et al. 1996; Bippes 1999). Due to the presence of
finite wall-normal vorticity and/or substantially altered spanwise vorticity, the evolving
nonlinearly distorted flow is susceptible to secondary instability, the rapid amplification
of which causes transition (Kohama, Saric & Hoos 1991; White & Saric 2005; Serpieri &
Kotsonis 2016).

Using the FSC flow as a model, Malik, Li & Chang (1994) performed a secondary
instability analysis for saturated stationary cross-flow vortices, which were calculated
using nonlinear PSE, and demonstrated the occurrence of high-frequency secondary
instability. Hogberg & Henningson (1998) conducted DNS to investigate the development
of stationary cross-flow vortices, the secondary instability of which was assessed by
linear eigenvalue calculations. They identified a high-frequency secondary mode and a
low-frequency interaction mode. The latter was first discovered by Fischer & Dallmann
(1991) as a ‘secondary instability’, but may more appropriately be treated as an interaction
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between stationary and travelling vortices. Hogberg & Henningson (1998) suggested that
the high- and low-frequency secondary modes may cause transition in low- and high-
turbulence environments, respectively. Instead of FSC flow, Malik et al. (1999) analysed
the secondary instability of stationary cross-flow vortices in a boundary layer over a swept
wing, and identified two families of secondary instability modes, named as y- and z-
modes, which were found to be associated with the wall-normal and spanwise shears,
respectively, and both have high frequencies. Wassermann & Kloker (2002) identified
a high-frequency and a low-frequency modes, both being of z-mode, and showed that
the secondary instability is convective, as is the primary instability. Travelling cross-flow
vortices also support secondary instability modes in different frequency ranges, shown by
Wassermann & Kloker (2003). These modes can reach a pronounced saturation, which
is ended by rapid secondary amplification of a medium-frequency mode, prior to final
breakdown.

In this paper, we examine the effect of a wavy-wall roughness of small height on
a three-dimensional boundary layer. We consider the mechanism of roughness altering
the base flow thereby inducing new instability. As mentioned above, in order to pursue
a mechanism of this kind it is necessary to calculate first the roughness-distorted base
flow. Previous studies either made linearisation approximation (which is inappropriate),
or employed numerical methods such as the IBL method and Navier—Stokes (N-S)
solvers. The streamwise length scale of the roughness considered is much greater than
the boundary-layer thickness so that local stability analysis may be performed based on
parallel-flow approximation. In the present study, the roughness length scale is comparable
to the boundary-layer thickness, and we adopt the self-consistent high-Reynolds-number
asymptotic approach to calculate the nonlinear roughness-distorted flow. The main
response generated by the roughness is in the WL, but unique to three-dimensional
boundary layers, strong response arises also in the critical layer (CL) located in the bulk
of the flow. The roughness height is taken to be much smaller than the boundary-layer
thickness but just large enough to induce O(1) vorticity in these two layers. We then
study secondary instability of this distorted base flow using an eigenvalue and initial-value
calculations. The instability modes are different from any of those previously known in that
they have short wavelengths comparable to the width of the WL and CL. The instability
in the CL also has high frequencies. They are completely trapped, and determined by the
local flows, in these layers, unaffected by the overall boundary-layer flow.

The rest of the paper is organised as follows. The roughness-distorted flow is analysed in
§ 2 based on the high-Reynolds-number assumption, under which the flow field acquires a
structure consisting of a WL, the main layer and a CL. Both the WL and CL are nonlinearly
distorted. The numerical results for the roughness-distorted flow are presented in § 3. The
secondary instability analyses for nonlinearly distorted CL and WL are formulated in § 4,
where both the temporal and spatial secondary instabilities are investigated. In § 5, we
present the numerical results for the small-scale local secondary instability. A summary
is given in § 6, where future investigations are discussed. The supplementary material
is available at https://doi.org/10.1017/7fm.2025.10794, wherein details of derivation and
computation, and additional numerical results are presented.

2. Problem formulation for the roughness-distorted flow

We consider a three-dimensional boundary-layer flow over a wall with distributed
periodic surface roughness on it. The flow is described using the Cartesian coordinates
(x*, y*, z*) with its origin located at the leading edge of the wall, where x*, y* and z*
denote the distances in the chordwise, wall-normal and spanwise directions, respectively.
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The superscript * signifies a dimensional quantity. We consider the downstream region
where the chordwise distance to the leading edge is L* and the local boundary-layer
thickness is §*. The coordinates and the velocities are non-dimensionalised by §* and the
chordwise slip velocity UZ,; outside the boundary layer at L*, respectively. The Reynolds
number is defined as

R=UX, 8 V", 2.1)

with v* being the kinematic viscosity of the fluid. Since L* is chosen to be fixed, R is a
constant. We take R > 1 to be asymptotically large.
The periodically distributed surface roughness is chosen to be of the form

o
Y 1= hR_1/3F(x, Z) — hR—1/3 Z Fneil’l(an"r,BwZ)’ (22)

n=—oo

where o, and B, are the chordwise and spanwise wavenumbers of surface waviness,
respectively, and the parameter 4 ~ O(1) controls the roughness height. The O(hR~!/3)
height is much smaller than the boundary-layer thickness for R >> 1 and might correspond
to a more-or-less micron-sized height in the dimensional setting, given that typical local
boundary-layer thickness §* ~ 1 mm, Reynolds number R ~ 10° and h = 0.4 (at which
vigorous small-scale instability occurs according to our calculations whilst its onset may
take place at a fraction of this height). We take Fy = 0 without losing generality since a
uniform elevation can be removed by a shift of the y-coordinate.

The flow field in the boundary layer is characterised by an asymptotic structure including
a WL, the main layer and a CL as is sketched in figure 1. The immediate response of the
boundary layer to surface roughness is in a viscous WL, which is introduced to satisfy the
no-slip boundary conditions. The inviscid main layer occupies the bulk of the boundary
layer and has a singular point y.. The CL is introduced to regularise the singularity. We
will analyse each layer below. The flow is governed by the incompressible N-S equations,

Veu=0, du+@-Viu=—-Vp+R 'V, (2.3a,b)

where u = (u, v, w) with u, v and w denoting the chordwise, wall-normal and spanwise
velocities, respectively, and p denotes the pressure non-dimensionalised by p*U £L’ with
p* being the reference density.

We assume that the base flow is spanwise uniform, i.e. independent of the spanwise
coordinate z. It varies slowly in the chordwise direction and is described by a spatial
variable,

x=R'x. (2.4)
The base flow scale as
(g, p) = (Us(Z, y), R Va(E, y), Wa (X, y), Pp(¥)). 2.5)

Substituting (2.5) into (2.3), we obtain the steady three-dimensional boundary-layer
equations,

Upz+Vg,y=0, (2.6a)
UpUp 5 + VpUp,y = —Pp z + Up,yy, (2.6b)
UsWp i+ VeWp y=Wgyy, (2.6¢)
and Pp y =0, which allows the pressure gradient to be determined as
PB,)E = _UooUoo,)E7 (2.7)
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Up+ R0+ R, Main layer

Secondary instability (CL modes)

+ R13y ~
O(Rfl/S) ¥, UB(y(‘) R UB(ye) 2~ O(l ) M
HRVAU, RV, RVAW, R22P)

Up+ R U+ R u,, Main layer

: o R2/3
Blowing velocity R Vo, Secondary instability (WL modes)

ORV  (RVPU, R, RVPW,, R2PP,) 2~0(1) ' '\I\J\P Wall layer

Figure 1. Asymptotic structure and scaling of the distorted flow field. Surface roughness significantly alters
the base flow within the WL (§2.1) and CL (§2.3), leading to the emergence of O(1) vorticities £ and
2, which render the flows in these layers susceptible to small-scale secondary instability. The subscript B
denotes the base-flow quantities, while the subscripts s and m denote the streaming and the forced perturbation,
respectively, in the main layer (§ 2.2).

with Uy being the chordwise slip velocity outside the boundary layer.
As in numerous previous studies, the FSC flow is used as a convenient model for three-
dimensional boundary layers. The chordwise and spanwise slip velocities are given by

UL(x*)=Uk, (x*/L*)", W2 =const, (2.8a,b)

where m is the acceleration parameter. The local sweep angle at L* is defined as ¢ =
arctan(W5,/ U, ) = arctan(W,). The FSC flow admits a similarity solution, which can
be expressed in terms of a similarity variable ),

m+ 1 Uk (x*) 172 m+1R\Y?_
77=< 2t yt= I xm=hizy (2.9)

where the constant L is to be determined below (Hogberg & Henningson 1998). According
to its definition, the local boundary-layer thickness §* is expressed as

w N —1/2 0
§* = <I’l’l—-|-1 UOOL) c, c= / (1 — f/(n)) d?], (2.10a,b)
0

2 VEL*

where the first implies L = (m + 1)R/ (2¢?) and f(n) is a function introduced to express
the stream function, whose expression is omitted here. We then rewrite n as n=
cx™=D/2y The velocity components of the base flow can be expressed as

-m ol m+1 1/2 —(mfl)/2 m—l /
="', Va=-("FE) 5 (fop+ ). @aten
m—+1
Wp = Weog(n). (2.11¢)
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Substituting (2.11) into (2.6) gives the equations governing f and g,

2
Y (1 _ f/2> —0, ¢+ fg' =0, (2.12a,b)
m+1

which are subject to the boundary and far-field matching conditions
f=f=g=0 at n=0; f'—1, g—1 as n— oo. (2.13a—e)

The reader is reminded that although a simple boundary layer with a self-similar solution
is chosen, the ensuing mathematical formulations of the nonlinear distortions and the
stability of the distorted flows are valid for a general boundary layer admitting no similarity
solution.

We decompose the boundary-layer flow field into the base flow and the roughness-
induced distortion,

u="Ug +euy + 0(e?), (2.14)

where € < 1 is the magnitude of the disturbance. Next, we determine € in terms of R
for the roughness height specified by (2.2). Near the wall, the distortion u, varies much
more rapidly in the wall-normal direction than the base flow U g, which allows us to Taylor
expand the base flow about y = 0. We take the chordwise component as an example, which
satisfies the no-slip boundary condition at the wall

0=(Ug }y:o + Up,y yZOhR_l/3F(x, )+ O(WPR™)) + € ugl,_pg-1/3F + O(€D),

(2.15)
which suggests the asymptotic scale of the induced disturbance,
e~hR™'3. (2.16)
When & <« 1 the boundary condition of u#, can be imposed at y =0,
tdly—o=— Upy|,_o F(x. 2). (2.17)

2.1. Wall layer

The immediate response of the flow to the surface roughness is in a viscous WL with
an O(R~!/3) width, which is derived by balancing the inertia and viscous terms in the
chordwise momentum equations in (2.3). We thus introduce in this layer a local wall-
normal coordinate,

Y =R'"3y=0(), (2.18)

in terms of which the wavy wall is specified as Y, = h F(x, z). Note that with 2 = O(1),
the chordwise and spanwise velocities of the induced disturbance are comparable to those
of the background flow, both being of O(R™!/3). It follows that the total flow field in the
WL is scaled as

(u, v, w, p)= (R0, R7**v,,, "W, R7?P,). (2.19)
Substitution of (2.19) into (2.3) gives boundary-layer equations,
Up,x +Vu,y + Wy =0, (2.20a)
UpUpx +VUpy +WyUy ;== Pyx+Uyyy, (2.20b)
0=Py.y., (2.20¢)
UpsWyx+VoWyy+WyWy:=—Py .+ Wy yy. (2.20d)
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The no-slip and impermeability boundary conditions at the roughness surface read
Uy=Vy =W, =0 at Y =Y,; (2.21a—c)
while the matching conditions read
(U, W) = (A1, 13)Y + h(Us, W) as ¥ — oo, (2.22a,b)
where 11 and 13 denote the chordwise and spanwise wall shears, respectively; U and W,
are the chordwise and spanwise streaming caused by nonlinear interactions in the WL and
are independent of Y, as is shown in the supplementary material (§ S1).

In order to calculate the flow field in a rectangular domain, we apply the Prandtl
transformation,

Y=Y-Yy,, Vy=Vy—h(UyFx+Wy,F,), (2.23a,b)
where an overbar signifies variables under the transformed coordinates. The governing

equations for the transformed variables remain the same form as (2.20), while the
boundary conditions are transformed into

Upy=Vy=Wy,=0 at ¥ =0; (2.24a—c)
(Uw, Wy) = (A1, 13)(Y + hF) + h(Us, Wy) as Y — oo. (2.24d.e)
We then decompose the total flow field into the base flow and the disturbance,

(U, Vi, W, Py) = (Y +hF), —hdeyFe (Y +hF), 3(Y +hF), Pg)

+h(@7, VT, W PY), (2.25)
and express the latter as Fourier series,
o
@, VWL PH= " (Ua(1), Va(Y), Wa(Y), Py(¥))e" ", (2.26)
n=—oo

where we introduce the skewed coordinate { = x + (8, /oy )z and the effective base-flow
wall shear Aqpr = A1 + (Bw/aw) 3. To keep the physical quantities real, we require

q—n = (én)cc» (2-27)

where g, stands for any of the Fourier components on the right-hand side of (2.26).
Substituting (2.25)—(2.26) into (2.20) gives the governing equations for the Fourier
components,

ino, U, + Vn y +inByW, =0, (2.28a)
anlw/lefYU + /11V + an(wP — U ¥y = —h(/lejf’R,ﬁ —I-./\/;f), (2.28b)
P, ;=0, (2.28¢)
oy defY Wy + 3V +inPy Py — W, 7 = —h(AegRE + N, (2.284d)
where
/_\ /l — /\_
RE=1F0j} + L {FgUT} +— F;WT ngﬂ i FFUI}
¢ n /leff Y n
(2.29q)
e A3 - ¥ W
Rf’,Z{F ;} +/1—<{F4UT} +— FcWT ) { Y} _h{FFfW;} ’
n eff n n
(2.29b)
1022 A33-9
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N = ina, {mm} + {w-m} _+ingy {WTUT} , (2.29¢)
n n, n

N;:inaw{UTWT} +{VTWT} IP+in,s?w{vifww} , (2.29d)
n,

n n

with — denoting the Fourier transform with respect to ¢ and the subscript n representing
the nth harmonic. The boundary conditions are

Uy=—A1Fy, Vy=hly|{FF}

L Wy=—A3F, at Y=0. (2.30a—c)
Note that Up(0) = Wo(0) = 0 since Fo =0, and Vo(0) =0 since {FFy } = inory { F2}, /2.
For all n # 0 Fourier components, we have the matching conditions

U,—0, W,—0 as ¥ — oo. (2.31a,b)

Each Fourier component of the pressure I3n_is a constant according to (2.28¢). Combining
(2.28b) and (2.28d) and taking the limit ¥ — oo, we obtain the expression for a n #0
Fourier component of the pressure

Py = —ap k2 degr| Voo / (inatw) + hF, Usegr]. (2.32)

where V,, oo = V,ily_, o, and

kw=1/a2 + B2, User=Us+ (Bu/ow) Ws. (2.33a,b)

The Fourier component with n =0, also referred to as the mean-flow distortion, is
caused by nonlinear interactions of the roughness-induced disturbance within the WL.
It exhibits a different asymptotic behaviour as ¥ — oo so that a separate formulation is
required. Taking n =0 in (2.28a) gives V; y =0, integration of which with respect to ¥

with use of the boundary condition (2.30b) leads to \_/o_E 0. Setting n =0 in (2.28b) and
(2.28d), we obtain the governing equations for Uy and Wy,

Up 77 =h(Ry+NG). Wy 55 =h(R§+N§). (2.34a,b)
Integrating (2.34) twice, we obtain the solutions for Uy and Wy,
Y
Oo=h [ (= )(RY0 + NG D)V + Do ;0. (2350
0
- Y - - -
Wo=nh / (Y — YD (R§(Y1) + N (Y1))dY1 + W, 5(0)Y, (2.35b)
0
where
o2 00 awp 00
- - - wBuw -
Uo @ =—h-5dgr Y FiVioo, Wo (O =—h=5"Ar Y, FiVioo,
w k=—00 w k=—00
k#0 k#0
(2.36a,b)

which are fixed by considering the large-Y asymptotes of Uy and Wy, as discussed in the
supplementary material (§ S1). It can be shown that

Up— Uy, Wy— W, as Y — oo, (2.37a,b)

with both U; and W, being constants. This nonlinear streaming effect induces slip
velocities which act at the bottom of the main layer, driving a mean-flow distortion of
O(R™'/3) there.
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The WL generates a ‘blowing velocity’ of O(R™%/3) as Y — oo, which can be derived
by integrating (2.20a) and substituting into it the matching conditions (2.24d,e),

Vi — —h(1 Fx + 3F,)Y + V,(x,z) as Y — oo, (2.38)
where V; has the expression
_ w OO —_ —_ .
Vi=—h Z [ / (inotyw Uy, + infu W,,,)dy]em“w@ ) (2.39)
n=—oo 0

Transforming the above quantities back to the original coordinates, we can calculate the
blowing velocity of the WL,

Vi = Vi + h* (AefrF + Usepr) Fr as Y — o0, (2.40)

which acts at the bottom of the main layer to induce a response of the same order there; the
first and second terms on right-hand side of (2.40) represent, respectively, the transpiration
velocity induced by the viscous motion in the WL and the pure geometric deflection
of the streamlines by the roughness topography. Physically, this blowing velocity can
be interpreted as a blowing/suction unit on the wall, which generates three-dimensional
vorticity in the main layer.

The WL dynamics is strongly nonlinear with O(R~!/3) chordwise and spanwise
velocities. The associated vorticity is even greater with an O(1) amplitude, making the
WL susceptible to small-scale secondary instability as will be shown in § 4.

2.2. Main layer

The main layer occupies the bulk of the boundary layer, where y=O(1). The
O(R~2/3) blowing velocity and the O(R~!/3) chordwise and spanwise streaming produce
corresponding responses in the main layer. The flow field there is expressed as

(u, p) = (U, R~ 'V, Wp, Pg)
- R’1/3(US<1>, RV wih, PS“)) - R’2/3(US<2>, RV Wi, P<2>)

N

o
R Y G (9) vn (), wa (30). pu () (241)
n=—oo
n#0

where the subscript s denotes the main-layer streaming driven by the mean-flow distortion
from the WL and the CL, which will be shown later in § 2.3. This streaming, though larger,
is not our main interest since it does not affect the dynamics in the CL nor the secondary
instability. We focus on the O(R~%/3) forced disturbance, which is governed by

inayiy + v,y +infyw, =0, (2.42a)
inay, Upefritn + v, Up,y + inoy, py =0, (2.42b)
inoty Ugeffn + pn,y =0, (2.42¢)
inoy, Ugerwn + v, Wp y +inBy pp =0, (2.42d)
where we have introduced the effective base flow

UBeff = UB + (,Bw/Olw)WB. (2.43)

Equations in (2.42) can be reduced to the steady Rayleigh equation
Un,yy — (#ki + M) V=0 n#0, (2.44)

Upeff
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which is subject to the inhomogeneous boundary conditions,
Up = Vyoorn as y—0; v, —>0 as y— oo. (2.45a,b)

Here Vy,00., represents the Fourier component on the right-hand side of (2.40).

The Rayleigh (2.44) becomes singular at the critical level y., where Uges(y.) = 0 while
UBeff,yy (yc) # 0 in general. Near y., a local solution to (2.44) can be constructed using the
Frobenius method, which gives

U//
= an )+ b 9 )+ 7 10 1y = el ()] (2.46)
with
1U” - 1 5 2 U/// "2 -
Pan y+§7",y+ , ¢bn=1+§< ky, U,— ﬁ)y +---, (247a,b)

and y = y — y.. The subscript ¢ signifies the quantities related to UBeﬁ(yc), and a prime
denotes the derivative with respect to y. There are velocity jumps (a,” — a,; ) across y.,
which will be determined by analysing the CL dynamics.

In the main layer, we can also express {u,, wy,, p,} in terms of v,, and its derivative,

100y, Useft,y iU,y
=—F5 |y ——U )|+ ————p, 248
tn nk%) ( Yy UBeﬁf " ”awUBeff " ( @)
i U, iWg.,
Wy = "1%’ (vn,y = —geﬁ; vn) + (B]”ﬁvn, (2.48b)
w Be, wYBe
_ 10ty Useft,y
Pn = —% (Un,y — Useg Un | Uefy. (2.48¢)

2.3. Critical layer

To resolve the singularity of (2.44) at the critical level y., we need to consider a CL around
vy with an O(R —1/3) width, within which the viscous effect is reinstated. We introduce a
new local coordinate in the CL,

Y =Ry —y)=0(). (2.49)

In order to determine the form of expansion for the disturbance in this layer, the main-layer
solutions near the critical level, (2.46) and (2.48), are rewritten in terms of Y,

00 2
_1 ~ (1) 1 o U (yC) wl
u— Ug(yc)+ R3 |:Ué(yc)Y + US (ve) + Z F—_— kgj UC/ by, ?elna
n=—oo
n#0
U//()’c) 2 > 1 ’ + 7
+R™ [ TR U (y.) — n;oo W <UB(yc)an + Uy (ye)bn
n#0
U// 2 U/ (y ) U/ ()’ )U// )
+ = (k_Z_ o )bn+ B —byn ‘Y‘)em‘*wf} T (2.50a)
C

v—> R~ VB(yc)‘I‘R 3 Z b, elnaw§+R 1 Z(a +—b ln‘YD 1naw§'+
n=00

n#0 n;éO
(2.50b)
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o0 /
_1 ~ 1 o W, ) 1 .
w—Ws(ye) + R 3[Wé(yc>Y+Ws<‘><yc>+ y (‘“ﬂ’”— B(y‘)bn?ewwf}
2

— inay \ k3, U!
n;ﬁO
2 W//(y) o
+R™ z[ > S+ w0 - Y W (Wé(yc)ani—i-Wé/(yc)bn
M0
U// oy Bu Wé()’c) Wé()’c)U” i
wl
+7< e )bn+ U < by In ‘Y‘)e‘”“ T (2.50¢)
» X a
-5 W g inoy, ¢
p— Pg(y.) +R sn;oo pres Ulbne +o (2.50d)
n#0

where the terms associated with In R are excluded as they are the natural continuations of
the outer solutions and remain regular in the CL. We note that # and w have a simple-pole
singularity, while v has a logarithmic singularity. Based upon the asymptotic matching
principle, we express the flow field in the CL as

(u, p)=Up(ye), RV (ye), Wa(ye). Pp)
_1 ~ 1 __2 -
+ RT3 Up(5e), 0, Wy (3e), Y + - R™5 (Ug (ve), 0, Wy (o), 0)Y?
+ R0, RT3V, w, RT3P), (2.51)

where

<(7, RT'VPV, W, R_1/315): i [( )Ty, R™1Bb,, w{)(¥), R713p )

+R l/3( @), R WD), P (D), R 5]
x elnewd (2.52)
By matching with the main-layer solution (2.50), we derive
bo=0, o\ =0; (2.53a,b)
500 =0, i = (o) (k) Ub, (n£0);  piP =0. (2.53c—e)

Substituting (2.51)—(2.52) into the N-S (2.3), we obtain, at leading order, the governing
equations for each Fourier component (n # 0) of the regularised disturbance,

ity + Bl =0, (2.54a)

ino, U, Yu (H 4+ b, U (ye) + 1no¢wp,<l b — uihﬁ/ = —j\~/n“x>, (2.54b)
~(1) _

P, ;= 0, (2.54¢)

ina, UV + by Wi () + i iV — o' = —A{19), (2.54d)
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where
> B
r(lx) _ ~(1) ~ (1) ~(1) w o~ (1)) . ~(1
/\/’,f X) = Z b”—kukj +bnu0j + (MO + Ewo ) 1nawufl ) (2.55a)
k=—00
k0,1
> ,3
r(lz) _ ~ (1) ~ (1) ~( w ~( . ~ (]
/\/'rﬁ 2= Z b”—kwkjf +bnw0j + (”0 awo ) 1naww£l ). (2.55b)
k=—00
k0,1

The spanwise momentum (2.54d) is proportional to the chordwise momentum (2.54b)

according to the continuity (2.54a). The solution for u f,” (n #0) is determined by solving
(2.54D) numerically subject to the boundary conditions

i S i/ (na) (U,g(yc)/U; - aik;z) bo/¥  as ¥—+oo,  (2.56)

which is derived by matching the CL solution with its counterpart in the main layer.

The governing equations for the leading-order mean-flow distortion ﬁé” (Y) and u~1(<)1> (Y)
in the CL are

o
< _ ~<1 ~(l)  _ ~ (1)
m— Z b_yii By pp= ) bori g (2.57a,b)
k=—00
k;éO k#0
Integrating (2.57a) from —oo to Y gives
il (¥ Z b (P) + i ‘ . (2.58)
k=—o00
k#0
and then integrating again from 0 to ¥ leads to
v =D
Y . .
0= Y b k/ alopan + il veadl o sy
k=—00
k0

The first integral term in (2.59) approaches a constant as ¥ — 0o, which can be seen by
substituting into it the matching condition (2.56). To prevent the non-physical O(Y) growth
as Y — oo in (2.59), we need to set

) ‘

075} Y—)—OO
It follows from (2.59) that there is a velocity jump in the leading-order mean-flow
distortion

—0. (2.60)

u

~ (1)
Uy

—al ‘ Z b_ k][ il (vpydyy, 2.61)
k=—o00

k£0

where the integral must be evaluated as a Cauchy principal value. Through matching the
solutions in the CL and main layer, we have the streaming jump across the CL,

‘f—)oo

Bah-uNen= 3 b k][ il (. 2.62)

k=—00
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Similarly, we can derive
o
- (1) 5 - (1), 5
w(()’;(Y): > b () (2.63)
k=—00
k0

and the spanwise streaming jump. It follows from (2.54a), (2.58) and (2.63) that

(Y) + (Bu /o)y 5 (¥) =0, (2.64)

(1)
0, )7
indicating that ﬁf)n + (Bw/ aw)tb(<)1> should be a constant, which we denote as
-~ -
U§c3f5 iy + (Bu/aw) iy (2.65)

With the use of (2.65) in (2.55a), the latter is expressed as

0.¢]
Z butily §+ba Y by + Ulinanyiiy). (2.66)
k=—00 k=—00
k£0.n k0

The governing equations for each Fourier component (n # 0) of the second-order terms
in expansion (2.52) are found to be

ina,il? + aff; +inBu i =0, (2.67a)
~ 1 ~
ina, ULY a2 + Sina Uyl + 52 Ug (ve)

+Va(yei'

b U QoY = == N, (2.670)

~ 1 -
inangm,(f)JrEinangYZ P3P Wh(ye)
HVE D!+ bW ()Y — 7 = = N, (2.67c)

where use has been made of (2.53¢) and

o0
- - Buw - ~(2) | ~(2) ~(1 . o~
N,fzx) = E [(”n—k Z al 1ko¢wuk + b, ku}i ;7 + vn—)k”,(( L+ Us(cg 1no¢wu,<12>

5%
k=—00
k#0,n
0
+ qu;ylnozwu,ﬁ” + bnﬁézi? + 32 Z b_kﬂ}(l), (2.68a)
’ k=—00
k#0
. B
Y ~(2 ~ 2 ~(2) ~(1 1
N,fZZ) — Z |:<ufl_)k + a_w ) 1ko¢wwk + by /ii? + vnzkwi’i}} 4 U;cg 1no¢ww<2>
k=—00 w
k#0,n
o
+ iigopinon, 0§ + by B % + 57 " by (2.68b)
' k=—00
k#0
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with ”0 eﬁ‘_ ”() + (Bw/ ozw)wO Combining (2.67b) and (2.67¢), and making use of
(2.67a) followed by differentiating the resulting equation with respect to Y, we obtain

(I 00
. - . 1 . -
an);—lnach/. Y + [S]Cf’f Qn+1nach{/bn=n Z Ebn—ka,Y_mawb"MOleYY’
c -
ljc;éo,ono
(2.69)
where Q,, = 52
nYY
The mean-flow distortions at O(R~2/3) are governed by
o =Va () S bl Y (2% +bsi) (2.70a)
k=—00 k=—00
k;éO k;éo
D%y =Va(e) Z byl + Z (3% +bosaf) (2.70b)
k=—00 k=—00
k#0 k#0
which can be integrated from —oo to oo to show that
TS o 1
uff;(_ =V5(yc) Z b- k][ i) (rydr, + 2 k2 > (el —ap) b
k=—00 W f=—00
k#0 k0
(2.71a)
- (2) | B = 1, 4
B =Veoo Z by wk v+ 250 Y 4 (e —ap) b
k=—00 W k=—00
k#0 k0
(2.71b)

where use has been made of (2.50). Equation (2.71) are the gradient jumps of the mean-
flow distortion at O(R™2/3). We combine (2.70a) and (2.70b) using the continuity (2.54a)
and (2.67a) to obtain

o

_ i
fogr 7 = D o bk Ok 2.72)

k=—00k#0
which can be inserted into the right-hand side of (2.69), giving
(1 00

.U 1
an)? - il’lOleé Y+ ;;j;ﬁc On +inawUé/bn =n Z ;(bn—k ij +bnb—ka).
c ——
K20

(2.73)

To eliminate the effect of the steady streaming U C ef from the calculations of the CL, we
perform a coordinate shift in the transverse direction

Y=Y +U{)/ UL (2.74)

and rewrite (2.73) as

> 1
Qnyy — inayUYQp +ina,Ulby=n Y _ §(bn,k Oky +bab_Qr).  (2.75)

k=—00
k£0
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The above system of coupled nonlinear equations is to be solved subject to the far-field
boundary conditions

On— (U /Uy /Y as Y — too. (2.76)
We denote the velocity jumps across the CL as

Jo=al —a, (n#0), (2.77)

n

and matching Q, with the solution in the main layer gives

In =][OO 0, (Y1) dYy. (2.78)

The governing equations and boundary conditions for Q, (2.75)-(2.76) and the matching
condition (2.78) along with the Rayleigh (2.44) and the Frobenius solution near the critical
level (2.46) are used simultaneously to resolve the coupled dynamics between the main
layer and CL.

The CL is strongly nonlinear as (2.54b) and (2.73) indicate. All harmonics of the
roughness-induced disturbance are generated at the same order. Importantly, due to
three-dimensionality of the disturbance and the algebraic singularity of their chordwise
and spanwise velocities, the regularised disturbance velocity in the CL has a larger
amplitude of O(R™!/3) than its O(R™%/?) counterpart in the main layer. Furthermore,
the associated vorticity in the CL is even larger with an O(1) amplitude. This can give rise
to high-frequency short-wavelength secondary instability, as will be shown in § 4.

To summarise, the WL converts surface displacement into a blowing velocity of
O(R~?%/3), which drives a forced disturbance in the main layer. The forced disturbance
is governed by the steady Rayleigh equation with a singularity at the critical level
y = Y., which is regularised by introducing viscous and nonlinear effects in the CL. The
disturbance inside the CL has a larger, O(R™1/3), amplitude, and leads to O(1) vorticities.
Physically, the effect of such surface roughness is significant near the wall and around the
critical level y., where the flows are nonlinearly distorted.

3. Numerical results for the roughness-distorted flow
3.1. Numerical methods

For the roughness-induced disturbance in the WL, we solve (2.28) using the second-order
finite-difference scheme to calculate n % 0 Fourier components. Only half of the Fourier
components (n > 0) need to be computed with the other half (n < 0) being given by (2.27).
The n = 0 Fourier component is calculated by integrating (2.35b) using the trapezoidal
formula. The roughness interaction and nonlinear terms {R}, RS, V¥, N'¢} on the right-
hand side of (2.28) are evaluated using a pseudospectral method, which transforms the
quantities in the spectral space to the physical space to carry out the multiplications and
then transforms the products back to the spectral space. The 3/2 rule (Canuto 1988) is
applied to eliminate the aliasing error. An iteration process is needed for these nonlinear
calculations. We initially simplify (2.28) by setting the roughness interaction and nonlinear
terms on the right-hand side to zero, which enables us to compute numerically the linear
solution or to derive the analytical solution. The linear solution then serves as the initial
guess for starting the iteration process solving the nonlinear problem for a small roughness
height 4. The iteration continues until the criterion

|® — @ pall2/ || @12 < 1077 3.1)
1022 A33-17
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is satisfied, where @ is the solution matrix consisting of all Fourier components of
the velocity {UT, VT, W'}. Subsequently, we employ a parameter continuation method,
incrementally increasing the roughness height and using the convergent solution as the
initial guess to advance the calculation for larger 4. To enhance the convergence, we use
the under-relaxation technique (Xu, Zhang & Wu 2017).

For the main-layer dynamics, our primary interest is in the forced disturbance driven by
the blowing velocity (2.40) from the WL motion. The forced disturbance is governed by
the steady Rayleigh equation (2.44) subject to inhomogeneous boundary conditions (2.45).
Apart from the singularity at y = y., the Rayleigh equation is also singular at the lower
boundary y =0 because the effective base flow satisfies the no-slip boundary condition
while Ug.fr,yy (0) # 0. We need to construct a Frobenius solution to (2.44) at y = 0 similar
to that near y = y., namely

v’
vun = 0”950+ 5 [ 0+ G W10 0 (32)
where
1 U// 1 U/// 172
(w) _ (w) _ 2.2 2
¢a1111} —y+§U—/y + - d)bn _1+§<nkw+U_{U_ Uzz>y +-- (3~3a,b)

with the subscript w of U,, signifying the quantities related to Upf and its derivatives
evaluated at y = 0. Imposing the lower boundary condition (2.45a) on (3.2) gives

b = Voo n. (3.4)

n

We start by calculating the linear solution v, in the main layer. The solution to the
steady Rayleigh equation (2.44) has the far-field asymptote, v, — C,<l°°>exp(—nkw) y as

y — oo, where C,ioo) is an unknown constant. We first use the MATLAB solver ODE15s
to integrate (2.44) downwards from a large y position, denoted as y, to y. + §y with the
initial conditions

Un = exp (—nkyYoo), Uy = —nky exp (—nky Yoo). (3.5a,b)

The resulting numerical solution at y. + 8y, denoted as {U,(yc + 8y), U, (yc +38y)}, is
equated to, after being multiplied by C,§°O>, the local Frobenius solution (2.46) at y =
yC + (Sya
(v +85) = af Gan (e +89) + bapn (Ve + 8), (3.6a)
Cy 8, (e +8Y) = ayf @y (ye + 8) + bugpp, (ve + 8y), (3.6D)

where  @pn (y) = @pn (¥) + (U /UD In|y — yelpan(y). We also integrate (2.44)
downwards from y. — §y to §y with the initial conditions,

Vgn = Pan(Ye — 8y), ﬁ;n = ¢;n (ye — 8y), (3.7a,b)
and
Obn = Pbn (Ve — 8Y), Uy = @), (Ve — 8), (3.8a,b)

respectively, and the numerical results at y =8y are denoted as {04, (8y), 0,,(8y)} and
{Opn (8y), 1},,,(8y)}. The linear combination of the above two, a,, Van + bnUpn, gives the
total solution. Equating it and its derivative to the local Frobenius solution (3.2) at y = 4§y,
we obtain
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Ay Dan (8Y) + b Opn (8y) = al™” @S2 (8y) + b5 @un (8), (3.9a)
ay 0, (85) + bu Dy, (8y) = a5 (8y) + b ¢, (8), (3.9b)

where @, (y) = 5o (v) + (UL /UL) In |ylly’ (). Using (3.6) and (3.9) as well as the
linear velocity jump condition across the CL,

T —a, = Kby, (3.10)
where K. =i(U//U/)sign(a,,U/), we can form a linear system to solve the coefficients
{a,jf, by, af,w>} in the Frobenius solutions (2.46) and (3.2) as well as the coefficient in the
large-y asymptote, C, ,§°°>, for different modes n (n # 0),

a

L,x,=B,, 3.11)
where
Gan(Ye +8Y)  @pu(ye +8y) 0 0 _l:)n (e +8y)
Gon e +8y) @, (ye +8y) 0 0 =0, (ye + 8y)
L,= 1 —Kem —1 0 0 ,
0 Don(3y)  Dan(By)  —oin’ (8y) 0
0 0,08) UGy~ (8y) 0
(3.12a)
T
xo=(af by ay a ), (3.12b)
T
Bi=(0 0 0 0{"gun6y) "¢}, Gy) - (3.120)

After obtaining the linear main-layer solution, we can calculate the linear solution for O,
in the CL by solving (2.75) with the right-hand side terms being set to 0. The derivative in
(2.75) is approximated using the second-order finite-difference scheme. The linear solution
for O, can also be found analytically, but the detail is neglected here.

The linear results for {b,, Q,} are used as the initial guesses for nonlinear calculations
for a small roughness height. Similar to solving the nonlinear equations in the WL, we
adopt a parameter continuation method to incrementally increase the roughness height,
using the convergent result for the previous slightly smaller height as the initial guesses
to start iterations. The nonlinear terms are evaluated using the pseudospectral method.
After obtaining Q,, we can calculate the velocity jump J, according to (2.78). With the
nonlinear jump J,, we use a modified linear system compared with (3.11) to update x,,,

Ly,x, =B, (3.13)

where
(N) () w) s T
BN =(0 0 Jy—Kewbuo b0un®y) b¢l,Gy) - G4

and b, ¢ is the value of b, calculated in the previous iteration. The blowing velocity Vy,00. 5
for the current roughness height is applied on the last two entries of (3.14) according to
(3.4). We implement the iteration for the above calculations to resolve the coupled CL and
main-layer dynamics until the following criteria are satisfied:

15— boall2/11bl2 <1077 and  [|Q — Quull2/11Qll2 <1077, (3.15a.,b)

where b = {b,} and Q ={Q,} are the solution vector and matrix consisting of all Fourier

components, respectively. We then calculate u ,(11) in the CL by solving numerically (2.54b),

and further obtain 1]),<,1> using the continuity (2.54a).
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Figure 2. Diagram of the surface roughness used in calculations.

3.2. Numerical results for disturbances in the WL

We consider the simplest roughness configuration with F1 =F_1 =1 and F,, =0 (n #
41) in (2.2) for our numerical calculations. A diagram of the surface roughness is shown
in figure 2. Two pairs of roughness wavenumbers, Case I with (¢, By) = (—0.525, 0.606)
and Case II with (o, By) = (—0.262, 0.303), are chosen for numerical calculations. They
were chosen based on simple guiding principles: they are more-or-less of O(1) as assumed
in the theory, and fall within the wavenumber band where stationary cross-flow vortices
arise. The first pair was somewhat close to that of the neutral mode of the stationary
cross-flow vortices ((«, B) = (—0.6376, 0.7621)), while the second took the half-values of
the first. We present numerical results for Case I here, while those for Case II are shown
in the supplementary material (§ S2). For the base FSC flow, we set the spanwise slip
velocity W, =1 and the acceleration parameter m = 0.5, as it characterises the portion
of typical swept-wing boundary-layer flows where a strong favourable pressure gradient is
present.

We start our numerical calculations in the WL from a small roughness height (2 =0.1)
and gradually increase it. In the wall-normal direction, the domain is Y € [0, 30] with
the normal grid size being set as AY =0.05, and 17 Fourier modes (—8 <n <8) are
included. These discretisation choices were chosen based on resolution checks, with
due consideration of managing computational cost. This adequacy was supported by
several observations: the results near the truncated computational domain matched the
corresponding asymptotes; the current results agree with those calculated using a halved
mesh size; the magnitudes of the highest Fourier mode (n = =+8) remain below the
iteration stopping criteria (10~7). Our numerical codes can converge up to & = 0.825 for
Case I roughness. Figures 3 and 4 show the profiles of several harmonics of the chordwise
and wall-normal velocities of the disturbance in the WL calculated for different roughness
heights. The profiles of the spanwise velocities are similar to those of the chordwise
velocities, and hence are omitted here. For the fundamental mode n = 1, the profiles for
different roughness heights, normalised by / (see (2.25)), almost overlap. This is due to
the fact that the flow is primarily disturbed by the fundamental mode of the roughness
shape function F. For higher harmonics of the velocity components, their profiles also
nearly overlap when appropriately normalised, i.e. by dividing U, here by & and U3 by h?.
Figure 4 shows that the Fourier components of the wall-normal velocity approach different
constants as ¥ — co. These constants (or equivalently, the combination of the chordwise
and spanwise velocity components through the continuity (2.28a)) are used to calculate the
transpiration velocity V;, and furthermore the blowing velocity Vy,|y_, ., which drives the

O(R~2/3) disturbances in the main layer.
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Figure 3. Profiles of the chordwise velocity harmonics U, in the WL for different roughness height.

Figure 5 shows the mean-flow distortions (2.35b) in the WL. They are caused by
nonlinear interactions of the disturbance, and approach constants as Y — oco. Such
streaming in the nonlinear WL drives the O(R~'/3) mean-flow distortion in the main
layer. Note that the chordwise velocity is approximately four times as large as the spanwise
velocity.

The O(R™!/3) disturbance velocity components, along with the base flow, correspond
to O(1) vorticities in the WL, namely

(8 R'305, 0.) x (R™30,, RT3V, RTVAW, ) = (W, 5,0, =0,y 5) + -

(3.16)

To aid the study of the secondary instability of the distorted WL to be conducted in

§4, we rotate the x—z plane of the original coordinate system so that the x-axis aligns

with the direction of (¢, 8), where {a, B}, introduced in (4.16), are wavenumbers of the

secondary instability mode. The chordwise and spanwise velocity components, {U,,, Wy, },
are projected onto the new coordinate axes, as {il,,, 2y},

T _ cosf sinf U,
<Q_I]w>_<— sin 6 cosé) (Ww) (3.17)

with 6 = arctan(f/&). The vorticity along the direction of (&, 8) can be calculated as

Q=% 5+ =- (&/,/&2 + BZ> [B/a)0, - W’”]f o (38)

Figure 6 displays contours of this skewed vorticity 2 without the contributions from
base-flow wall shears for two roughness heights. The overall features are similar, but
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Figure 4. Profiles of the wall-normal velocity harmonics V,, in the WL for different roughness height.
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Figure 5. Profiles of the mean-flow distortions in the WL for different roughness height.

the vorticity induced by higher roughness is stronger, and acquires a more or less O(1)
intensity, as expected. The vorticity in the direction perpendicular to (¢, B) (the direction
of (—p, a)) controls the secondary instability, and its contours for the roughness with
h = 0.825 will be shown later in § 5.2.1, where instability results are presented.
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Figure 6. Contours of the skewed WL vorticity 2 without the contributions from base-flow wall shears in
Case I: (a) h=0.2 and (b) h =0.825.
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Figure 7. Modulus of Fourier components in the blowing velocity versus the roughness height.

The blowing velocity from the WL is of importance as it drives the response in the main
layer and CL. Figure 7 shows the modulus of the first three Fourier components in the
blowing velocity versus the roughness height. The fundamental mode has a much more
significant modulus than higher harmonics.

3.3. Numerical results for disturbances in the main and critical layers

For the calculations pertaining to the main layer, we first need to ascertain the position of
the critical level y., which is y. = 2.22081. Then we calculate the linear solution to the
Rayleigh equation (2.44). In practice, we solve (2.44) subject to unity blowing velocity,

v, (0) = bf,w) = 1. Figure 8 presents the profiles of the first three harmonics of v,/ Viyoo.n,
the linear solutions normalised by the blowing velocity. The resulting solution, multiplied
by corresponding Fourier components of the blowing velocity induced by the roughness
with a small height, serves as initial guesses to start the nonlinear calculations for the

1022 A33-23


https://doi.org/10.1017/jfm.2025.10794

https://doi.org/10.1017/jfm.2025.10794 Published online by Cambridge University Press

B. Yuan and X. Wu

8:
(a) ()
8 8 6}
n=1
|- n=2
6 n=3
Yy 4
2 - = t_ = = y(,
95.0 —2..5 0 2..5 5.0 0 1 2 3 4
Re{v,/ Vwoo,n} Im{v,/ Vwoo,n}

Figure 8. The normalised solutions to Rayleigh equation (2.44).

coupled main-layer and CL dynamics. Numerically, the linear solutions in the main layer
are obtained by solving the system (3.11).

Next, we consider the coupled main-layer and CL dynamics by solving the system (3.13)
along with (2.75)—(2.78). The coupling is facilitated through the velocity jumps J, across
the CL, as shown in (3.14). Since the mean-flow distortion in the main layer is not our
primary concern, and its effect on the CL dynamics amounts to a simple coordinate shift

(2.74), we set U s(ggf: 0 in our calculations and revert the wall-normal coordinate from

Y to Y in the CL. The system governing CL dynamics is truncated in the region —30 <
Y <30, with the mesh size AY =0.05. The Fourier series for b, and Q, consist of 17
harmonics, i.e. —8 < N < 8. These numerical settings were determined with both accuracy
and computational efficiency in mind. Our numerical codes for this coupled dynamics can
converge up to 7 = 0.43 for Case I roughness. As with the WL calculations, the nonlinear
numerical codes fail to converge beyond a certain threshold, possibly due to the limitation
of the pseudospectrum-based iteration; for higher £, full Newton iteration may be needed.
The dynamics within the CL changes from nearly linear to strongly nonlinear as the height
of surface roughness is increased.

In our calculations, the Fourier components of the roughness shape function are only
non-zero for n = +£1, and the wavenumbers of Case I roughness are fairly close to those
of the neutral mode of the stationary cross-flow vortices, which results in particularly
significant response in the n = £1 Fourier components of the disturbance. The nonlinear
interactions of the fundamental modes generate the second and higher harmonics. We
monitor only the first two harmonics of the velocity jumps J,. To scale out the coefficient
K. and b,, in (3.10), we introduce a normalised jump,

Jo=Jn/(Keby), n=1,2. (3.19)

Figure 9 illustrates the variations of J; and J, versus the roughness height #. When £ is
small, J, | — m; whereas for sufficiently large #, Re{jl} approaches zero but Im{ fl} does
not, which indicates a changeover from a linear viscous CL to a nonlinear viscous CL. As
shown in the zoomed-in portion of figure 9(a), J> approaches a constant near 7, but not
exactly 7, when 2 — 0 due to nonlinearity. The variation of the velocity jump with 4 can
be non-monotonic.

Figure 10 shows the profiles of different harmonics of Q, in the CL. The fundamental
and second harmonic have comparable amplitudes, while the third harmonic is appreciably
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Figure 9. Normalised velocity jumps J; and J; across the CL.

weaker. Higher harmonics appear to be more oscillatory since it is more substantially
affected by nonlinearity. After obtaining Q, and b,, we can evaluate the nonlinear terms
on the right-hand side of (2.54b) and calculate ﬁf,” (n #0), the profiles of which are
shown in figure 11. The spanwise velocity i),il) (n #0) is proportional to L"tfql) as indicated
by (2.54a). The fundamental has a much greater amplitude than the second and third
harmonics. This is due to the fact that its wavenumbers are close to those of the neutral
stationary cross-flow mode, which leads to a near resonance. The direct forcing of the
second and third harmonics by the blowing velocity is relatively weak, while the excitation
by nonlinear interactions of the fundamental is more substantial. This also explains their
more oscillatory profiles.

Figure 12(a) shows the profiles of the leading-order chordwise velocity of the mean-
flow distortion (2.59) in the CL. The distribution features a high shear near the critical
level y =y, (¥ =0). Note that although the velocity of the distortion is O(R~!/3), the
associated shear, or vorticity, is O(1). The mean-flow distortion is not confined because
it exhibits a jump across the CL whereby driving a mean-flow distortion of the same
order-of-magnitude in the main layer. The latter must be considered to determine the
constant ﬁ(()” |7 _ oo+ Figure 12(b) displays the variations with roughness height & of the
velocity jump (2.61) and shear jump (2.71a) of the leading- and second-order mean-flow
distortions. The magnitudes of both jumps increase with #.

A significant feature of the CL dynamics is that the regularised disturbance velocity,
which is of O(R™!/3), significantly exceeds that in the main layer. Similar to the WL, the
amplitude of the associated vorticity in the CL can be of O(1). We also rotate the x—z
plane to align the x-axis with the direction of (&, ,3), where {a, ,3 }, introduced in (4.1), are
wavenumbers of the secondary instability mode in the distorted CL flow. The chordwise
and spanwise velocity components are projected accordingly, as specified in (3.17) with
6 being replaced by 6 = arctan(B/d&). The vorticity along the direction of (&, 8) can be
calculated as

S=— (a/W) [(;‘3’/&) (Ug(yc) + UY) - (Wé(yc) + W?)] e (320)
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Figure 10. Profiles of Q,, in the CL for different roughness height.

Figure 13 displays contours of this skewed CL vorticity without the contributions from
base-flow wall shears. For small %, the vorticity is rather weak. However, for 7 = 0.43
(figure 13b), a significantly distorted flow field is observed. The vorticity in the direction
perpendicular to (&, 8) controls the local secondary instability in the CL, and its contour
plot for the roughness with 4 = 0.43 will be displayed later in § 5.1, where instability
results are discussed.

4. Secondary instability of roughness-distorted three-dimensional boundary layers

We have demonstrated that the amplitudes of the vorticities in both the nonlinearly
distorted CL and WL are of O(1) as figure 1 shows. The stability of the distorted flow may
be fundamentally altered despite the fact that the velocity distortion is still small, being
of O(R™!/3). Next, we show that these layers are susceptible to small-scale secondary
instability, the onset of which may form a crucial step in transition to turbulence.

We seek secondary instability in the CL, i.e. CL modes, and in the WL, i.e. WL modes
in this section. The CL modes have short-wavelength high-frequency characters and can
be formulated as linear generalised eigenvalue problems. The temporal and spatial CL
modes are found to be essentially equivalent. The WL modes, on the other hand, have short
wavelengths but O(1) frequencies. The temporal WL mode is formulated similarly to the
CL modes, while the spatial WL mode is described by a nonlinear eigenvalue problem.

4.1. Secondary instability in the CL

We start with investigating spatial secondary instability in the CL. The wall-normal
length scale of the local flow is O(R™!/3). The instability is taken to have characteristic
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Figure 11. Profiles of the leading-order chordwise velocity harmonics i ﬁ,l) in the CL for different
roughness height.
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Figure 12. The mean-flow distortion in the CL: (a) the leading-order chordwise velocity profiles for different
roughness height and (b) jumps of the mean-flow distortion versus roughness height.
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Figure 13. Contours of the skewed CL vorticity £2 without the contributions from the base-flow shear in
Case I: (a) h=0.1 and (b) h =0.43.

wavelength of this order. Since the local velocity (Ug(y.), Wg(y.)) is of O(1), the
instability would have O(R'/3) frequencies. With such a perception in mind, we perturb
the nonlinearly distorted CL flow by a disturbance of O(ey), and express the locally
perturbed flow as

@, v, w, p) = (Up(yo) + R~ PUR ()Y, R VB(3e), W) + R™PW(0) Y, Pp)
+ (R_1/3l7(x, Y.2), RPV(x, ¥, 2), R'VPW(x, ¥, 2), R P(x, Z)>

+es[( Yx, ¥, 2), VO (x, ¥, 2), W, 7, 2), R™\3P (sz))
X EXp (iR1/3(&x +Bz— d)t)) n c.c.], 4.1

where the last term represents a secondary instability mode and €; << 1. Note that the
factor R'/3 in the exponent indicates the high-frequency short-wavelength character of

the instability with & and (&, B) representing the rescaled frequency and wavenumbers.
Furthermore, we require that

&=aUg(ye) + BWs(ye) (4.2)

such that the secondary instability is trapped within the CL. For this spatial secondary

instability, we fix the high-frequency @, or equivalently the wavenumbers {&, S}, to be
real, and seek O(1) modal growth in the x-direction. Substituting (4.1) into the N-S (2.3),
we obtain the governing equations for the spatial CL mode,

iU + V ' LigW) =0, (4.3a)
LU +i@U + W)U + (UB o) + UV +ia P =0, (4.3b)
LV +i@U + pW)ve ;” -0, (4.3¢)
LWE) +1@U + BWYWS) + (Wp(ye) + Wy) VI +i1p P =0, (4.3d)
where we have introduced the operator
L=Ug (yc)% + W (yc)% +ilaUs (ye) + BWp(ye)]Y. (4.4)
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By eliminating U®), W) and P} among the equations in (4.3), the system is reduced to
a single equation for V&),

2
[£+i(&0+ﬁvi/)] (a‘%—iz) VW —i@U + W)V =0, @45)

where k = /@2 + 2.
To formulate the eigenvalue problem for the spatial CL mode, we assume a modal
dependence of x and express the instability solution in the form,

@, 79 WS Py =@, 59, 9, 59)Yexp(Gx), (4.6)
where 6 = 6, + i0; is to be sought as the eigenvalue, with 6, representing the growth rate,

which is of O(1). Substituting (4.6) into (4.5), we obtain the governing equation

92 L.
[GUB(}’L)+£+1(O£U+,3W)](7—/(2) ' —i@U + BW)y50% =0. (4.7

Since the leading-order roughness induced disturbance concentrates in the CL, (4.7)
collapses to (812”/ —k%)9%) — 0 as ¥ — +oo, which is further simplified to give the
boundary conditions for the CL mode
(i q:/?) 79 =0 as ¥ — Foo; (4.8)
oY
these serve to exclude the non-physical unbounded (exponentially large) solutions.

The roughness-induced disturbance velocities U and W are expressed as Fourier series,
as indicated by (2.52), and we only need to retain the leading-order terms here,

@ Wy= Y (@), B P)) et (4.9)

n=—o00
The coefficients of the (4.7) are periodic functions of ¢, and thus according to Floquet
theory we express 9/ (x, Y, z) in the form of Fourier series with respect to ¢,

(%, ¥, 2) = Z 5r(ls>(y)einawi; (4.10)

n=—oo

in general the right-hand side may have an exponential factor exp(iga,,¢) with 0 <g <
1/2 being a Floquet-exponent-like parameter. It turns out that the resulting extra term
igBuwWg(y.) can be absorbed into &, and thus we set ¢ =0 without losing generality.
Substituting (4.9) and (4.10) into (4.7) with the definition of the critical y. leads to the

governing equation for ﬁf,s),
~ - [ d? ~ - (1 5~ (1) d? 72| ~(s)
i@EU 00 + AWR0DY (o5 =R 3+ 37 (@@, + Bl ) (= —#2) o

. = . )\
— @i+ i) | = ~5 Us (o) (7 - kz) By (.11

The above equations are subject to boundary conditions (4.8). Discretisation of (4.11)
and (4.8) gives rise to a linear generalised eigenvalue problem,

AV —5BVY, (4.12)
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where the solution vector f/<s>, the matrices A and B are defined in the supplementary
material (§ S4), and further details can be found there.

For temporal secondary instability, the perturbation in (4.1) is replaced by the CL mode
of the form,

&[0, 7,0, VY, ¥, 2, WO, 7. 2), RO, 7, 2)
X exp(&t +iRY3@ax + Bz — J)t)) + c.c.], (4.13)

where the condition (4.2) is required to hold, and & stands as the eigenvalue, with its real
part representing the temporal growth rate. By expressing V) (x, ¥, z) as a Fourier series
with respect to ¢,

v

o0
VO (x, ¥, )= ) Vet (4.14)
k=—00

the governing equation for the Fourier component \V/,fs> can be derived and turns out to
be the same as that for spatial instability, i.e. (4.11), with ¢ playing exactly the role of
o Up(y.), leading to the equivalence

o =Up(y.)o. (4.15)

Therefore, we will not treat the temporal instability separately, and only show numerical
results for spatial CL modes. As this small-scale local instability is newly identified,
verification through initial-value calculations is necessary; the formulation and numerical
results are presented in the supplementary material (§ S3).

4.2. Secondary instability in the WL

We now analyse instability of the roughness-distorted WL flow to small-scale perturbation.
The WL has an O(R™'/3) width, and we seek WL modes with characteristic wavelength
of this order. Unlike the CL, the local velocity is O(R™1/3), and so the characteristic
frequency of WL modes is of O(1).

4.2.1. Temporal modes
We first study the temporal WL mode. The instantaneous WL flow, consisting of the
roughness-distorted part and the O(e;) instability mode, is expressed as

v, w, p) = (R 0(x, 7. 20, RV (x, ¥ 20, RTVAW (v, ¥, 2), RTP (x, 2)
+&[(U9(x, Y, 2), VO (x, ¥, 2), W (x, ¥, 2), RT'PPY(x, 7, 2))
x exp(&1 +iRY3(@x + Bz)) +c.c], (4.16)

where the last term represents a WL mode with its scaled chordwise and spanwise
wavenumbers & and g being taken as the real parameters, and ¢ = 6, + ig; is to be sought
as the eigenvalue, whose real and imaginary parts represent the temporal growth rate and
frequency of the WL mode, respectively. By inserting (4.16) into (2.3), the governing
equations for the temporal WL mode are derived as

iaU" + ‘é‘” +ifW) =0, 4.17a)
U +i(aly +BWy) UY + VT, ;5 +iaP® =0, (4.17b)
O_"_/<S> +1 (&Uu} + BWw) ‘7<S> + _és> = Oa (417C)
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WS +i(aly + BWy) W + VEIW, 5 +iPS =0. 4.17d)
Equations in (4.17d) can be reduced into a single equation for V),

(5 +i@00 + AW (m - k2) VO —i (@0, + W) gy VI =0,  (418)

where k =+/a@2 + 2. Since the roughness-distorted WL flow, given by (2.25) and
calculated in § 3, is expressed in the form of Fourier series of ¢, the WL mode can be
expressed in the same form,

o
VO (e, 7, 2)= Y e, (4.19)

n=—oo

Substitution of (2.25) and (4.19) into (4.18) leads to
A A g
i(@d; + BA3)Y 57 k2| vl

o 2

+h Y i{ (& (U Fk+ Ont) + B (A3 Fas + Wai) (d_2 _ kZ) 7

i dy
- _ _ & )\ -

— @Uni + BWu )55 Vk”} =—5 (@ - kz) Ve, (4.20)

The secondary instability mode is trapped within the WL, that is, it decays exponentially
as Y — o0, as can be inferred from (4.18). However, unlike the CL mode, which attenuates
exponentially beneath the CL, the WL mode has to satisfy the impermeability condition
at the wall surface. Therefore, the boundary conditions for (4.20) are

d 2\ - _ _
<__ + k> Vi =0 as ¥ — oo; V=0 at ¥=0. (4.21a,b)
dy
Again, discretisation of (4.20) and (4.21) leads to a linear generalised eigenvalue problem
similar to (4.12),
AVY =5BV", (4.22)
where the matrices and the details of the formulation are provided in the supplementary

material (§ S4).

4.2.2. Spatial modes
Finally, we consider the spatial WL mode. The temporal mode in (4.16) is replaced by

[ (x, 7,2), VO (x, ¥, 2), WO (x, 7, 2), RTVPPO(x, ¥, 2))
x exp(iR'? (ax + Bz) —iwt) +c.c.], (4.23)

where _B and @ are taken as real parameters, and @ =a, +iq; is the eigenvalue with ay
and —a; representing the wavenumber and the spatial growth rate, respectively. Note that

the spatial growth rate is of O(R'!/?). The governing equation for V() can be derived as

[~6+ (a0, + )] (aa_; _ 122) PO GO0+ W)y 7 =0, (424)
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where k = v/ a4+ p2. We express V) as a Fourier series of ¢ and substitute it, along
with (2.25), into (4.24). The resulting system and the boundary conditions form a
nonlinear eigenvalue problem, which is, after truncation and discretisation, converted into
an algebraic system

MVS =0, (4.25)

The requirement of a non-trivial solution leads to an implicit dispersion relation for the
spatial secondary instability

D@: B, &) = det (11:4(&; B, é))) —0. (4.26)

The derivation and the matrix M are given in the supplementary material (§ S4).

5. Numerical results for the secondary instability
5.1. Secondary instability in the CL

For the secondary instability in the CL, we only calculate the spatial CL mode by
solving the linear eigenvalue formulation (4.12) directly using an appropriate MATLAB
eigenvalue solver. It is useful to note symmetry properties of the eigenvalues. First, (4.11)
indicates that for each wavenumber pair (¢, ,5), 0 obeys the relation

5(~a, —p)=—6(@, p). (5.
Second, if (4.7) with boundary conditions (4.8) admits an eigenvalue ¢ with eigenfunction

f/<s>, then —(6). and (f/m)cc also represent an eigenvalue and eigenfunction, which
follows from taking complex conjugate of (4.7). For a given pair (&, ), we can calculate
the most unstable eigenmode whose eigenvalue ¢ has the largest positive real part, while
—(0)¢c 1s another eigenvalue corresponding to the most damped mode. On the other
hand, according to (5.1), we have — (6 ) = [0 (—&, — B)]CC. The latter is the most unstable
eigenmode for (—&, —B). Therefore, it suffices to consider only the upper-half of the &—f
parameter plane, i.e. restrict the calculations to g > 0.

Since the matrix formulation in (4.12) involves two-dimensional discretisation in the
transverse direction Y and Fourier spectral space, the resulting matrices are large, making
direct eigenvalue calculation challenging. We begin by calculating the eigenvalue of (4.12)
using a coarse grid with the direct method (MATLAB function eig). The results from the
coarse grid are then used as initial guesses to initialise iterations in the Arnoldi method
(MATLAB function eigs) to obtain more accurate eigenvalues on a refined grid.

We calculate the spatial CL mode supported by the nonlinearly distorted CLs pertinent
to Cases I and II roughness, with heights # = 0.43 and & = 1.135, respectively (which are
the greatest heights for which convergent solutions for roughness-induced flows can be
computed). The numerical results corresponding to Case Il roughness are presented in the
supplementary material (§ S2). Figure 14 presents contours of the growth rates 6, in the
upper-half of the @—f plane. There exist two families of modes with the maximal growth
rate 6, = 0.0280 located at (¢, ,3) = (—0.21, 0.05). It is noteworthy that the leading-order

spanwise velocity of the roughness-distorted flow II),(11> is proportional to its chordwise

counterpart ﬁﬁl” by the factor —ay, /By, as indicated by (2.54a). This implies that when

(a, ,3) aligns with (ay, By), the leading-order roughness-induced flow controlling the
secondary instability is cancelled out in (4.11), which becomes degenerated. The present
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Figure 14. Contours of the growth rate 6, of the spatial CL mode on the nonlinear CL flow with & =0.43.
The maximal growth rate is indicated by the red cross. The red dashed lines represent the direction parallel to
(o, Bw), along which the leading-order effect of the roughness-induced disturbance cancels out.

dominant instability no longer exists, and a weaker instability might be possible if the
higher-order terms, i 9 and u~),<12), are taken into account.

We now present quantitative information about the instability characteristics. In
figure 15, the eigenvalues are plotted for three typical values of . For each B, there exist
two branches of modes, one branch with negative & featuring the dominant peak and a
subdominant peak confined to small but negative &, and another branch with & mostly
being positive. The two branches appear to be disconnected with the left-hand having ¢; <
0, and the right-hand having 6; > 0. Furthermore, for the left-hand branch 6; varies almost
linearly with respect to &, indicating that the mode is nearly non-dispersive. In contrast,
the right-hand branch mode is dispersive. For # = {0.03, 0.05, 0.07} chosen in figure 15,
the roughness wavenumber-aligned & are {—0.026, —0.043, —0.061}, respectively, the
position of which are marked in figure 15(a). The instability disappears when approaching
these points. Initial-value calculations were performed to confirm some of eigenvalue
results shown in figure 15 (see the supplementary material (§ S3)). When the spatial
growth rates shown in figure 15 are converted using (4.15), the corresponding temporal
growth rates are in the range of (0, 0.025), which is approximately twice that of the
secondary instability of stationary cross-flow vortices at the same Reynolds number (Malik
et al. 1994).

Figure 16 displays contours of the normalised eigenfunction f/(s) of the most unstable

mode for (¢, ,é) = (—0.21, 0.05) and (a, ,B~) = (0.03, 0.05), respectively. Superposed are
the contours of the O(1) CL vorticity, defined as

@1 =@/h{Us00+Brawsoo+ Y @ +@ranl e}, 5.2

n=—oo

which represents the vorticity component projected to the direction perpendicular to
(&, B). The term in summation in (5.2) corresponds to the roughness-induced vorticity. It
is the component that fundamentally alters the stability (despite small O(R~!/3) velocity
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Figure 15. Instability characteristics of the spatial CL mode for different values of B. The black-filled
symbols on the @-axis mark the values of & aligning with the roughness wavenumber for each S.
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Figure 16. Contours of the normalised eigenfunction corresponding to the most unstable spatial CL mode
(solid lines), superposed onto the eigenfunction contours are the skewed vorticity £2; of the roughness-
distorted CL flow (dashed lines and labelled with values): (a) (&, ) = (—0.21, 0.05); (b) (&, B) = (0.03, 0.05).

distortions), and indeed controls the secondary instability as (4.11) indicates. The CL mode
with negative & appears rather local, residing primarily in a relatively small region where
2, is negative (figure 16a). With its short-scale carrier wave being accounted for, rapid
oscillations in time and space are expected to be observed in this region. In contrast, the
CL mode with positive & spreads out in the planar directions, thus exhibiting a distributed
character (figure 16b).

5.2. Secondary instability in the WL

5.2.1. Temporal WL mode

For the temporal WL mode, the linear generalised eigenvalue problem (4.22) is first solved
using a MATLAB eigenvalue solver. As the temporal mode obeys the same symmetries as
the CL mode, we restrict our calculations to § > 0 in the ®—f parameter plane.
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Figure 17. Contours of the growth rate &, of the temporal WL mode (a) and local contours (b) marked by
the rectangle in (). The maximum is indicated by the red cross. A red diamond in the right panel indicates a
subpeak for g = 0.18 shown in figure 18(a).
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Figure 18. Instability characteristics of the temporal WL mode for different values of 8.

We sought the temporal WL mode using the numerical solutions for the nonlinear
roughness-distorted WL flow in Case I with 4 =0.825 and Case II with & =1.135,
which are the largest heights for which converged solutions can be computed. The
numerical results for Case II are shown in the supplementary material (§ S2). Figure 17
shows contours of the growth rate o, in the upper-half of the @—p plane, revealing a
narrow band of modes exhibiting significant growth rates. The maximal growth rate,
o, =0.0071, is identified, attained at (@, 8) = (—0.092, 0.185). Figure 18 displays the
instability characteristics for three different values of 8. For each 8, there exists a band
of unstable modes, an interesting feature of which is the presence of a dominant peak and
a subdominant peak; this is also shown in figure 17(b), where there is a gap between two
slanted regions. The linear variation of o; with « indicates that the WL modes have almost
the same phase speeds and are thus weakly dispersive, similar to the CL modes with & < 0.
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Figure 19. Contours of the normalised eigenfunction corresponding to an unstable temporal WL mode (solid
lines), superimposed are contours of the skewed vorticity £2, of the roughness-distorted flow (dashed lines and
labelled with values).

We then plot in figure 19 contours of the normalised eigenfunction V"' of an unstable
temporal WL mode, (&, ) =(—0.10, 0.20). Superposed in the background are the
contours of the O(1) vorticity of the roughness-distorted WL flow, defined as

o
Qu=@/mlu+ @@k +h Y [0+ @/}, (53)
n=—oo

which represents the vorticity component projected to the direction perpendicular to that
of (&, B). The summation term in (5.3) corresponds to the roughness-induced vorticity in
the WL, and it is this term that alters the WL stability, and indeed governs the temporal
WL mode as can be seen in (4.20). Similar to the CL mode with negative &, the WL mode
appears also fairly localised in its horizontal extent that is a function of the wavelength of
the roughness arrays.

5.2.2. Spatial WL mode

The spatial WL mode amounts to a nonlinear eigenvalue problem (4.26). The eigenvalue is
aroot of (4.26), which needs to be obtained by an iteration process with appropriate initial
guesses. The discretisation in two dimensions leads to the size of matrix M being too large
to evaluate its determinant directly. We circumvent this difficulty by employing instead an

indirect method via a rank-revealing QR factorisation of M (Kublanovskaya 1970),

MP = QR, (5.4)

with P being a permutation matrix which ensures that the diagonal entries in R form
a decreasing sequence according to their magnitude so that the last diagonal entry of
R, denoted as rp,, becomes zero before any other diagonal entry does. It follows that

det(M) = det(R) = [ [ diag(R), which implies that the roots of r;, = 0 are also the roots

of det(M) =0 (Giittel & Tisseur 2017). Therefore, we apply Muller’s method (Muller
1956) to
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Figure 20. Comparisons between the transformed and directly calculated spatial WL mode for 5 =0.20.

rpr (@) = 0. (5.5)

On the other hand, a spatial instability mode can be related to a temporal mode
through certain transformations, such as the well-known Gaster transformation. As the
validity and accuracy of the Gaster transformation are somewhat uncertain, we apply the
consistent second-order temporal—spatial transformation recently derived (Xu et al. 2023).
We introduce @ = io to rewrite the exponent in (4.16) as

exp(at +iR'3(@x + Bz)) =exp(iR'/* (@x + pz) — iar). (5.6)

The consistent temporal—spatial transformation of Xu er al. (2023), which links the
temporal and spatial growth rates for modes of the same real frequency, i.e. ® — v = —iw;,
gives the chordwise wavenumber as

il (1 -2 o/ (do\*\'? da)/ o 57
= - — 2l ——= = - - |- .
0 da? da da da?

The transformed wavenumber &y may be taken as an approximation of the spatial
eigenvalue, or serve as the initial guess for the iteration process, constructed using Muller’s
method, to refine the eigenvalue «.

Qi

We apply the consistent transformation to temporal instability results for 8 = 0.20. Since
the temporal—spatial transformation requires information on the derivatives @, we need to
ensure the temporal instability modes stay on a continuous branch without entangling
with other branches. The transformed chordwise wavenumbers ¢ are shown in figure 20,
where comparison is made with the refined results using the iteration. The good agreement
suggests that use of the transformation to temporal instability provides spatial instability
characteristics of satisfactory accuracy. Spatial mode is also non-dispersive. For a typical
Reynolds number R = 10°, the (unrescaled) spatial growth rate of WL mode, R'/3(—a;),
is approximately 0.028 (figure 20), comparable to that of the CL mode (figure 15). We note
that these are significantly greater than (approximately twice) the typical spatial growth
rates of the secondary instability of stationary cross-flow vortices reported in Hogberg &
Henningson (1998).
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Our calculations suggest that surface roughness may induce small-scale secondary
instability within local regions. The present study is, to the best of our knowledge, the first
to have demonstrated the existence of such small-scale secondary instabilities, although
some of previous numerical calculations found modes appear to be local in their character.
Specifically, for the secondary instability of stationary cross-flow vortices, Malik et al.
(1999) found that the y-mode and z-mode reside in the bulk of the boundary layer
(albeit with the former being at somewhat higher positions), and both have rather high
frequencies (4500 and 3500 Hz, respectively). Wassermann & Kloker (2002) identified
a high-frequency family and a low-frequency family of modes, and the former is located
at appreciably higher positions than the latter, but both were deemed to be the z-mode.
A further computational study by Bonfigli & Kloker (2007) revealed two high-frequency
modes, which occupy the main boundary layer and correspond to z- and y-modes,
respectively, and both of these modes appear to be concentrated in a thin region in the wall-
normal direction. A low-frequency z-mode developing close to the wall was also found
and it exhibits the feature of a wall mode. These modes were detected in experiments
(White & Saric 2005; Serpieri & Kotsonis 2016). Despite visual local characters, the
precise local nature of the secondary instability remains uncertain. This is because in
all secondary instability analyses, the primary cross-flow vortices in the entire boundary
layer were taken as the base flow, and the length scale was taken to be comparable to the
local boundary-layer thickness, with the boundary conditions being imposed at the wall
and at the outer edge of the background boundary layer, respectively, unlike the present
formulation, which specifies explicitly the short wavelength and is pertinent to the local
flow field. The boundary conditions (4.8) and (4.21) of the CL and WL modes indicate
that these modes are trapped within the CL and WL, respectively, unaffected by the overall
boundary-layer flow.

The instability identified in this paper would be manifested as amplification of small-
scale high-frequency disturbances, possibly leading to premature transition and ‘flow
tripping’. In the presence of spatially extended and periodic roughness arrays as assumed,
both temporal and spatial instabilities are likely to be relevant.

From the temporal instability perspective, when the roughness height exceeds a
critical value, inevitable spatially extended incidental initial perturbations within the
boundary layer, which in general consist of modal components, would undergo collective
amplification in time, causing an otherwise laminar state turbulence. This of course does
not happen when the roughness height is below the critical value for instability. The
instability may thus be associated with flow tripping by roughness. We note that the
phenomenon of tripping by streamwise isolated roughness has been explained in terms
of instability and resulting transition of the distorted flow (Kurz & Kloker 2016). Tripping
by spatially distributed roughness array is another possibility, and could be explained in a
similar vein.

From the perspective of spatial instability, one may envisage that the predicted
small-scale high-frequency modes are excited at a certain upstream location, and their
subsequent amplification could lead to onset of turbulence at a downstream position. The
process of amplification and transition are likely to be similar to that associated with the
secondary instability of stationary cross-flow vortices.

Given that roughness-induced distortions and the directly induced small-scale instability
resemble primary cross-flow vortices and their secondary instability, respectively, we think
that experimental investigations of the former would, in principle, be similar to those of
the latter. In addition to constructing appropriate patterned roughness arrays, a possible
challenge is to avoid or minimise primary cross-flow vortices. This might be achieved

1022 A33-38


https://doi.org/10.1017/jfm.2025.10794

https://doi.org/10.1017/jfm.2025.10794 Published online by Cambridge University Press

Journal of Fluid Mechanics

by deploying arrays of sufficient height in a region relatively close to the leading edge
so that the roughness-induced distortions and the directly induced small-scale instability
dominate.

Unfortunately, to the best of our knowledge, there has not been any experimental
or direct numerical investigation aimed specifically at the local (CL) structures of
the distorted boundary-layer flows by periodically distributed roughness arrays, or the
resulting small-scale instability. Nevertheless, we note that there have been works on
using regularly distributed roughness to suppress primary cross-flow vortices and their
secondary instability (Wassermann & Kloker 2002; Saric et al. 2019; Ide, Hirota &
Tokugawa 2021; Zoppini et al. 2022; Suzuki et al. 2024). Those experimental and
computational techniques could be adapted to investigate/check the scenarios/findings
presented here. On the other hand, we anticipate that our mathematical framework as
well as theoretical results would prompt and guide future experimental and numerical
investigations into this mechanism.

Of close relevance to our work are the recent studies by Hirota and his colleagues.
Ide et al. (2021) investigated the transition-delay effect of sinusoidal roughness elements
(SREs) using DNS. Unlike discrete roughness elements, these roughness arrays were
distributed sinusoidally along a direction inclined at an angle to the leading edge, in
which sense rather similar to the form considered in the present paper, but their overall
height is modulated by a chordwise Gaussian envelope with its maximum at a distance
downstream. Intriguingly, the inclination is chosen to nearly overlap the streamline at
the outer edge of the boundary layer. The DNS results suggest that compared with
discrete roughness elements, SREs are more viable and effective because with greater
heights they do not cause tripping (i.e. direct transition to turbulence) while exciting in
their wake the desired cross-flow vortices of appropriate amplitude (the so-called control
mode) to inhibit the targeted most dangerous cross-flow vortices and delay the onset
of the secondary instability. The effectiveness and advantage of SREs were confirmed
by experiments (Suzuki et al. 2024) while detailed mechanisms remain elusive. Hirota,
Ide & Hattori (2024) further investigated the role of the inclination direction of roughness
arrays, showing that the desired direction must be close to that of the inviscid free stream
streamline, beyond which secondary instability takes place in the immediate wake of the
roughness arrays causing rapid transition. From the mathematical viewpoint, this direction
is special for (at least) two reasons. Firstly, it pertains to a distinguished cross-flow
instability regime, in which stationary vortices are ‘free-streamline aligned’ and of viscous
wall-mode type (Choudhari 1995). Secondly, the boundary-layer response to roughness
arrays with this orientation does not have a CL in the bulk. As a result, the local CL
instability as described in our paper does not arise, and one might thus speculate that
this may be the reason why such SREs did not cause tripping. The present theory does not
apply to this case, and a new formulation is required to characterise the roughness-induced
distortion and possible secondary instability. Furthermore, mathematical theories could be
developed for chordwise modulated arrays employed in experiments so that the excitation
of the control mode, and the interactions among the targeted incoming most dangerous
mode, as well as the roughness-induced distortion could be investigated.

We believe that such local instabilities are rather common and play a pivotal role in
boundary-layer transition. In particular, we believe that secondary instabilities leading to
breakdown of primary stationary and travelling cross-flow vortices (eigenmodes) are likely
to be of local nature, and the present asymptotic approach may be adapted to provide
a firm answer as well. Moreover, in fully developed shear turbulence, such small-scale
instabilities that are local in space may operate to facilitate direct energy transfer from
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large-scale structures to much smaller-scale fluctuations, which is non-local in spectral
space. Such a process may supplement the continuous energy cascade across scales.

6. Summary and conclusions

We have carried out a theoretical study of effects of distributed surface roughness in the
form of a wavy wall on the three-dimensional boundary-layer instability. Despite its height
being much smaller than the local boundary-layer thickness §*, the roughness is capable
of inducing strongly nonlinear distortions within localised regions in the wall-normal
direction, the CL and WL, where the distorted flows become susceptible to small-scale
secondary instability.

The present analysis is formulated on the basis of a high-Reynolds-number asymptotic
framework. We considered a wavy-wall surface roughness with the chordwise and
spanwise length scales being O(8*), and the height being much smaller, of O(R™1/35*),
which may cover micron-sized roughness in the dimensional setting. The boundary-layer
flow is characterised by a WL, the main layer and a CL. The viscous WL, having a width of
O(R~/358*), accommodates the immediate response to the surface roughness. The surface
displacement is converted into an O(R~%/3) blowing velocity by the WL. Moreover,
the disturbance in the WL is strongly nonlinear and generates a streaming, which is
characterised by an O(R~!/3) mean-flow distortion. In the bulk of the boundary layer, the
disturbance is composed of the O(R™'/3) streaming and the O(R2/3) forced disturbance.
Of great significance is the forced disturbance, which is governed by the steady Rayleigh
equation with the blowing velocity from the WL acting as the lower boundary condition.
The Rayleigh equation becomes singular at a special position, denoted as the critical
level y.. This singularity is resolved by introducing a CL around y., where the viscous
effect is reintroduced and its width is of O(R™!/38*). The regularised chordwise and
spanwise disturbance velocities in the CL are of O(R~!/?), much larger than those in the
main layer. The disturbance in the CL is strongly nonlinear. Most crucially, the vorticities
of the nonlinearly distorted flows in the CL and WL, are of O(1), and it is these quantities
that render the wall and CLs susceptible to small-scale secondary instability.

We demonstrated for the first time that a roughness-distorted three-dimensional
boundary layer supports small-scale local secondary instability, which is inviscid and
biglobal in its nature (Theofilis 2011). The CL modes have high frequencies and short
wavelengths comparable to the CL width, and spatial and temporal instabilities were
found to be governed by essentially the same linear generalised eigenvalue problems.
Calculations were performed and results presented for the spatial CL mode. In order
to validate the eigenvalue results of the CL mode, direct initial-value calculations
were performed using both the eigenfunction and an arbitrary velocity profile as initial
conditions. The temporal WL mode, which has short (O(R™1/38%)) wavelengths but O(1)
frequencies, was analysed following a similar procedure; a linear generalised eigenvalue
problem was solved numerically, and validated through initial-value calculations. The
computation of the spatial WL mode is more challenging since it is described by a
nonlinear eigenvalue problem, which was solved using Muller’s iterative method. The
initial guesses for iteration processes were obtained by applying the consistent temporal—
spatial transformation (Xu et al. 2023) to the temporal WL mode. It is worth stressing
that our work appears to be the first to establish the existence of such spatially local
short-wavelength (high-frequency) instability, which probably plays a fundamental role
in facilitating spectrally non-local energy transfer from large to much smaller scales in
turbulent shear flows.
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The roughness configuration adopted in this research is quite simple, which has a single
aligned orientation with respect to the chordwise direction. Hence further work could
examine the effects of surface roughness in more general forms such as those consisting of
multiple components in different orientations corresponding to a multitude of pairs of the
roughness wavenumbers («y,, By ). As a result, a continuum of CLs would emerge instead
of a single one. The resulting secondary instability would be different but of interest.
The present asymptotic framework with Fourier series expansions is limited to spatially
regular (periodic or quasiperiodic) roughness configurations, but it can be extended to
randomly distributed roughness, in which case an appropriate statistical characterisation of
the roughness is necessary. Moreover, the secondary instability analysis in this paper may
be adapted to investigate the detailed structure of the short-wavelength (high-frequency)
local secondary instability of nonlinearly evolving stationary and travelling cross-flow
vortices.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10794.
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