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Abstract

We characterize the impact of a linear β-reduction on the result of a control-flow analysis.

(By ‘a linear β-reduction’ we mean the β-reduction of a linear λ-abstraction, i.e., of a λ-

abstraction whose parameter occurs exactly once in its body.) As a corollary, we consider the

administrative reductions of a Plotkin-style transformation into Continuation-Passing Style

(CPS), and how they affect the result of a constraint-based control-flow analysis and, in

particular, the least element in the space of solutions. We show that administrative reductions

preserve the least solution. Preservation of least solutions solves a problem that was left open

in Palsberg and Wand’s article ‘CPS Transformation of Flow Information.’ Together, Palsberg

and Wand’s article and the present article show how to map in linear time the least solution

of the flow constraints of a program into the least solution of the flow constraints of the CPS

counterpart of this program, after administrative reductions. Furthermore, we show how to

CPS transform control-flow information in one pass.

1 Background and introduction

Since their inception, over 30 years ago (Reynolds, 1993), continuations and the

transformation into Continuation-Passing Style (CPS) have been the topic of much

study, ranging from semantics and logic to implementations of sequential, concurrent,

and distributed programming languages and systems. Fifteen years ago, Meyer and

Wand (Meyer & Wand, 1985; Wand, 1985) noticed that the CPS transformation

preserves types and they constructed a CPS transformation of types.

type
CPS transformation

of types
����������������� type

direct-style program

type
inference

��
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of terms
�� CPS program

type
inference

��
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Over the last couple of years, Palsberg and Wand have extended this observation to

flow types and the flow information gathered by a control-flow analysis (Palsberg &

Wand, 2002), designing a CPS transformation of flow information.

flow
information

CPS transformation

of flow
�������������� flow
information

direct-style program

flow
analysis

��

CPS transformation

of terms
�� CPS program

flow
analysis

��

Independently, and with a different motivation, we have also designed a CPS trans-

formation of flow information for control flow and binding times (Damian, 2001;

Damian & Danvy, 2000; Damian & Danvy, 2002). The two CPS transformations

of flow information correspond to two different takes on the CPS transformation of

λ-terms:

CPS with
administrative redexes administrative

reductions
������������

direct style

CPS
transformation

������������

transformation into
monadic style

�������������
CPS without

administrative redexes

monadic
normal form

introduction of
continuations

��������������

The CPS transformation is Plotkin’s (1975). It is a first-order, compositional

rewriting system generating numerous administrative redexes that need to be post-

reduced in practice (Steele, 1978). Alternatively (Hatcliff & Danvy, 1994; Sabry &

Wadler, 1997), the CPS transformation can be staged into a transformation into

monadic normal form followed by an introduction of continuations.

The two CPS transformations of flow information can be depicted as follows:

CPS with
administrative redexes

this work
������������

direct style

Palsberg & Wand,
2002

������������

Damian & Danvy,
2002

�������������
CPS without

administrative redexes

monadic
normal form

Damian & Danvy,
2000

��������������

Palsberg and Wand show how to construct in linear time the flow inform-

ation corresponding to a CPS program obtained through a Plotkin-style CPS

transformation (Palsberg & Wand, 2002; Plotkin, 1975). The resulting programs

contain all administrative redexes induced by Plotkin’s transformation. Therefore,
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e ∈ Exp ::= x | n | e�1
1 e

�2
2 | if0 e� e

�0
0 e

�1
1 | λπx.e�

π ∈ Lam (λ-abstraction labels)

� ∈ Lab (term labels)

n ∈ Lit (integer literals)

Fig. 1. The language of labelled λ-terms.

the corresponding CPS information of flow also contains spurious information

which accounts for the extraneous λ-abstractions and their flow. The problem of

eliminating this spurious information is open.

Damian and Danvy show how to construct in linear time the flow information

corresponding to the introduction of continuations, starting from monadic normal

forms (Damian & Danvy, 2000; Hatcliff & Danvy, 1994). They also show how to

construct in linear time the flow information corresponding to the transformation

into monadic normal forms (Damian, 2001; Damian & Danvy, 2002).

In this work, we complete the picture above by showing how to perform in linear

time administrative reductions on CPS-transformed programs (Section 4). Our result

hinges on linear reductions (Section 3). But first, we present the source language

and a constraint-based control-flow analysis (Section 2).

2 Preliminaries

2.1 The source language

Input terms are given by the grammar in Figure 1. Terms are annotated with

distinct labels taken from a countable set Lab. Each λ-abstraction is annotated

with a distinct label π from a set Lam , and we assume that there exists a bijection

between λ-abstractions and their labels.

The language has a standard call-by-value semantics, which we leave unspecified.

A program p is a closed labelled expression e� .

Definition 1

A properly labelled expression is a labelled expression in which all labels are distinct

and all variables are distinct.

2.2 Control-flow analysis

We consider a constraint-based control-flow analysis. We use the same notations

and definitions as in Nielson, Nielson and Hankin’s recent textbook on program

analysis (Nielson et al., 1999).

Given a program p, the control-flow analysis is defined as a relation �p whose

functionality is displayed in Figure 2.

A solution of the analysis of p is a pair (Ĉ, ρ̂) such that (Ĉ, ρ̂) � p. The set of

solutions of the analysis is ordered by the natural pointwise ordering of functions,

and has a least element. This property ensures the existence of a least solution of the

analysis of p. The analysis relation is defined inductively on the syntax as defined in

Figure 3.
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Lamp The set of λ-abstraction labels in p

Varp The set of identifiers in p

Labp The set of term labels in p

Val p = P(Lamp) Abstract values

Ĉ ∈ Cachep = Labp → Val p Abstract cache

ρ̂ ∈ Env p = Varp → Val p Abstract environment

�p ⊆ (Cachep × Env p) × Labp

Fig. 2. Control-flow analysis relation for a program p: functionality.

(Ĉ, ρ̂) �p n
� ⇐⇒ true

(Ĉ, ρ̂) �p x
� ⇐⇒ ρ̂(x) � Ĉ(�)

(Ĉ, ρ̂) �p (λπx.e� )�1 ⇐⇒ π ∈ Ĉ(�1) ∧ (Ĉ, ρ̂) �p e
�

(Ĉ, ρ̂) �p (e
�1
1 e

�2
2 )� ⇐⇒ (Ĉ, ρ̂) �p e

�1
1 ∧ (Ĉ, ρ̂) �p e

�2
2 ∧

∀λπx.e�0
0 ∈ Ĉ(�1).Ĉ(�2) ⊆ ρ̂(x) ∧

Ĉ(�0) ⊆ Ĉ(�)

(Ĉ, ρ̂) �p (if0 e� e
�0
0 e

�1
1 )�2 ⇐⇒ (Ĉ, ρ̂) �p e

� ∧ (Ĉ, ρ̂) �p e
�0
0 ∧ (Ĉ, ρ̂) �p e

�1
1 ∧

Ĉ(�0) ⊆ Ĉ(�2) ∧ Ĉ(�1) ⊆ Ĉ(�2)

Fig. 3. Control-flow analysis relation for a program p: definition.

3 Linear reductions

We observe that linear reductions preserve flow information. A linear reduction is

a β-reduction in which the λ-abstraction in the function position is linear, i.e., such

that it uses its argument once and only once. Let us formalize the notion of linear

reduction using linear contexts.

Definition 2

A linear context is a labelled expression with a unique hole [·]. Linear contexts are

defined by the grammar:

E ::= [·] | x� | n� | (E e�2

2 )� | (e�1

1 E)� |
(if0 E e�0

0 e�1

1 )� | (if0 e� E e�1

1 )�0 | (if0 e� e�0

0 E)�1 |
(λπx.E)�

Given a linear context E and a labelled expression e� , we use E[e�] to denote the

context E with the hole [·] replaced with e� . It is trivial to see that E[e�] is a well-

formed expression. Note that pluging as defined here does not avoid variable cap-

turing. We use plugging however only in the context of properly-labelled programs,

where there is no danger of variable capture.

We also use FV (e) to denote the set of free variables of the expression e. This

notation naturally extends to contexts: given the context E, by definition FV (E) =

FV (E[n]), where n is an arbitrary literal. We use L as the function extracting

the label of an expression. By definition, for any labelled expression e� , L(e�) = �.
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Definition 3

A labelled λ-abstraction (λπx.e�1 )�2 is linear if and only if is properly labelled and

e�1 contains a unique occurrence of x, i.e., if there exists a linear context E such that

x �∈ FV (E) and e = E[x�] for some label �.

Definition 4

A linear redex is a β-redex (λx.e1) e2 such that λx.e1 is a linear λ-abstraction.

Definition 5

A linear reduction is the β-reduction of a linear redex.

Example

((λπx.E[x�])�1 e�2 )�3 → E[e�2 ]

where E is a linear context where x does not occur free. Note that such a reduction

might not necessarily be sound wrt. a call-by-value semantics. Nevertheless, we show

that it does not affect the result of control-flow analysis. In any case, we treat linear

reductions in CPS, which is evaluation-order independent (Plotkin, 1975).

4 Control-flow analysis and linear reduction

We show that performing a linear reduction does not alter the results of the

analysis of a properly labelled program. More precisely, we show that, given a

properly labelled program which contains a linear β-redex, control-flow analysis

yields strictly equivalent results before and after performing a linear β-reduction.

We are given a program that contains a linear redex and the least solution of its

analysis. The goal of this section is to construct the least solution of the analysis of

this program after a linear β-reduction.

Let p be a properly labelled program containing a linear β-redex. Therefore there

exist two linear contexts E and E1, an expression e, a fresh variable x, and labels

π, �0, �1, �2 and �3 such that

p = E[((λπx.E1[x
�0 ])�1 e�2 )�3 ]

and x �∈ FV (E). Let then

p′ = E[E1[e
�2 ]]

be the program p with the linear redex above reduced. It is immediate to see that p′

is also a properly labelled program.

In the rest of this section, we define a monotone function Fp which, given a

solution of the analysis of p, constructs a solution of the analysis of p′. We then

define a reverse function Gp, monotone as well, which, given a solution of the

analysis of p′, constructs a solution of the analysis of p. Using the two functions and

their monotonicity, we show that the best solution for p is transformed into the best

solution for p′. We then show how to construct in linear time the least solution of

the analysis of p′ from the least solution of the analysis of p.
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4.1 Flow constructions

For the programs p and p′ defined as above, by construction,

• Labp = Labp′ ∪ {�0, �1, �3},
• Lamp = Lamp′ ∪ {π}, and

• Varp = Varp
′ ∪ {x}.

We define a function Fp : (Cachep × Env p) → (Cachep′ × Env p′ ) as Fp(Ĉ, ρ̂) =

(Ĉ|
Lamp′ , ρ̂|

Lamp′ ). Obviously, Fp is a projection function and it is monotone with

respect to the ordering of solutions.

We define a reverse function Gp : (Cachep′ × Env p′ ) → (Cachep × Env p) as follows.

Gp(Ĉ
′, ρ̂′) = (Ĉ, ρ̂) such that:

• for all � ∈ Labp′
, Ĉ(�) = Ĉ ′(�); Ĉ(�3) = Ĉ ′(L(E1[e

�2 ])); Ĉ(�0) = ρ̂(x) = Ĉ ′(�2);

Ĉ(�1) = {π}; and

• for all y ∈ Varp
′
, ρ̂(y) = ρ̂′(y).

Obviously, Gp is an embedding function and it is monotone as well.

Lemma 4.1

Let (Ĉ, ρ̂) ∈ (Cachep × Env p) such that (Ĉ, ρ̂) �p p. Then Fp(Ĉ, ρ̂) �p′ p′.

Proof

Let (Ĉ ′, ρ̂′) = Fp(Ĉ, ρ̂). We show that (Ĉ ′, ρ̂′) �p′ p′. The proof has two steps:

(i) A proof of the fact that (Ĉ ′, ρ̂′) �p′ E1[e
�2 ]. The proof is by structural induction

on the context E1, using the assumption that (Ĉ ′, ρ̂′) �p′ E1[x
�0 ].

(ii) A proof of the fact that (Ĉ ′, ρ̂′) �p′ E[E1[e
�2 ]]. The proof is by structural

induction on the context E. �

Lemma 4.2

Let (Ĉ ′, ρ̂′) ∈ (Cachep′ × Env p′ ) such that (Ĉ ′, ρ̂′) �p′ p′. Then Gp(Ĉ
′, ρ̂′) �p p.

Proof

Let (Ĉ, ρ̂) = Gp(Ĉ
′, ρ̂′). We show that (Ĉ, ρ̂) �p p. The proof has three steps:

(i) A proof of the fact that (Ĉ, ρ̂) �p E1[x
�0 ]. The proof is by structural induction

on the context E1, using the assumption that (Ĉ ′, ρ̂′) �p′ E1[e
�2 ].

(ii) A proof of the fact that (Ĉ, ρ̂) �p ((λπx.E1[x
�0 ])�1 e�2 )�3 . Using (i), the proof

amounts to showing that a small set of constraints are satisfied.

(iii) A proof of the fact that (Ĉ, ρ̂) �p E[((λπx.E1[x
�0 ])�1 e�2 )�3 ]. The proof is by

structural induction on the context E. �

Lemma 4.3

Let (Ĉ, ρ̂) be the least solution of the analysis of p. Let (Ĉ ′, ρ̂′) be the least solution

of the analysis of p′. Then Fp(Ĉ, ρ̂) = (Ĉ ′, ρ̂′) and Gp(Ĉ
′, ρ̂′) = (Ĉ, ρ̂).
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Proof

We can immediately see that Fp(Gp(Ĉ
′, ρ̂′)) = (Ĉ ′, ρ̂′), and that Gp(Fp(Ĉ, ρ̂)) �

(Ĉ, ρ̂). Therefore, Gp and Fp form an embedding/projection pair.

Since (Ĉ, ρ̂) is the least solution, then (Ĉ, ρ̂) � Gp(Ĉ
′, ρ̂′). Using the monotonicity

of Gp, we obtain that Fp(Ĉ, ρ̂) � Fp(Gp(Ĉ
′, ρ̂′)) = (Ĉ ′, ρ̂′). Since Fp(Ĉ, ρ̂) is a

solution and (Ĉ ′, ρ̂′) is the least solution, we obtain that Fp(Ĉ, ρ̂) = (Ĉ ′, ρ̂′) and then

that Gp(Ĉ
′, ρ̂′) = (Ĉ, ρ̂). �

4.2 The CPS transformation of flow information and administrative reductions

Lemma 4.3 says that the least analysis after a linear β-reduction is a restriction of the

least analysis of the initial term. From this, we can infer that any linear β-reduction

does not alter the results of the CFA. We use this result to show that administrative

reductions after Plotkin’s CPS transformation do not change the result of the flow

analysis.

Theorem 4.4

Let p be a program, p1 be its CPS counterpart without administrative reductions,

and p2 be its CPS counterpart after administrative reduction. Let (Ĉ1, ρ̂1) be the

least solution of the analysis of p1. The least solution (Ĉ2, ρ̂2) of the analysis of p2

can be obtained in linear time from (Ĉ1, ρ̂1), by restricting (Ĉ1, ρ̂1) to the program

points preserved by the administrative reductions.

Proof

All administrative reductions are linear, and furthermore, administrative reduction

is known to terminate (Danvy & Filinski, 1992). We apply Lemma 4.3. �

Corollary 4.5

Let p be a program, p1 be its CPS counterpart without administrative reductions,

and p2 be its CPS counterpart after administrative reduction. Let (Ĉ, ρ̂) be the least

solution of the analysis of p. The least solution (Ĉ2, ρ̂2) of the analysis of p2 can be

obtained in linear time from (Ĉ, ρ̂).

Proof

We compose the construction given by Theorem 4.4 with Palsberg and Wand’s CPS

transformation of flow information (Palsberg & Wand, 2002), which also works in

linear time. �

5 Related work

Our key observation is that linear β-reduction preserves leastness. This property is a

corollary of Henglein’s subject invariance property of linear β-reductions for mono-

morphic program analyses (Henglein, 1994; Henglein & Mairson, 1991; Henglein &

Mairson, 1994). Non-linear β-reductions, while they do preserve correctness of an

analysis (Wand & Williamson, 2001), are known not to preserve leastness.
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6 Conclusion and issues

We have shown how to complement Palsberg and Wand’s CPS transformation of

flow information with administrative reductions, while preserving its linear-time

complexity. Our extension hinges on the linearity of administrative redexes.

Let us now show how to integrate administrative reductions in Palsberg and

Wand’s CPS transformation, therefore making it operate in one pass, still in

linear time. As shown in ‘Representing Control’ (Danvy & Filinski, 1992), at CPS-

transformation time, one can segregate the administrative lambdas and applications

and the residual ones. (The residual lambdas and applications are the ones pre-

served by the administrative reductions.) Therefore, in Palsberg and Wand’s CPS

transformation of flow information, we can segregate the labels of the administrative

lambdas and applications and the labels of the residual ones as well. In practice,

the solution after administrative reduction is thus obtained simply by restricting

Palsberg and Wand’s solution to the residual labels. In the overall process of (1)

CPS transformation, and (2) administrative reduction, the administrative labels are

used transitorily, just as in the one-pass CPS transformation, which is conceptually

fitting.
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